
genesis of gastric cancer. The outcome of the infection 
depends on environmental factors and bacterial and 
host characteristics. Gastric carcinogenesis is a multistep 
process that is reversible in the early phase of mucosal 
damage, but the exact point of no return has not been 
identified. Therefore, two main therapeutic strategies 
could reduce gastric cancer incidence: (1) eradication 
of the already present infection; and (2) immunization 
(prior to or during the course of the infection). The 
success of a gastric cancer prevention strategy depends 
on timing because the prevention strategy must be 
introduced before the point of no return in gastric 
carcinogenesis. Although the exact point of no return 
has not been identified, infection should be eradicated 
before severe atrophy of the gastric mucosa develops. 
Eradication therapy rates remain suboptimal due to 
increasing H. pylori  resistance to antibiotics and patient 
noncompliance. Vaccination against H. pylori  would 
reduce the cost of eradication therapies and lower 
gastric cancer incidence. A vaccine against H. pylori  is 
still a research challenge. An effective vaccine should 
have an adequate route of delivery, appropriate bacterial 
antigens and effective and safe adjuvants. Future 
research should focus on the development of rescue 
eradication therapy protocols until an efficacious vaccine 
against the bacterium becomes available. 
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Core tip: Two main therapeutic strategies could 
reduce the incidence of Helicobacter pylori  (H. pylori )-
related gastric cancer: eradication of the infection or 
vaccination. Success of a gastric cancer prevention 
strategy depends on the eradication of the infection 
or on vaccination before irreversible mucosal changes 
(severe atrophy, intestinal metaplasia or dysplasia) 

Aleksandra Sokic-Milutinovic, Tamara Alempijevic, Tomica 
Milosavljevic, Clinic for Gastroenterology and Hepatology, 
Clinical Center of Serbia and School of Medicine University of 
Belgrade, 11000 Belgrade, Serbia

Author contributions: Sokic-Milutinovic A, Alempijevic T and 
Milosavljevic T did literature research and wrote the paper; and 
Sokic-Milutinovic A approved final version of the manuscript.

Conflict-of-interest statement: Authors have no conflict of 
interest to declare.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Correspondence to: Aleksandra Sokic-Milutinovic, MD, PhD, 
Professor, Clinic for Gastroenterology and Hepatology, Clinical 
Center of Serbia and School of Medicine University of Belgrade, 
Koste Todorovica 6, 11000 Belgrade, 
Serbia. asokicmilutinovic@gmail.com
Telephone: +381-11-3663734       
Fax: +381-11-3615432

Received: May 21, 2015  
Peer-review started: May 22, 2015
First decision: June 23, 2015
Revised: July 16, 2015
Accepted: September 22, 2015  
Article in press: September 22, 2015
Published online: November 7, 2015

Abstract 
Helicobacter pylori  (H. pylori ) plays a role in the patho
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Role of Helicobacter pylori  infection in gastric carcinogenesis: 
Current knowledge and future directions
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PATHOGENESIS OF GASTRIC CANCER 
Gastric mucosa colonization
H. pylori infection is, in majority of cases, acquired 
during childhood. The bacterium has to overcome 
the gastric acid barrier and enter the mucus layer 
to complete the process of colonization[12] and to 
subsequently induce damage to the gastric mucosa. 
Furthermore, the persistence of the infection is also 
important, and it reflects the ability of the bacterium to 
adapt to its environment and to start multiplication[13]. 

To colonize the gastric mucosa the bacterium uses 
urease activity, motility and adhesion mechanisms[14]. 

Urease activity is essential for colonization of the 
gastric mucosa because in the absence of urea, the 
bacterium can only survive in a pH range of 4.0-8.0, 
while in an environment containing urea, it remains 
viable at a low pH of 2.5. Urease catalyzes the hy
drolysis of urea into ammonia and CO2, leading to 
the increased pH of the bacterial microenvironment. 
H. pylori urease has a high affinity for urea, which 
enables the bacteria to utilize the limited amounts of 
urea that are present in the human stomach[15]. 

H. pylori flagella-mediated motility is necessary 
for both colonization of the gastric mucosa and for 
the persistence of the infection[14]. Expression of two 
flagellar proteins, FlaA and FlaB, is required for full 
bacterial motility[16]. 

Adhesion of H. pylori to epithelial cells enables 
the bacterium to alter host cell function. Adhesion is 
mediated through outer membrane proteins that act 
as adhesins, including BabA, SabA, AlpA, AlpB and 
HopZ. 

The interaction between the bacterium and the 
gastric mucus occurs through contacts between the 
bacterial outer membrane protein BabA[17,18] and the 
Lewisb blood group antigen. BabA is a highly variable 
protein that is encoded by two genes, babA1 and 
babA2. The protein encoded by babA2 is functionally 
active. A major adhesin of H. pylori is SabA (sialic-
acid binding adhesin), which interacts with sialylated 
structures on mucins[14]. The proportion of sialylated 
structures increases in the gastric mucosa during the 
course of chronic H. pylori infection. SabA also binds 
to sialylated receptors on neutrophils and induces 
activation of the neutrophils. AlpA and AlpB are 
expressed in all bacterial strains and enable binding 
to host laminin[14,18]. HopZ also plays role in the 
colonization process[14,19]. 

H. pylori uses the thioredoxin system[14,20] to induce 
partial breaks and changes in the polymeric structure 
of mucus gel. H. pylori infection and non-specific 
mechanisms of inflammation simultaneously reduce 
the protective capabilities of gastric mucin. One-fifth 
of the presenting bacteria completely adhere to the 
gastric surface epithelium, while the remaining bacteria 
reside in the surface mucus layer[21]. The helical shape 
of the bacterium facilitates its penetration of gastric 
mucus[22]. 
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have occurred. Eradication therapy results are sub
optimal due to increased antibiotic resistance in H. 
pylori  and patient noncompliance. To improve the rates 
of eradication, rescue regimens have been developed. 
Concomitant and sequential protocols seem equally 
effective rescue strategies. An effective vaccine is not 
available at present, in spite of enormous effort by 
different researchers.
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INTRODUCTION
Helicobacter pylori (H. pylori) is a spiral, gram-
negative, microaerophilic bacterium that plays an 
undisputed role in the pathogenesis of gastric and 
duodenal ulcers, low grade B cell gastric lymphoma 
(MALT lymphoma) and gastric cancer[1]. In 1982, 
Warren and Marshall cultivated the bacterium. Their 
discovery changed the therapeutic algorithm for both 
peptic ulcer disease and gastric MALT lymphoma. The 
role of H. pylori in gastric carcinogenesis was clarified 
in 1991 when large epidemiological studies[1,2] reported 
a higher incidence of gastric cancer in H. pylori-infected 
individuals, which confirmed previously published 
reports[3-5]. Scientific evidence accumulated, and in 
1994, H. pylori was named as a human carcinogen 
by the International Agency for Research on Cancer. 
The role of the infection in gastric cancer development 
was further supported by a study by Wang et al[6] that 
included 2722 early gastric cancer patients and 13976 
controls. This study demonstrated a higher H. pylori 
prevalence in patients with early gastric cancer than in 
the control group (87% vs 61%, respectively).

Gastric cancer is common; it is the third most 
common of all cancers among males and the fifth 
most common among females[7]. The survival rate 
of advanced gastric cancer patients is very low (< 
20%). The incidence of gastric cancer is declining in 
developed countries but rising in developing countries, 
and the overall burden of the disease is constantly 
increasing[7,8].

Distinct patterns of H. pylori gastritis are related 
to different outcomes of the infection. Chronic corpus-
predominant and multifocal atrophic gastritis lead 
to increased risk of gastric cancer formation, while 
antrum-predominant gastritis leads to the formation of 
duodenal ulcer[9-11]. 

The outcome of H. pylori infection depends on 
the characteristics of the bacterium in addition to the 
characteristics of the host and environmental factors. 



H. pylori virulence factors
H. pylori virulence depends on the above described 
and other factors that are responsible for damage 
to the gastric mucosa (Figure 1). Epidemiological 
studies have identified six distinct H. pylori strains 
in different geographic regions that are related to 
different incidences of gastric cancer[23]. These strains 
are termed hpEastAsia, hpAsia2, hpEurope, hpAfrica1, 
hpAfrica2 and hpNEAfrica. H. pylori produces various 
virulence factors and has the ability to modulate its 
reaction to the host immune response and to thereby 
adapt to individual host conditions[8].

H. pylori is a highly heterogeneous bacterium[24,25]. 

Virulence factors that contribute to gastric cancer 
development include the cytotoxin-associated gene  
(cagA) A and CagA protein (CagA), CagL, vacuolating 
cytotoxin (VacA) and outer inflammatory protein 
(OipA), while the possible role of the duodenal ulcer-
promoting gene (dupA) remains unclear[8].

CagA
Two distinct types of H. pylori are the CagA-producing 
(cagA-positive) strains and the CagA-nonproducing 
(cagA-negative) strains. In animal models, gastric cancer 
develops only in animals infected with cagA-positive 
H. pylori strains or when CagA protein is artificially 
introduced into the host[26,27]. Because in humans, only 
some individuals infected with cagA-positive strains 
develop gastric cancer, further investigations have 
focused on cagA gene polymorphisms. The number 

of repeat sequences in the 3’ region of the cagA gene 
differs between H. pylori strains[28]. Each repeat region of 
the CagA protein contains EPIYA motifs, a term used to 
describe a specific sequence of amino acids (Glu-Pro-Ile-
Tyr-Ala). There are two EPIYA motifs in the first repeat 
region (EPIYA-A and EPIYA-B) and two in the second 
(EPIYA-C or EPIYA-D) repeat region[24]. In Western-
type H. pylori, CagA proteins have EPIYA ABC, ABCC or 
ABCCC repeat regions, while in East Asian-type H. pylori, 
CagA proteins have EPIYA ABD repeats[8,24]. 

The CagA protein consists of a C-terminal region 
that contains the EPIYA motifs and an N-terminal 
region[8]. After adhesion of the bacterium to the 
host cell, CagA is injected into the host cell via the 
cag pathogenicity island (cagPAI)-encoded type IV 
secretion system (T4SS), and electrostatic interactions 
with phosphatidylserine keep CagA linked to the inner 
leaflet of the cell membrane[8,29]. In the cytoplasm 
of the host cell, CagA is phosphorylated at its EPIYA 
motifs[30]. CagA alters host cell signaling in both a 
phosphorylation-dependent and a phosphorylation-
independent manner[8]. The induction of heme 
oxygenase 1 reduced CagA phosphorylation in gastric 
epithelial cells in vitro, while in vivo H.pylori diminishes 
heme oxygenase 1 gene expression[8,31]. 

CagL
Carcinogenic and virulent H. pylori strains express 
CagL, a highly conserved protein component of T4SS 
that is involved in bacterial attachment to the host 
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Figure 1  Mechanisms of Helicobacter pylori induced gastric mucosa damage. 
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pathogenic and CagA, VacA and OipA-producing. 
According to the available data, the presence of these 
three genes is related to gastric cancer and peptic 
ulcer disease pathogenesis[24]. 

DupA
Duodenal ulcer-promoting gene (dupA) plays a role in 
T4SS formation and is localized in the plasticity zone. 
Lu et al[41] proposed dupA as an H. pylori virulence 
factor that is involved in duodenal ulcer pathogenesis 
and that confers a protective effect against gastric 
carcinogenesis[8], but other studies have failed to 
demonstrate a relationship between this gene and 
any distinct gastroduodenal pathology, and they have 
therefore not supported this hypothesis[23,42,43]. These 
results could be explained by polymorphism of the 
dupA gene[30].

H. PYLORI, GASTRIC CANCER AND 
GEOGRAPHY-ROLE OF BACTERIAL 
STRAIN 
Multilocus sequence typing of housekeeping genes 
revealed that there are six distinct H. pylori strains 
(hpEurope, hpEastAsia, hpAsia2, hpAfrica1, hpAfrica2 
and hpNEAfrica). These strains are associated with 
different geographic regions and with the incidence of 
gastric cancer. 

It is probable that housekeeping gene differences 
are merely markers for virulence factors that affect 
disease outcome[8,23]. Initially, four main clusters 
were identified by Falush et al[44]. HpEurope isolates 
were found in Europe and in countries colonized by 
Europeans, while the majority of isolates from East 
Asia were the hpEastAsia strain. HpAfrica1 is widely 
spread, while hpAfrica2 is found exclusively in South 
Africa. Two clusters were later identified: hpAsia (South 
and Southeast Asia) and hpNEAfrica (the predominant 
isolate in Northeast Africa)[8,25]. 

The geographical distribution of HpEastAsia isolates 
is concordant with the high incidence of gastric cancer 
in these areas. On the other hand, in low gastric 
cancer incidence areas, such as Africa and South Asia, 
most strains are hpNEAfrica, hpAfrica1, hpAfrica2 
or hpAsia2. This is a plausible explanation for both 
African and Asian enigma. The high incidence of H. 
pylori infection is related to the high incidence of 
gastric cancer in East Asia, while a low incidence of 
gastric cancer is observed in populations with a high 
prevalence of H. pylori infection in Africa (the African 
enigma) and South Asia (the Asian enigma)[8,23].

Changes in the infected mucosa
After infection with H. pylori, inflammation and mucosal 
damage occur in the non-acid secreting gastric antrum. 
Over time, mucosal damage progresses into the 
gastric corpus. The atrophic border can be recognized 

cell and also in the induction of host inflammatory 
responses and carcinogenesis[29]. CagL induces hyper
gastrinemia, which is a risk factor for the development 
of gastric adenocarcinoma[8,30]. Contact between CagL 
and α5β1 integrin induces IL-8 secretion from the host 
cell[32]. 

VacA
VacA induces vacuolization and apoptosis (as a conse
quence of cytochrome c release from mitochondria) 
of the host cell. It is also responsible for altered 
membrane-channel formation and the induction of 
autophagy and altered host immune responses[30,33,34], 
mainly through the inhibition of T cell activation and 
proliferation[35]. The vacA gene is functional in all H. 
pylori strains and differences in its vacuolating activity 
have been associated with its gene structure, which 
varies in the signal (s1 and s2), middle (m1 and m2) 
and intermediate (i1 and i2) regions[36]. The risk of 
developing different gastrointestinal pathology is 
attributable to different combinations of s, m and i 
region subtype.

The s1/m1 strains induce the highest level of 
cytotoxicity, the s1/m2 strains induce the lowest, and 
the s2/m2 strains have no cytotoxic activity (s2/m1 
strains are rare)[37]. The risk of developing either 
gastric cancer or peptic ulcer disease is increased in 
individuals infected with s1 or m1 H. pylori strains 
compared with individuals infected with s2 or m2 
strains[8,24]. In East Asia, most H. pylori strains are 
s1 type, and in these patients, the presence of the 
m1 region is related to an increased risk for gastric 
cancer[24].

The intermediate region of vacA is localized 
between the s and m regions. Type i1 is found in all 
s1/m1 strains, while all s2/m2 strains are type i2. 
Strains that are type s1/m2 can be either type i1 or i2. 
Strains with the i1 region are more pathogenic[8]. The 
type of the i-region has a better predictive value than s 
region type in some, but not all populations[38].

The deletion (d) region is localized between the 
i and the m regions[39]. The d region can be type d1 
or d2. In patients infected with Western strains, the 
presence of the d1 region is a risk factor for gastric 
mucosal atrophy. In patients infected with the East 
Asia type of Helicobacter, all strains are classified as 
s1/i1/d1[24].

OipA
OipA is a protein that was identified in 2000[24] and 
is involved in H. pylori adhesion to the host cell, 
induction of the host pro-inflammatory response and 
the subsequent increase in mucosal interleukin-8 (IL8) 
levels[40]. Results from animal studies suggest a role 
for OipA in gastric carcinogenesis[8,26].

CagA, VacA and OipA synthesis is linked. Therefore, 
almost all H. pylori strains produce either all or none of 
these proteins. East Asian H. pylori strains are highly 
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endoscopically, and the damage progresses more 
rapidly along the lesser curve than the greater curve, 
as previously reported[44,45]. Chronic inflammation that 
is related to H. pylori affects cell differentiation and 
promotes metaplasia[46-48]. As the damage spreads 
into the corpus, pyloric metaplasia is observed near 
the atrophic border. Pyloric metaplasia exhibits similar 
immunohistochemical characteristics to spasmolytic 
polypeptide/trefoil factor family 2-expressing metaplasia 
(SPEM), which has been described in animal models of 
gastric carcinogenesis[49,50] and is probably an important 
step in gastric cancer formation. 

DEVELOPMENT OF GASTRIC CANCER
Gastric adenocarcinoma can originate from both 
proximal (cardia) and distal (non-cardia) parts of 
stomach. Proximal and distal gastric cancers have 
different epidemiological and clinical characteristics[8]. 
Risk factors for proximal gastric cancer include 
increased body weight, gastro-esophageal reflux 
disease and Barrett’s esophagus[8,51], while distal 
gastric cancer risk is increased by the presence of H. 
pylori infection[9-11], family history of gastric cancer, low 
socioeconomic status, smoking and a diet rich in salty 
and smoked food with low consumption of fruits and 
vegetables[52].

According to the Lauren classification, gastric 
cancer is divided into intestinal and diffuse histological 
subtypes. The presence of H. pylori infection and 
corpus-predominant gastritis with intestinal meta
plasia leads to intestinal-type gastric cancer, whe
reas diffuse gastric cancer arises from non-atrophic 
pangastritis[9-11]. 

Long-lasting precancerous processes result in 
intestinal-type gastric adenocarcinoma. In 1938, 
pathologists proposed that the presence of gastric 
intestinal metaplasia is related to gastric cancer[8]. 
This model, now known as the Correa cascade, was 
reintroduced and proposed by Correa et al[53] in 1975. 
The authors updated their model in 1988 and 1992. In 
the Correa cascade, consecutive histological changes 
in the gastric mucosa occur, leading to gastric cancer 
through the following steps: normal gastric mucosa, 
superficial (non-atrophic) gastritis, multifocal atrophic 
gastritis, complete (small intestine type) intestinal 
metaplasia followed by intestinal metaplasia of the 
incomplete (colonic) type, low-grade dysplasia, high-
grade dysplasia and invasive adenocarcinoma[9-11,53]. 
It is now believed that intestinal metaplasia arises 
from SPEM and that SPEM may also provide the cells 
of origin for gastric cancer[50,54]. Intestinal metaplasia 
is considered by some authors as a surrogate marker 
for the presence and extent of gastric mucosal 
atrophy[55-57]. The concept of multifocal atrophic gastritis 
represents areas of intestinal metaplasia in SPEM-
type atrophy damage[58,59]. Nevertheless, the critically 
important point of no return, up to which gastric cancer 
prevention is possible and histological changes are 

reversible, remains unidentified[8]. 

HOST FACTORS
Apart from the bacterial strain, the characteristics of 
the host play a role in gastric carcinogenesis. Different 
host gene polymorphisms have been described, 
mainly as single nucleotide polymorphisms. These 
polymorphisms influence host inflammatory immune 
responses and affect host cell proliferation and 
mucosal protection. They also exert an effect on the 
metabolism of carcinogens and antioxidants[8].

STRATEGIES FOR GASTRIC CANCER 
PREVENTION
There are two main therapeutic strategies that could 
reduce the incidence of gastric cancer: eradication of 
an ongoing infection or immunization prior to or during 
the course of the infection (Figure 2). The success 
of a gastric cancer prevention strategy depends on 
its timing because prevention strategies should be 
introduced before the point of no return in gastric 
carcinogenesis. Although the exact point of no return 
has not been identified, infection should be eradicated 
before severe atrophy of the gastric mucosa develops. 

ERADICATION OF H. PYLORI INFECTION 
IN GASTRIC CANCER PREVENTION-
CURRENT EVIDENCE
Effects of eradication therapy for H. pylori infection 
on either invasive gastric cancer or premalignant 
histological lesions of the gastric mucosa have been 
reported in five randomized control trials (RCT)[60-65].

Gastric cancer incidence was evaluated in a RCT 
conducted by Wong et al[60] that lasted for 7.5 years. 
Healthy individuals were randomized to receive either 
eradication therapy or placebo in a region in China with 
a high gastric cancer incidence. The study results did 
not demonstrate a decrease in overall gastric cancer 
incidence, but the results did suggest a protective 
role for H. pylori eradication in subjects without 
precancerous lesions[8]. 

The low number of gastric cancer cases[60,63] and 
the study design (it did not aim to assess gastric 
cancer incidence as a primary outcome) of other 
previously published studies[61,62] has led to a lack of 
scientific evidence for the possible effects of H. pylori 
eradication on cancer occurrence. Evidence in favor of 
a protective effect of H. pylori eradication on gastric 
cancer formation came from a study by Ma et al[64]. 
They published the results of a RCT after 15 years 
of follow-up with 2258 H. pylori seropositive adults. 
In this study, participants were selected from the 
general population and randomly assigned to one of 
three intervention groups (H. pylori eradication, garlic 
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supplements, or supplemental vitamins) or a control 
group. This study demonstrated reduced gastric 
cancer incidence in the group of patients treated with 
eradication therapy for H. pylori.

The benefits of mass eradication in populations 
with high incidence of H. pylori was assessed by Lee 
et al[66]. Individuals with positive H. pylori urea breath 
test underwent endoscopic screening and received 
eradication therapy. The success rate of the eradication 
therapy was 78.7%, and it led to a decrease in gastric 
atrophy incidence. However, no significant change in 
intestinal metaplasia was observed. The incidence of 
gastric cancer decreased by 25% during the study.

An important study from Uemura et al[67] assessed 
the effect of H. pylori eradication on metachronous 
gastric cancer development in patients who had a 
previous endoscopic resection of an early gastric 
carcinoma. H. pylori-positive patients who underwent 
endoscopic resection were randomized to receive either 
H. pylori-treatment or no treatment. After four years 
of follow up, metachronous cancer was not diagnosed 
in any of the H. pylori-treated patients compared to 
9% in the group that received no treatment. These 
findings were confirmed in a larger study by Fukase 
et al[65], who demonstrated that eradication therapy 
in patients with previous endoscopic resection of early 
gastric cancer reduced the risk of metachronous gastric 
carcinoma by 65%. Current Japanese guidelines reflect 
an acceptance of the results of this study and suggest 
H. pylori eradication therapy after endoscopic resection 
of early gastric cancer[68].

Recently published data are available from a 
retrospective study performed in South Korea[69] 
that analyzed the relationship between the risk 
of metachronous gastric cancer in patients who 
underwent endoscopic resection of early gastric cancer 
and H. pylori eradication therapy. This study confirmed 
the results of Fukase et al[65] and demonstrated 
that successful H. pylori eradication may reduce the 
occurrence of metachronous gastric cancer.  

Recent trial reports[64-66,69] have also provided 
evidence of a protective effect of H. pylori eradication 
in gastric cancer. 

INDICATIONS FOR ERADICATION IN 
GASTRIC CANCER PREVENTION 
According to the Maastricht IV consensus, eradica
tion of H. pylori reduces the risk of gastric cancer 
development. Patients should be treated during the 
initial phase of the infection, before preneoplastic 
changes in the gastric mucosa occur. Authors of the 
Maastricht IV consensus identified individuals with an 
increased risk for gastric cancer. They suggest that 
to decrease gastric cancer risk, eradication therapy 
should be offered to first-degree relatives of family 
members with a diagnosis of gastric cancer, patients 
with previous gastric neoplasia who have already been 
treated by endoscopic or subtotal gastric resection, 
patients with a risk of severe pan-gastritis, corpus-
predominant gastritis or severe atrophy, patients who 
have received chronic gastric acid inhibition for more 

Figure 2  Strategies for gastric cancer prevention. H. pylori: Helicobacter pylori.
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than 1 year, patients with strong environmental risk 
factors for gastric cancer (heavy smoking or high 
exposure to dust, coal, quartz, cement and/or work in 
quarries), and H. pylori-positive patients with a fear of 
gastric cancer[70]. Two other documents, the American 
College of Gastroenterology guidelines[71] and the Asia 
Pacific Consensus document[72], have also recommend 
H. pylori eradication in patients with endoscopic 
resection of early gastric cancer.

Population screening and eradication of H. pylori 
was a matter of scientific debate until recently. 
Currently, the Maastricht IV consensus encourages[70], 
while the Asia Pacific consensus strongly recommends, 
population screening and treatment for H. pylori in 
high-risk regions as a chemo-prophylactic measure for 
gastric cancer[71]. The rationale behind this is the cost 
effectiveness of eradication therapy when compared to 
the cost of treatment of advanced gastric cancer. 

TIMELY ERADICATION IS ESSENTIAL 
FOR GASTRIC CANCER PREVENTION
H. pylori eradication therapy should stop the pro
gression of mucosal damage and reduce gastric 
cancer risk[73]. Eradication of the infection stops 
the inflammatory process and promotes healing of 
gastritis and a resolution of inflammation. H. pylori 
leads to gastric cancer through the Correa cascade; 
therefore, when severe atrophic damage and intestinal 
metaplasia occur, eradication cannot reverse mucosal 
changes. 

After eradication therapy, individuals with non-
atrophic gastritis have a negligible risk of developing 
gastric cancer, while individuals with atrophic gastritis 
have an increased risk. This risk is overall lower in 
eradicated patients when compared to untreated 
patients with the same pattern of gastritis. In un
treated patients, the risk for gastric cancer increases 
yearly as the atrophy progresses[73], as demonstrated 
by Ohata et al[74] In a large, longitudinal cohort study 
on 4655 healthy asymptomatic subjects followed 
for 7.7 years, the authors aimed to determine the 
association between H. pylori infection and the 
progression of chronic atrophic gastritis (CAG) with 
gastric cancer. The authors identified 45 gastric cancer 
cases, none of which were H. pylori negative and 
CAG negative, during the study period. Development 
of CAG increased the risk of gastric cancer. Recently 
published data[75] from the same group confirmed 
that in subjects with a serologically diagnosed healthy 
stomach (H. pylori-negative/pepsinogen within normal 
range and therefore CAG-negative), the cancer 
incidence rate was low (16/100000 person-years). 
On the other hand, in the individuals with an H. pylori 
infection, they observed progression of chronic gastritis 
and increased gastric cancer risk. In patients with no 
atrophy and active inflammation, gastric cancer risk 
was estimated at 250/100000 person-years, which is 

comparable to the risk in subjects with CAG. Patients 
with active inflammation were at risk of diffuse gastric 
cancer. These results revealed that gastric cancer 
develops in some patients as a result of the Correa 
cascade, while in others it can result from a direct 
carcinogenic pathway based on active inflammation.

Eradication therapy, up to some point, prevents 
gastric cancer. Data on the possible reversion of 
atrophic changes in the gastric mucosa is conflicting. 
A longitudinal cohort study conducted by Yanaoka et 
al[76] with a mean follow up of 9.3 years demonstrated 
a significant reduction in cancer incidence after 
eradication in H. pylori positive patients with mild 
atrophic gastritis. The incidence in patients with 
persistent infection was 111/100000 person-years 
compared to 69/100000 among patients in whom 
the infection was eradiated. As expected, cancer 
incidence rates did not vary significantly (237 vs 223) 
among the patients with severe atrophy. The authors 
concluded that cancer development after eradication 
depends on the presence of extensive CAG before 
eradication and that H. pylori eradication is beneficial 
in subjects with mild CAG. A study by Sakakibara[77], 
who followed a small group of 8 patients who were 
surgically treated for gastric cancer for 9 years, 
suggested a prompt improvement in the atrophy 
score (reversion of atrophic changes) in the remaining 
gastric mucosa following eradication therapy. The 
authors concluded that H. pylori eradication improved 
possible precancerous lesions in the gastric remnant. 

Watari et al[78], in a prospective study, followed 96 
patients for 4 years who exhibited chronic gastritis with 
or without intestinal metaplasia or gastric intestinal 
metaplasia with dysplasia and failed to demonstrate 
a change in intestinal metaplasia score. Nevertheless, 
the authors reported a change in the intestinal 
metaplasia phenotype: they followed the expression 
of several biomarkers related to carcinogenesis 
and demonstrated regression in TC22-4. TC22 is a 
neoplastic marker that is expressed exclusively by 
transformed epithelial cells. Based on this finding, they 
suggested that the change of phenotype may be an 
important factor in the reduction of cancer incidence 
after eradication of H. pylori. H. pylori eradication prior 
to development of intestinal metaplasia was beneficial 
for patients with corpus gastritis. However, eradication 
in high risk patients (i.e., patients with atrophy with 
intestinal metaplasia, especially of the incomplete type 
or with a history of endoscopic treatment for gastric 
cancer) was not beneficial[79]. Identification of the point 
of no return for the development of malignancy is an 
important, but still unanswered, scientific goal.

SUCCESS OF ERADICATION THERAPY
There are two main underlying causes of suboptimal 
results of eradication therapy: H. pylori resistance and 
patient noncompliance (Figure 3).
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CHOICE OF ANTIBIOTICS IN THE 
LIGHT OF INCREASING BACTERIAL 
RESISTANCE
In the first years after the discovery of H. pylori and 
its role in the pathogenesis of major gastric diseases, 
eradication therapy seemed to be a safe and efficient 
strategy that would resolve and eradicate peptic ulcer 
disease, MALT lymphoma and majority of gastric 
cancer cases. 

In 1993, an eradication protocol consisting of 
two antibiotics (clarithromycin and amoxicillin or 
metronidazole) and a proton pump inhibitor was 
proposed[80,81] and confirmed as efficacious in large 
studies[82,83].

Eradication therapy is effective when the mucosal 
concentration of the antibiotic is above the minimal 
bactericidal concentration (MBC) at the site of the 
infection for a sufficient time, which enables the 
eradication of all present bacteria[84]. Macrolides 
(clarithromycin), beta-lactams (amoxicillin), tetracycline, 
metronidazole, rifampin (rifabutin) and fluoroquinolones 
(levofloxacin) were identified as antibiotics with the 
best potential for eradication of the infection. For 
these drugs, therapeutic doses result in a mucosal 
concentration above the MBC. 

Selected antibiotics need to be absorbed and 
released in the gastric mucosa over long periods of 
time. The in vitro efficacy of aminoglycosides and 
bismuth salts is compromised in vivo by a poor rate of 

absorption. In addition, some drugs from the above 
mentioned groups have displayed disappointing clinical 
effects, i.e., doxycycline (tetracycline) and ciprofloxacin 
(fluoroquinolone). There are also other factors that are 
described in detail in a review by Megraud[85] that should 
be considered when assessing antibiotic efficacy. These 
factors include the acidity of the stomach and bacterial 
resistance. The majority of antibiotics are not active at 
low pH and are only active in dividing bacteria, making 
the use of proton pump inhibitor (PPI) mandatory. 

Clarithromycin is the basis for H. pylori treatment 
because it has MBC, good mucosal diffusion and is not 
affected by gastric acidity. The addition of a second 
antibiotic provides a high and permanent eradication 
rate. The second antibiotic of choice is either amoxicillin 
or metronidazole. Triple therapy was a standard 
treatment until recent years, in which we are facing 
increased H. pylori resistance to clarithromycin that 
is attributable to the selection of bacteria with point 
mutations that have occurred during replication[86,87].

The global clarithromycin resistance rate in Europe 
increased from 9% in 1998[88] to 17.6% in 2008[89]. 
It has been suggested that clarithromycin resistance 
is the major cause of eradication treatment failure. 
Data on clarithromycin resistance was obtained in a 
study that included 18 European countries. Primary 
H. pylori antibiotic resistance rates were, for adults, 
17.5% for clarithromycin, 14.1% for levofloxacin and 
34.9% for metronidazole. Higher resistance rates 
for clarithromycin and levofloxacin are observed in 
Western/Central and Southern Europe (> 20%) than 

Figure 3  Factors influencing Helicobacter pylori eradication rates.
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in Northern European countries (< 10%). There are 
also data from individual countries showing a wide 
range of resistance rates to clarithromycin. Resistance 
rates range from 0% in India to 49.2% in Spain[90,91]. 
There is also cross-resistance for all of the other 
macrolides[85].

Resistance to rifampin, amoxicillin and tetracycline 
is rare[85]. Resistance to rifampin is observed in patients 
previously treated for tuberculosis, while resistance 
to tetracycline has been reported in some[92,93], but 
not all studies from Korea and Brazil[94,95]. Resistance 
to metronidazole is not frequently observed and 
depends on the other drugs used and the length of 
treatment[85].

The first Maastricht conference proposed a triple 
treatment including PPI-clarithromycin and amoxicillin 
or metronidazole[96] that currently has an eradication 
rate of 70% (the aimed-for eradication rate for any 
protocol should be over 80%)[97]. Possible explanations 
for this decrease in efficacy of the standard triple 
therapy include low compliance, high gastric acidity, 
high bacterial load, the type of strain and an increase 
in H. pylori resistance to clarithromycin. Maastricht IV 
therefore suggests that PPI-clarithromycin-containing 
triple therapy without prior susceptibility testing should 
not be prescribed in regions with a clarithromycin 
resistance rate of more than 15%-20%[70].

RESCUE STRATEGIES FOR OVERCOMING 
BACTERIAL RESISTANCE
Because no new drug has been developed for this 
indication, a number of studies have focused on the 
use of different combinations of known antibiotics. 

Possible scenarios proposed to overcome the 
problem of low eradication rates include the admi
nistration of sequential or concomitant therapy. 
Sequential therapy (ST) consists of a PPI and amoxicillin 
administered for the first five days followed by a PPI and 
2 other antibiotics for the following 5 d. This sequential 
administration weakens the bacterial cell wall in the 
initial phase and helps to increase eradication rates, 
even in clarithromycin-resistant strains. Concomitant 
therapy (CT) regimen consists of all of the medication 
administered in ST, but given simultaneously. The 
efficacy of both ST[97,98] and CT[99,100] therapies has 
been supported in different studies. A recent meta-
analysis provided data on the efficacy of concomitant 
vs sequential therapies[101]. The analysis was based on 
7 RCTs that included 2412 individuals. The sequential 
regimen was successful in 83.8% of patients, while 
concomitant therapy eradicated the infection in 86.1% 
of patients. The adverse events and adherence to 
medications were not different between the two 
regimens.

The idea of a bismuth-containing quadruple 
therapy was revisited and improved through the single 
pill concept. Namely, a formulation containing bismuth 

salts, tetracycline and metronidazole in the same pill 
was developed[102-104]. 

Hsu et al[105] proposed hybrid (dual concomitant) 
therapy consisting of dual therapy (PPI and amoxicillin 
for 7 d) followed by a concomitant quadruple therapy 
(PPI, amoxicillin, clarithromycin and metronidazole for 
another 7 d). The eradication rate for this treatment 
was over 97%.

High-dose dual therapy consists of administration 
of PPI and amoxicillin three times a day for 2 wk and 
was initially designed for areas with high resistance 
to clarithromycin. It provides eradication in 78.4% of 
patients[106,107] and does so with fewer side effects and 
better compliance. The authors therefore suggested 
that larger studies are needed[108].

Levofloxacin-based triple therapy consists of 
PPI, levofloxacin, and amoxicillin for 10 d, and the 
eradication rate of levofloxacin-based triple therapy 
ranges from 74% to 96%[109-111]. This regimen is not 
recommended as the first line treatment because 
augmented use of quinolones for respiratory and 
urogenital infections increased H. pylori resistance 
to these drugs[109]. The resistance to levofloxacin is a 
consequence of a point mutation in a special region, 
the so-called quinolone resistance determining region. 
There is also cross-resistance in all fluoroquinolones[91]. 
Levofloxacin-based therapy is considered to be an 
efficient alternative regimen in populations with 
15%-20% clarithromycin resistance and quinolone 
resistance less than 10% and is a second line 
treatment, according to the Maastricht IV consensus[70]. 
Selection of quinolone therapy should be based on the 
results of antibiotics susceptibility tests or geographic 
resistance patterns due to the rapid increase in the 
number of resistant strains[91].

Rifabutin-based therapies were introduced as 
rescue therapies based on the results of in vitro 
studies[112]. A triple regimen includes amoxicillin, PPI 
and rifabutin, but the optimal duration of treatment 
is not defined and ranges from 7 to 14 d[113-115]. 
Myelotoxicity is a rare but significant complication 
that limits its widespread use[113]. The potential for 
mycobacterial resistance also limits the use of this 
regimen, leaving it as valid option only as a rescue 
treatment. 

Culture-based therapies are recommended after 
the failure of second-line treatments. An antimicrobial 
susceptibility test is recommended[69], and treatments 
adjusted to the results achieve more than 90% 
eradication rate after second-line therapy failure[116]. 
The test is invasive, expensive and has low sensitivity 
(less than 60%)[117]. Mixed infections with susceptible 
and resistant H. pylori strains also limit the efficacy of 
this therapeutic approach[118].

The relevance of CYP2C19 genotyping as a rescue 
strategy for improvement of eradication rates is based 
on the fact that the CYP2C19 polymorphism affects 
the H. pylori eradication rate, especially by omeprazole 
treatment[119]. This strategy is probably plausible in 
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Asia, where poor metabolizers account for more than 
15% of all patients[72,120].

ADJUVANT THERAPY
Adjuvant therapy in H. pylori eradication is likely 
to be of interest to researchers aiming to increase 
eradication rates, but the majority of data dwells on 
the role of probiotics. There is, however, some data 
suggesting a role for statins and pronase.

PROBIOTICS
Probiotics are considered safe. Thus, they are propo
sed as an adjuvant therapy to increase eradication 
rates and to decrease the side effects of therapeutic 
regimens, especially antibiotic-associated diarrhea. A 
meta-analysis published by Zhang et al[121] analyzed 
data from 45 RCTs and revealed that the addition of 
probiotics to a standard therapy was associated with 
an increased eradication rate (82.31% in probiotic 
group vs 72.08% in control group) and a lower 
incidence of adverse events. The mechanism of this 
action is probably related to the ability of probiotics 
to induce anti-inflammatory and anti-oxidative me
chanisms that regulate the intestinal microbiota. 
Today, urease is considered a single possible target 
for probiotic action[122,123]. According to Ruggiero, it 
is more likely that probiotics exert indirect and non-
specific, rather than direct and specific, anti-H. pylori 
activity[124].

STATINS 
HMG-CoA reductase inhibitors have many pleiotropic 
effects. Therefore, Nseir et al[125] tested, in a small RCT, 
the hypothesis that the addition of simvastatin could 
improve eradication rates. According to this study, a 
better eradication rate (91% vs 72%) was observed 
in the group whose treatment included statin. Further 

studies are needed in this field.

PRONASE
Pronase is proteolytic enzyme that causes the de
gradation of gastric mucus, and its addition to 
standard eradication therapy was investigated in 1995 
and 2002[126,127]. A single RCT by Gotoh used pronase 
with an eradication therapy (lansoprazole once daily, 
500 mg of amoxicillin, 250 mg of metronidazole and 
18000 tyrosine units of pronase thrice daily for 2 wk) 
and demonstrated an increased eradication rate in the 
group treated with pronase (ITT: 94% vs 76.5%, P 
= 0.0041)[126]. More validation is needed because the 
therapeutic regimens used in these studies are not 
currently standard eradication therapy protocols. 

ADHERENCE TO TREATMENT 
Patient adherence to treatment regimens is important 
for the successful eradication of H. pylori. According 
to the available data, successful eradication was 
observed in 96% of patients who took more than 
60% of the prescribed medication[128]. Adherence 
to sequential therapy varies from 81%-98%, while 
adherence to concomitant therapy has been reported 
as 78.7%-100% in different studies[129-135]. The lowest 
adherence is observed in Spain[131], and the highest is 
observed in Taiwan[135], as seen in table 1.

PASSIVE IMMUNIZATION
Passive immunization is effective in the prevention 
and treatment of various infectious diseases[136-138], 
making it a plausible strategy for the treatment 
of H. pylori as well. Data from animal studies has 
supported this concept, together with a previously 
reported protective effect from breastfeeding[139-141]. 
It is probable that specific antibodies inhibit the ad
herence of H. pylori. Clinical studies have reported 
conflicting data. Some studies have suggested that 
treatment with bovine antibodies could eradicate or 
decrease H. pylori colonization density[142,143], while 
others have failed to demonstrate this effect[144,145]. 
The first RCT to evaluate the efficacy and safety of 
specific anti-H. pylori polyclonal bovine IgA antibodies 
to reduce the intragastric bacterial load and gastritis 
activity in humans was performed by den Hoed[146]; 
the authors concluded that the antibody-based oral 
immunotherapy appears to be safe but ineffective 
because it did not significantly reduce H. pylori colo
nization density.

VACCINE
Active immunization against H. pylori infection 
would reduce the cost and potential complications of 
eradication therapy and is expected to lower gastric 

Table 1  Adherence to eradication therapy protocols in 
different countries

Ref. Country Adherence to treatment

Wu et al[130] Taiwan 98.2% concomitant therapy
95.7% sequential therapy

Greenberg 
et al[131]

Latin America 
(Chile, Colombia, 

Costa Rica, Honduras, 
Nicaragua, and Mexico )

92.2% overall
93.8% concomitant therapy

93% sequential therapy
89.9% standard therapy

McNicholl 
et al[132]

Spain 83% concomitant therapy
82% sequential therapy

Lim et al[133] South Korea 96.2% concomitant therapy
95.3% sequential therapy

Huang et al[134] Taiwan 94% concomitant therapy
95.3% sequential therapy

Hsu et al[135] Taiwan 100% concomitant therapy
98% sequential therapy
99% standard therapy
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cancer incidence. The development of a vaccine 
against H. pylori is complicated by the fact that the 
bacterium is noninvasive and remains strictly luminal 
without crossing the epithelium. An effective vaccine 
therefore must induce the appropriate Th memory 
cells that can be recruited to the mucosal surfaces. 
An effective vaccine against H. pylori should consist 
of appropriate bacterial antigens, an effective and 
safe adjuvant, and the route of delivery should be 
adequate. Different protocols have been tested using 
different antigens, adjuvants and application routes.

ANIMAL MODELS
In studies on animal models using classical immu
nization protocols, H. pylori lysates or H. pylori proteins 
were used, and plausible candidate antigens were 
identified (i.e., urease, catalase, VacA, CagA, NapA, 
HpaA, AlpA and BabA). Better protection resulted 
from combinations of antigens[147,148]. Recently, new 
bacterial antigens have been proposed as candidates for 
vaccine development, including 20 kD outer membrane 
lipoprotein Lpp20[149], AhpC (alkyl hydroperoxide 
reductase)[150] and antioxidant proteins (e.g., superoxide 
dismutase and catalase)[151]. 

Some studies that have used attenuated Salmo
nella strains, which express H. pylori ureA and ureB 
antigens, as delivery systems have demonstrated 
significant protection, both with intranasal and oral 
administration[152,153]. Recently designed Salmonella 
vector approaches use outer inflammatory protein A[154] 
for oral therapeutic immunization in addition to CagA, 
VacA and UreB in the vector[155]. This OipA-Salmonella 
based approach seems to be effective at both inducing 
OipA-specific antibodies and reducing H. pylori col
onization. Overall, the Salmonella-based approach 
seems to be successful in animal models.

A polio virus-based vaccination using urease B had 
both prophylactic and therapeutic efficacy[156]. 

A multi-epitope approach is the basis of several 
new vaccine candidates and is described in detail in 
several studies. Li et al[157] used B and T cell epitopes 
that were generated by software prediction aimed at 
inducing both humoral and cellular immune response. 
Epivac uses proteins consisting of predicted T cell 
epitopes from HpaA-, UreB- and CagA[158]-inducing 

serum but unfortunately no mucosal immunity. The 
induction of mucosal immunity could be an effective 
H. pylori vaccination protocol. Promising results were 
obtained in a study using chimeric flagellin consisting 
of the hypervariable domain of H. pylori FlaA and the 
C- and N-terminal segments of Escherichia coli (E. coli) 
flagellin that was designed by Mori[159]. The chimeric 
flagellin was designed to maintain H. pylori specificity 
and gain TLR5 activity. 

The vaccine in animal models was administered 
using different routes such as intranasal, oral, intra
muscular, subcutaneous, rectal and intraperitoneal. 

Different adjuvants have been tested in animal models, 
i.e., cholera toxin (CT) or heat-labile enterotoxin (LT), 
but the clinical use of these strong mucosal adjuvants 
is limited in humans because of their toxicity. A possible 
solution to this problem is to detoxify the adjuvant while 
maintaining its stimulatory effect[160]. However, these 
adjuvants have not been used in human clinical trials 
against H. pylori[161].

STUDIES IN HUMANS
In humans, majority of clinical studies have used 
recombinant urease as an antigen. In humans, 
clinical trials have tested the ability of experimental 
vaccines to eradicate existing H. pylori infection or to 
prevent the colonization of the gastric mucosa after 
introduction of the bacterium in an experimental 
challenge[162].

In H. pylori-infected asymptomatic individuals, 
oral immunization was well tolerated but did not 
lead to a specific immune response[163], while adding 
LT induced an immune response[164] and reduced 
H. pylori colonization[165]. Diarrhea occurred as a 
consequence of LT toxicity, but limiting the amount 
of LT was not effective, in that it resolved the side 
effects of LT but also reduced the immune response. 
Rectal administration of urease and LT induced a weak 
immune response[166]. 

Urease-expressing Salmonella-based delivery 
vectors did not prove to be effective in humans, which 
is in opposition to findings in animal models[167,168], 
because immune reactions were undetectable. Initial 
data on the use of the urease-expressing Salmonella 
vaccine strain Ty21a was disappointing because 
the immunologic response in H. pylori-negative 
volunteers was weak. T cell memory was observed in 
very few subjects, and no urease-specific antibodies 
were detected[168]. However, further investigation 
revealed that administration of multiple doses of a 
Salmonella-Ty21a based recombinant vaccine or the 
use of another recombinant strain that expressed 
the HP0231 H. pylori antigen resulted in the develop
ment of an immune response specific to H. pylori 
infection[169] and a decrease in the number of bacteria 
in gastric biopsies, both in vaccinated subjects and 
in the control group. Attenuated vaccines are well 
tolerated and might be the correct direction for further 
research.

There is evidence that efficacy can be improved via 
multivalent subunit vaccines[170]. A multivalent subunit 
vaccine consisting of CagA, VacA and NapA[171] was 
administered intramuscularly to H. pylori-negative 
volunteers, in whom it induced both humoral and cellular 
immune responses without side effects. Unfortunately, 
protection from H. pylori in a clinical setting did not differ 
between the placebo and the vaccine groups[172].

Recently, CagL protein was proposed as promising 
candidate for use in a subunit vaccine[173]. 
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MUCOSAL ADJUVANT
The use of strong mucosal adjuvants that have been 
tested in animal models is limited in humans because 
of their toxicity (i.e., CT and LT). 

In the field of mucosal adjuvants, important results 
have been published in recent years. Nedrud et al[174] 

demonstrated that the intranasal administration of 
a mucosal adjuvant, CTA1-DD (a derivative of the 
cholera toxin), is safe, effective and protected against 
a live H. pylori challenge in mice. The use of heat 
shock proteins (Hsp) as the mucosal adjuvant in a H. 
pylori vaccine has also been reported[175]. This vaccine 
was administered via respiratory route and induced 
systemic and mucosal antibodies; protective immunity 
was generated with a milder post-immunization 
inflammation. Nevertheless, sterilizing immunity was 
not achieved[175]. Promising results were obtained when 
a nontoxic double mutant of an E. coli toxin (R192G/
L211A) (dm2T) was used as the mucosal adjuvant[176]. 
Altman et al[177] suggested that carbohydrate-based 
vaccines against H. pylori should use dextran-based 
conjugates, and Zhang et al[178] suggested recombinant 
Lactococcus lactis as a vector because the bacterium is 
already used in dairy products. 

ROUTE OF ADMINISTRATION
A report from Shirai et al[179] indicated that salivary 
antibody formation is a critical factor for successful 
vaccination against H. pylori. This was supported by 
the findings of Ng et al[180], who confirmed increased 
levels of salivary IgA without an increase in mucin 
production or cytokine level. Intranasal application in 
animal models seems to be promising and effective[174]. 
A multivalent subunit vaccine consisting of CagA, VacA 
and NapA[172] was administered intramuscularly. The 
sublingual[176] route appears to be promising, while 
an oral route of administration has repeatedly been 
tested with variable effects that depend on the antigen 
and the adjuvant or vector used[163-165,169,178]. Rectal 
administration was tested once and the results were 
somewhat disappointing[166]. 

OVERCOMING IMMUNITY ISSUES
To develop an effective vaccine for H. pylori, a better 
understanding of protective immune responses from 
data on animal models and a better understanding 
of host responses is needed. The identification of the 
underlying mechanisms that prevent a host from 
clearing the infection could help in the development of 
an effective vaccine.

The T helper cell response is an important part 
of the protective immune response because data on 
animal models suggest that mice lacking antibody 
molecules, including mucosal immunoglobulin IgA, are 
well-protected by vaccinations[181-183], while mice with 
deficient cellular immunity are not protected[182,184]. 

These data suggest that the T helper cell response 
is crucial for the induction of protective immunity, 
even in the absence of other forms of adaptive 
immunity[161]. This is based on the fact that Th1 or 
Th17 cell-induced increases in inflammation lead to 
the development of protective immunity. Therefore, 
a successful vaccine should induce a strong Th1 or 
Th17 response. According to Zawahir, possible multiple 
effector mechanisms that can eradicate H. pylori are 
not adequately defined. Therefore, vaccine efficacy 
could be improved through the enhancement of Th1 or 
Th17 responses to H. pylori[161]. It seems that the host 
immune response is age dependent, because a weaker 
Th1 response is observed in children[185]. 

In isolated cells, the removal of CD25+ T cells before 
H. pylori stimulation increases the IFNγ response[186]. 
The results obtained in an animal model revealed that 
T regulatory cells suppress the active host immune 
response to H. pylori infection[186-190]. Because the 
majority of infected individuals do not have an H. pylori-
associated disease, the host might not recognize the 
bacterium as dangerous and may suppress the immune 
response. Another possible target for improvement 
of vaccine efficacy is therefore overcoming the host 
predisposition to reducing immune responses to 
bacteria. A vaccine should increase the host cellular 
immune response, as supported by findings in animal 
models where bacterial load was reduced using IL-17[191] 
and IL-12[192]. 

Recent publications by Muhsen et al[193,194] de
monstrated higher seroconversion rates to a typhoid 
vaccine in H. pylori-infected subjects, and the authors 
also demonstrated that gastric H. pylori-associated 
inflammation promoted seroconversion. Based on 
these findings, the concept that active H. pylori 
infection could be beneficial for the efficacy of other 
vaccines becomes attractive, and further research is 
needed in this area.

CONCLUSION
Timely eradication of H. pylori infection is, at pre
sent, the single available evidence-based strategy 
for reducing H. pylori-related gastric cancer risk, 
incidence, and subsequent morbidity and mortality. 
It is mandatory to eradicate the infection before 
irreversible mucosal damage occurs. Eradication 
should precede the development of severe atrophic 
changes. 

Future possible strategies include the development 
of an effective vaccine. It is rather disappointing that 
although some of the experimentally tested vaccines 
have shown promising results, there is limited funding 
and financial support from the pharmaceutical industry. 
At the moment, another possible strategy is the 
development of new antimicrobial agents that would 
be effective for eradication therapy, but these are long-
lasting and time-consuming studies. Therefore, at 
present, it is advisable to insist on patient compliance 
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during eradication therapy because this is the area 
where improvement is possible. 
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