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Abstract
Polycystins are key mechanosensor proteins able to 
respond to mechanical forces of external or internal 
origin. They are widely expressed in primary cilium 
and plasma membrane of several cell types including 
kidney, vascular endothelial and smooth muscle cells, 

osteoblasts and cardiac myocytes modulating their 
physiology. Interaction of polycystins with diverse 
ion channels, cell-cell and cell-extracellular matrix 
junctional proteins implicates them in the regulation 
of cell structure, mechanical force transmission and 
mechanotransduction. Their intracellular localization 
in endoplasmic reticulum further regulates subcellular 
trafficking and calcium homeostasis, finely-tuning 
overall cellular mechanosensitivity. Aberrant expression 
or genetic alterations of polycystins lead to severe 
structural and mechanosensing abnormalities including 
cyst formation, deregulated flow sensing, aneurysms, 
defective bone development and cancer progression, 
highlighting their vital role in human physiology.
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Core tip: Polycystins are key regulators of mechano-
sensation in several cell types including kidney, vascular 
endothelial and smooth muscle cells, osteoblasts and 
cardiac myocytes. Their expression in primary cilium, 
plasma membrane and endoplasmic reticulum, along 
with their ability to interact with diverse ion channels, 
cell-cell and cell-extracellular matrix junctional proteins 
renders polycystins as essential regulators of overall 
cellular mechanoresponse. Abnormal expression or 
genetic defects of polycystins result in severe structural 
and mechanosensing faults including cyst formation, 
deregulated flow sensing, aneurysms, defective bone 
development and cancer progression, highlighting their 
crucial role in human physiology.
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INTRODUCTION
Cellular mechanosensitivity plays fundamental role 
in cell viability and function, tissue development and 
maintenance of organs. Most cell types are able to 
respond to mechanical forces which provide them 
with a means of actively sensing and responding to 
mechanical properties such as topography and rigidity 
of the environment. Mechanical forces can be of exter
nal (such as acceleration, gravity, touch, stretch, 
sound) or of internal origin (breathing, fluid flow, blood 
pressure, osmotic pressure, heart contraction or any 
membrane deformation) and can vary from modest to 
high intensity depending on the cell type[1].

Mechanosensitivity constitutes a threestep process. 
It starts with detection of a mechanical stimulus by a 
cellular component, followed by mechanotransduction 
that converts the mechanical signal into a biophysical or 
biochemical signal, ending with the mechanoresponse 
during which signal sensation and transduction integrate 
over space and time[2].

Several mechanosensation models have been pro
posed based on the nature of the mechanosensor pro
teins[24]. Transmembrane proteins sense mechanical 
stimuli through changes in tension in their surrounding 
lipid bilayer (“bilayer tension model”[5]). Proteins 
involved in cell adhesion and maintenance of cell struc
ture sense mechanical tension through binding with 
structural components that can transmit force from 
the intracellular or extracellular side or both (“Tethered 
protein model”). In this model interaction between the 
mechanosensor and proteins of the cellcell junctions, 
extracellular matrix (ECM), focal adhesion points, 
microtubules or actin cytoskeleton has been reported. 
The way a protein responds to the applied force can also 
differ. A force applied to a mechanosensing protein can 
unfold it and expose cryptic peptides that can activate 
intracellular pathways and mechanotransduction[6] 
(“protein unfolding model”). Mechanical forces either 
exert a direct effect on the intrinsic activity of the mech
anosensor proteins such as ionchannel gating, enzyme 
activity or ligandreceptor interactions (“mechano
sensitive protein activity model”), or an indirect effect 
by activating a nonmechanosensitive protein leading 
to mechanotransduction (“adjacent mechanosensitive 
protein model”). The indirect activation can be through 
ligand release or through proteinprotein interaction. All 
these models can also work in concert in order to form 
mechanosensitive complexes.

Mechanosensation is widely distributed in cellular 
compartments and involves the interaction of several 
protein complexes including adherent junctions, desmo
somes, integrins, focal adhesion points, receptors 
and actin microtubules. Most of these proteins are 
connected to signaling pathways that involve cytosolic 
molecules, calcium signaling or transcription factors[7]. 
Their expression should match within time and space 
to the sensory function of the mechanosensor organ, 
while removal of the protein should annul the sensory 

response. Mutations that change protein function can 
modify the mechanosensing ability of the organ or 
cell. A heterologous expression of the mechanosensor 
protein in another cell type should lead to a mechanical 
response.

Interestingly, the protein family of polycystins has 
been shown to physically interact with most mechano
sensing protein complexes mentioned above. Polycystins 
are implicated in renal flow sensing[8], vascular pressure 
and flow mechanosensation[911], bloodbrain barrier 
mechanical injury[12], nodal flow sensing[13], skeletal 
development and osteoblast differentiation[14,15] as well 
as cancer progression[16].

POLYCYSTINS - STRUCTURE AND 
LOCALIZATION
Polycystins are large integral proteins, broadly expre
ssed in human tissues including kidneys, blood vessels, 
heart, liver, pancreas, bone and brain. They are found 
localized in the primary cilium, at the plasma membrane 
and at endoplasmic reticulum (ER) where they associate 
and interact with numerous partners[17].

Polycystin 1 (PC1, 460 kDa) consists of 11 trans
membrane segments, a short intracellular Cterminal 
region (200 amino acids) and an extracellular Nterminal 
part (3000 amino acids) which contains several protein 
motifs. These include a G proteincoupled receptor 
proteolytic site, two cysteineflanked leucinerich 
repeats, sixteen Iglike domains and a Clectin domain. 
The terminal intracellular Cregion contains a coiledcoil 
domain (CC) as well as a G proteinbinding site (G).

PC1 is found localized at the primary cilium and at 
the plasma membrane being involved in interactions 
between proteins and between proteinscarbohydrates. 
Scientific data support interaction of PC1 with many 
proteins localized at focal adhesion points, adherens 
junctions and desmosomes[18].

Polycystin 2 (PC2, TRPP2, 110 kDa) is composed 
of six transmembrane segments, an intracellular 
Nterminus which contains a ciliary sorting motif and 
an intracellular Cterminus with a calciumbinding EF 
domain, an ER retention domain and a CC domain. 
PC2 is located in the ER[19] while its translocation to the 
plasma membrane has been reported to require the 
presence of PC1[20].

PC2 belongs to the transient receptor potential 
(TRP) channel family proteins. It has been shown to 
interact with cytoskeletal proteins as well as other 
mechanosensitive ion channels in different cells, inclu
ding potassiumselective stretchactivated potassium 
channels and nonselective cationic SAC channels.

PC1 and PC2 may interact through their CC 
domains located in the cytoplasmic Ctermini forming 
an ion channel complex, as well as with many other 
partners in various subcellular localizations[20,21]. They 
are considered as important regulators of calcium 
homeostasis by affecting the resting cytosolic calcium 
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concentration, decreasing sarcoplasmic reticulum (SR) 
Ca2+ATPase (SERCA2a) expression and inhibiting the 
passive leakage of Ca2+ from the ER[22].

Since the original studies that identified polycystins 
and their gene mutations as a causative link to auto
somal dominant polycystic kidney disease (ADPKD), 
considerable progress has been made in revealing the 
physiological functions of these proteins in multiple 
tissues, such as lung, kidney, cardiovascular, brain and 
bone[14].

POLYCYSTINS - 
MECHANOTRANSDUCTION IN THE 
KIDNEY
In the kidney, polycystins are detected at the cilia of 
renal epithelial cells[23]. PC1 though its extracellular 
domain is functions as mechanosensor detecting urine 
flow. Activation of PC1 leads to mechanotransduction 
by opening the PC2 channel allowing calcium entry 
and triggering intracellular calcium release in the ER 
through inositol 1,4,5trisphosphate (IP3) or ryanodine 
receptors[8,24]. The mechanical properties of PC1 can be 
changed by osmolytes such as sorbitol or urea (a major 
urine component) and modulate mechanosensation[25]. 
Furthermore, at the primary cilium flow detection by 
PC1/PC2 complex induces proteolytic cleavage of the 
intracellular PC1 Cterminus (34 kDa fragment, called 
CTT), activation of signaling pathways [mammalian 
target of rapamycin (mTOR), Janus kinase/signal 
transducers and activators of transcription (JAK/STAT), 
WinglessInt (Wnt)] and gene expression changes 
in order to get a mechanoresponse[26,27]. PC2 does 
not seem to need the presence of PC1 for its channel 
activity but it rather forms a heteromeric channel with 
TRP channel subfamily c member 1 (TRPC1)[27].

Flow sensing by primary cilium has been associated 
with increased intracellular calcium concentration 
being lost in PC1 or PC2deficient cells and it has 
been proposed to result in cyst formation in polycystic 
kidneys[28].

Lossoffunction Pkd1 or Pkd2 gene mutations 
encoding PC1 and PC2, are responsible for ADPKD, the 
most common kidney disease, affecting almost 1 in 
1000 individuals[29]. ADPKD clinical phenotype involves 
cysts presence in the kidney, pancreas, and liver along 
with severe cardiovascular defects. Arterial hypertension 
and intracranial aneurysms are often associated with 
this multisystem disease.

POLYCYSTINS - 
MECHANOTRANSDUCTION IN 
VASCULAR TISSUES
PC1 and PC2 expression has been observed in the 
plasma membrane and primary cilium of endothelial 

cells, proposed to transmit extracellular shear stress[30]. 
Shear stressinduced activation of PC2 has been 
demonstrated to increase the biosynthesis of intrace
llular NO leading to smooth muscle dilatation and flow-
induced vascular relaxation[31].

In agreement, a previous study from our group 
using partial carotid stenosis to induce low shear stress 
in vivo, has shown upregulation of PC1 and PC2 in 
endothelium at the low shear stress area[11], implicating 
both proteins in blood flow alterations sensing. Since 
low shear stress conditions have been associated with 
atherosclerotic plaque development, a role of polycy
stins in atherosclerosis is possible.

Polycystins have been shown to interact with 
the two major calciumrelease channels, IP3 rece
ptors in epithelial cells and ryanodine receptors in 
cardiomyocytes. PC1 interacts with the IP3 receptors 
to reduce calcium levels[32]. Similarly, in the heart, 
PC2 interacts with the ryanodine receptor RyR2 via its 
Cterminus to modulate release of Ca2+ from the SR 
stores[33].

Notably, PC2 can form a channel with TRPC1, being 
activated in response to mechanical damage of blood
brain barrier endothelial cells by promoting Ca2+ influx 
and formation of actin stress fibers[12].

Finally, in vascular smooth muscle cells PC2 has 
been implicated in sensing pressure volume and in 
mesenteric and cerebral arteries in sensing myogenic 
tone[19,34].

POLYCYSTINS - 

MECHANOTRANSDUCTION IN 

OSTEOBLASTIC LINEAGE CELLS
In osteoblasts, the polycystinprimary cilia signaling 
complex has been attributed a mechanosensory role 
that regulates skeletogenesis and bone formation. 
Evaluation of the skeletal phenotype of Pkd1-deficient 
mice revealed PC1 implication in bone development 
and in the regulation of osteoblast function through 
intracellular calciumdependent control of Runx2 
expression. Furthermore, abnormal bone development 
and osteopenia was observed upon loss of Pkd1 function 
in mice due to impaired osteoblast differentiation[14].

Another study of a mouse model with midpalatal 
suture expansion demonstrated that proliferation and 
differentiation of periosteal osteochondroprogenitor 
cells that were mechanically stimulated requires 
Pkd1[35]. This is in concert with a recent study from our 
group, exploring PC1 involvement in mechanical load 
(stretching)induced signaling pathways in human pre
osteoblasts. In this study, PC1 was revealed as a major 
mechanosensor molecule in osteoblasts that modulates 
their differentiation and gene transcription through the 
calcineurin/nuclear factor of activated Tcells signaling 
pathway, thus controlling bone formation[15].
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Overexpression of polycystins was associated with 
aggressive colorectal cancer phenotype in vitro. 
Clinical analyses revealed a correlation of elevated 
PC1 expression with poor recurrencefree survival, 
while aberrant PC2 levels was correlated with poor 
overall survival[16]. Several studies have also reported a 
connection between cancer proliferation, migration and 
metastasis with alterations in ion channels expression, 
and particularly with changes in TRP channel proteins[45]. 
More specifically, TRP channel subfamily M member 8 
and TRP protein homologue (TRP6) were found highly 
expressed in prostate cancer where they correlate with 
histological grade. TRP channel subfamily M member 7 
is implicated in proliferation and growth of breast cancer 
and head and neck tumor cells while TRP channel 
subfamily V member 4 and TRPC1 were associated with 
glioma growth[45]. Since some of these channels are 
known PC2 partners, it is highly likely the implication of 
polycystins in these malignancies and is currently under 
investigation.

CONCLUSION
Polycystins are envisioned as polymodal cellular 
sensors, critical regulators of cell structure integrity, 
cell communication, force transmission and subce
llular trafficking in a broad range of cell types. Aber
rant or defective expression of these proteins leads to 
abnormalities in calcium homeostasis and mechano
sensation in major organs contributing to severe patho
logical conditions including ADPKD and cancer. 

Future research should focus in elucidation of the 
mechanisms involved to integrate the information that 
arises from polycystin complexes into cellular functions. 
In vitro studies are needed to determine the kind of 
stimuli that trigger polycystins activation and the way 
that mechanical stimuli and ligand binding is sensed 
by PKD complexes. Are polycystins directly activated 
by mechanical stimuli or indirectly via activation of 
another protein partner? Animal models are required to 
define the functional consequences of PKD dysfunction 
in different cell types. How critical are polycystin
induced calcium signaling and enzymatic cascades for 
cellular growth and differentiation? Is there a specific 
role for multiple PKD complexes present at different 
locations in a single cell? How polycystins expression 
varies in different types of malignancy? Understanding 
the molecular mechanisms that underpin polycystins 
functions is urgently needed to identify novel and 
effective therapeutic schemes for the affected organs in 
the future.
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