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Abstract
Cardiovascular magnetic resonance is a non-invasive 
imaging modality which is emerging as important tool 
for the investigation and management of pediatric 
cardiovascular disease. In this review we describe the 
key technical and practical differences between scanning 
children and adults, and highlight some important 
considerations that must be taken into account for this 
patient population. Using case examples commonly 
seen in clinical practice, we discuss the important clinical 
applications of cardiovascular magnetic resonance, and 
briefly highlight key future developments in this field.
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Core tip: Cardiovascular magnetic resonance is playing 
an increasingly important role in the investigation and 
management of pediatric cardiovascular disease. How-
ever, imaging this patient population brings its own 
unique set of challenges. This article describes some 
of the key differences between scanning children and 
adults, discusses the important clinical applications of 
cardiovascular magnetic resonance in pediatrics, and 
highlights some of the key future developments in this 
field.
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INTRODUCTION
Cardiovascular magnetic resonance (CMR) is a non-
invasive imaging technique that uses magnetic reso-
nance imaging (MRI) to provide clear delineation of 
cardiovascular anatomy, detailed tissue characterization, 
and a comprehensive evaluation of cardiac function. In 
recent decades there has been a significant increase in 
use of CMR for a variety of purposes in both congenital 
and acquired heart disease in children. 

Overall, the basic sequences and imaging strategies 
used in children are similar to those used in adults. 
Adolescents with normal intellectual and emotional 
development can usually be successfully imaged using 
adult techniques[1]. However, younger children may not 
be able to comply with breath-holding during image 
acquisition and their faster heart and respiratory rates 
provide technological challenges. Additionally, their 
anatomy is smaller and, in cases of congenital heart 
disease, often unique and complex. Pediatric imaging 
is therefore more demanding in terms of sequence 
optimization and each scan requires an individualized 
approach[2,3]. 

Despite these challenges, CMR remains a useful 
tool to assist with investigation and management of a 
wide range of cardiovascular pathology in children. It 
can be used for diagnostic and screening purposes to 
define anatomy and assess function, to monitor disease 
progression as part of serial follow-up, and to plan and 
evaluate the outcomes of surgery and other therapeutic 
interventions. This article provides an overview of the 
main applications of CMR in children and discusses 
some of the specific considerations for this patient 
population.

HOW DOES CMR WORK?
CMR uses magnetic fields and radiofrequency energy 
to produce tomographic images of the human body. 
It is based on the phenomenon of “nuclear magnetic 
resonance” - the ability of some atomic nuclei to 
selectively absorb then later re-emit radiofrequency 
energy. The emitted energy can then be captured and 
transformed into an image. Only nuclei with an odd 
number of protons and neutrons (thus possessing a 
“net magnetic moment”) are capable of exhibiting this 
phenomenon[4]. Several examples of such nuclei are 
present in biological tissues[5], however the hydrogen 
(1H) atom is the primary choice for clinical imaging due 
to its abundance in water and fat. 

Under normal conditions, hydrogen nuclei in tissues 
behave as tiny bar magnets randomly oriented in space 
such that the net magnetization of the tissue is zero. 
When placed in a strong magnetic field (created by the 

large superconducting magnet of the scanner), the nuclei 
align in the direction of the magnetic field creating a 
net tissue magnetization oriented along the axis of the 
scanner. The nuclei spin (precess) around the direction of 
the magnetic field at a frequency specific to the magnetic 
field strength[4]. The field strengths of clinical scanners 
can vary from 0.15 to 7 tesla (T) although CMR is typically 
performed at 1.5 T, approximately 20000 times the 
magnetic field strength of the earth[6]. 

External radiofrequency transmitter coils are used to 
apply radiofrequency energy to the tissue at a specific 
“resonance” frequency. Hydrogen nuclei absorb this 
energy and flip their orientation within the magnetic 
field, going from a stable low energy state to an unstable 
high energy state. When the radiofrequency transmission 
ceases, the nuclei relax back to the lower energy state 
and re-emit the absorbed energy, which is detected by 
a receiver coil as radiofrequency signals. The signals are 
electronically amplified by a computer and the intensity 
of each signal is plotted on a grey-scale in order to build 
up a cross-sectional image of the tissue. The resulting 
image is a representation of the spatially-resolved 
signals[4,5].

In order to localize the part of the tissue from which 
these emitted radiofrequency signals originate, gradient 
coils driven by pulses of electricity are used to produce 
small field gradients in multiple planes within the wider 
magnetic field of the scanner magnet. These gradients 
cause a predictable variation in both the magnetic field 
strength and resonant frequency in different parts of the 
patient. By varying the times at which gradient fields 
are switched on and off in relation to the application of 
the radiofrequency pulses, then analyzing the properties 
of the emitted signal (in terms of frequency and phase), 
the computer is able to reconstruct an image of the 
patient[6]. 

The hydrogen nucleus relaxes back to the lower energy 
state by two main processes: Longitudinal relaxation 
with relaxation time T1, and transverse relaxation with 
relaxation time T2[7]. The relative proportions of T1 and 
T2 relaxation times vary between different tissues. By 
altering the timing of radiofrequency pulses, strength of 
the gradient fields, and through use of contrast agents 
and magnetization preparation pulses (such as inversion 
recovery, saturation recovery, fat-suppression and blood-
nulling sequences), the differences in T1 and T2 values 
between tissues can be exploited to enable detailed tissue 
characterization, producing images that highlight the 
tissue of interest[8]. 

CMR VS OTHER IMAGING MODALITIES 
IN PEDIATRICS
Echocardiography is the mainstay of cardiovascular 
imaging in children. It is cheap, quick, accessible, non-
invasive and particularly informative in neonates and 
infants for whom it is possible to achieve good acoustic 
windows. However, it is operator dependent and 
provides only limited views of extra-cardiac vascular 

Mitchell FM et al . Diagnostic uses of CMR in pediatrics

2 February 8, 20�6|Volume 5|Issue �|WJCP|www.wjgnet.com



structures[9,10]. Cardiac catheterization provides useful 
hemodynamic information and permits concurrent 
therapeutic intervention. However, it is invasive with 
rare but potentially fatal complications, involves 
exposure to ionizing radiation and is dependent on the 
use of iodine-based contrast agents[11-13]. CMR on the 
other hand, is non-invasive and radiation-free. This 
is particularly relevant to children, for whom the risk 
of risk of radiation-induced malignancy is significantly 
higher than in adults[14]. Thus CMR is amenable to being 
used for serial assessments, such as pre- and post-
procedure or for ongoing follow-up to monitor disease 
progression. CMR reduces the requirement for invasive 
study in certain cases and enables the assessment of 
anatomy and function where echocardiographic views 
are sub-optimal. Non-contrast imaging provides excellent 
soft tissue contrast resolution permitting detailed tissue 
characterization, and superior structural and functional 
information, including the determination of extra-cardiac 
anatomy and hemodynamic parameters[15]. 

However, CMR scanners are rarely mobile and 
availability is limited compared to echocardiography. Even 
in a centre that offers conventional MRI, CMR requires 
significant software, training and expertise[16]. The data 
acquisition time is long, typically 20-50 min depending 
on what information is required, and the space within 
the magnet is limited. It can be claustrophobic, and for 
children unable to co-operate with the scanning procedure, 
general anesthesia may be required. It is also less 
suitable for clinically unstable patients requiring intensive 
monitoring, and in the event of a cardiopulmonary 
arrest, the patient must be removed from the magnet 
environment of the CMR scanner before advanced life 
support can commence. All monitoring equipment used 
during a CMR scan must be MRI compatible, requiring a 
switch to compatible pumps before the patient enters the 
scanner. 

Computerized tomography (CT) is often used as 
an alternative to CMR - it permits acquisition of a high 
resolution data set in a much shorter time period and 
is therefore useful for children and unstable patients 
unable to tolerate a lengthy CMR scan. In the pediatric 
population, it is considered superior to CMR when 
evaluating airway anatomy in cases of vascular rings, 
when assessing pulmonary vasculature (particularly 
in thromboembolic disease of the pulmonary arteries, 
where breath-holding capability is often compromised), 
and when determining the presence or absence of any 
major aorto-pulmonary collateral arteries (MAPCAs)[17,18]. 
CT can also be used as an alternative where CMR is 
contraindicated due to the presence of implanted devices, 
foreign bodies or claustrophobia. However, it is less 
detailed in terms of tissue characterization and exposes 
patients to high doses of ionizing radiation - particularly in 
the case of serial imaging where the cumulative radiation 
dose is significant[19]. 

Despite its shortcomings, CMR remains a versatile 
tool with distinct advantages over other modalities. 
However, outcomes are most successful when it is 

used in conjunction with other imaging technologies 
in a directed manner to obtain an answer to a specific 
clinical question.

BASIC CMR PULSE SEQUENCES
CMR pulse sequences represent the co-ordinated 
actions of turning on and off the gradient coils and 
transmitted radiofrequency pulses in order to highlight 
specific features of the tissue being imaged[15]. The 
basic principles of these sequences are similar for adult 
and pediatric CMR. As with adult imaging, sequences 
used in the pediatric setting must be carefully selected 
in order to best answer the clinical question. However, 
in children specific adaptations must be made in order 
to accommodate the smaller patient size (demanding 
a higher spatial resolution), and faster heart rates 
(demanding a higher temporal resolution)[20]. Also, in 
cases of congenital heart disease where the anatomy is 
complex, a more individualized approach to the scan is 
required[2]. 

Spin echo
Spin echo pulse sequences produce images that are 
acquired during one fixed point of the cardiac cycle 
(Figure 1A and B). They are static images in which blood 
appears black and the surrounding stationary tissue 
appears in shades of grey[16]. These images are useful 
for providing anatomical information[21] and they permit 
excellent tissue characterization (particularly when 
magnetization preparation pulses are used), achieving 
good visualization of pathology for conditions such as 
myocarditis, pericarditis, cardiomyopathies, vasculitis and 
cardiac tumours[22]. Acquisition time is long, and although 
faster variants exist, they result in poorer spatial and 
temporal resolution[20].

Gradient echo cine
Gradient echo cine imaging enables the generation of 
short “movies” depicting motion of the heart throughout 
the cardiac cycle. This is achieved by dividing the cardiac 
cycle into multiple segments (frames) to produce a series 
of 2D images that can then be laced together into a 
cinematic display. Blood appears bright and the resulting 
“cines’’ are useful for assessing the dynamic function of the 
heart - such as blood flow, valvular function, ventricular 
volumes, ventricular mass, ejection fraction and motion 
of the ventricular walls. CMR volume measurements are 
considered more accurate and reproducible compared 
to echocardiographic measurements[15,23,24], and normal 
values for both atrial and ventricular volumes have 
been widely published in children[25-28] with studies 
demonstrating good reproducibility[29].

Gradient echo cine imaging can be performed using 
a standard spoiled gradient echo pulse sequence, or 
the more recent steady state free precession sequence 
(SSFP) (Figure 1C and D). SSFP has generally surpassed 
the use of spoiled gradient echo for cine imaging as it 
is faster and provides superior contrast between blood 
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in adults have demonstrated that it is associated with 
a poorer prognosis in dilated cardiomyopathy[39], 
hypertrophic cardiomyopathy[40,41] and valvular heart 
disease[42].

3D contrast-enhanced MRA: Running a spoiled 
gradient echo pulse sequence during administration of 
intravenous GBCAs enables detailed, high resolution 
vascular imaging (Figure 1E and F). Gadolinium reduces 
the T1 relaxation time of blood, enhancing the contrast 
between blood and the surrounding tissue[43]. By varying 
the time delay between contrast administration and 
the pulse sequence, it is possible to alter the portion of 
the thoracic vasculature imaged. In this manner, clear 
images of the aorta and its branches, the pulmonary 
vessels, systemic veins, collateral vessels and any 
shunts, conduits or vascular grafts can be obtained[44-49]. 
The collected data can be formatted to generate 2D 
slices in any orientation, or volume-rendered into a 
3D image, often negating the requirement for invasive 
diagnostic catheterization.

Velocity encoded phase contrast imaging: When 
hydrogen nuclei (such as in blood) flow through specially 
designed magnetic field gradients, the signal they emit 
accumulates a phase shift relative to the signal from the 
surrounding tissue that is proportional to their velocity. 
Velocity encoded phase contrast sequences capture 

and myocardium[20]. It can also be adapted for 3D 
imaging, enabling acquisition of a high resolution 3D 
anatomical dataset of the heart and thoracic vasculature 
without the requirement for intravenous contrast[30-32]. 
However, SSFP is more prone to artefact when there is 
inhomogeneity in the magnetic field[20], so both types of 
sequence still form the basis of multiple cardiac imaging 
applications. Spoiled gradient echo sequences are still 
widely used for late gadolinium enhancement (LGE) 
imaging to detect myocardial fibrosis, 3D contrast- 
enhanced magnetic resonance angiography (MRA), 
velocity encoded phase contrast imaging for assessment 
of in-vivo blood flow, and first-pass perfusion imaging 
for evaluation of myocardial perfusion.

LGE imaging: Gadolinium-based contrast agents (GBCAs) 
distribute in greater volumes in fibrosed myocardium and 
demonstrate slower washout times compared to normal 
myocardium. Using spoiled gradient echo sequences, it 
is possible to demonstrate the abnormal deposition of 
contrast late after contrast injection as focal regions of 
fibrosis become hyperenhanced[16]. Validation studies have 
strongly correlated the finding of LGE with the presence 
and extent of myocardial fibrosis[33,34]. In children, LGE 
is typically seen along areas of reconstruction post-
surgically following repair of congenital cardiac lesions[35-38]. 
The presence of LGE is known to be associated with 
arrhythmias and poorer ventricular function and studies 
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Figure 1  Examples of images produced by individual cardiovascular magnetic resonance pulse sequences. A and B are black blood spin echo images 
showing the ascending and descending aorta at the main pulmonary artery level A and the 4 cardiac chambers B; C and D are bright blood SSFP cine images 
showing short axis and 4 chamber views respectively, while E and F are examples of 3D contrast-enhanced MRA; E is a contrast-enhanced MRA of the pulmonary 
tree in a patient with a large sarcoma. There is no opacification of the arterial supply of the left lower lobe, indicating complete occlusion of the lower branch of the left 
pulmonary artery; F is a contrast-enhanced MRA of the descending aorta for assessment of renal anatomy, demonstrating an accessory renal artery to left kidney (a 
common normal variant). SSFP: Steady state free precession; MRA: Magnetic resonance angiography.

A B C

D E F
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data encoding this velocity information in addition to 
data encoding information about the surrounding tissue. 
Software can then be used to obtain measurements 
of flow rates within individual vessels by contouring 
the vessel in a cross-sectional plane and calculating 
volume of blood passing through the plane as a product 
of velocity and cross-sectional area[50-52]. Using this 
technique, it is possible to assess flow in large and small 
arteries and the systemic and pulmonary veins. It is 
also possible to quantify cardiac output and intra- and 
extra-cardiac shunts, measure pressure gradients across 
areas of stenosis and calculate valvular regurgitant 
fractions[53-56].

First-pass perfusion imaging: Performed using 
spoiled gradient echo or SSFP sequences, this technique 
involves the administration of a GBCA followed by 
dynamic imaging of the passage of contrast through 
the myocardium in order to detect zones of decreased 
perfusion[57]. Normally perfused myocardium gives a 
bright signal and areas of poor perfusion appear darker. 
Images are typically acquired both at rest and under 
pharmacological stress (induced via administration 
of a coronary artery vasodilator such as adenosine) 
in order to accentuate the difference between the 
perfusion of myocardium supplied by normal coronary 
arteries compared to myocardium supplied by abnormal 
vessels[16,20]. Examples of uses in children include the 
investigation of chest pain, congenital heart disease 
with anomalous coronary artery origins, post-surgery 
involving coronary artery re-implantation and in acquired 
abnormalities of the coronaries such as aneurysms in 
Kawasaki disease[17,58-60]. CMR offers distinct advantages 
compared to the traditional nuclear perfusion imaging in 
terms of improved spatial resolution and lack of ionizing 
radiation[61-64]. Dobutamine instead of adenosine is also 
used for stress imaging in certain circumstances[65,66].

SPECIFIC CONSIDERATIONS IN 
CHILDREN
In addition to the technological challenges with regards 
to performing CMR in children, there are a number of 
specific practical considerations to take into account. 
These include the strategies employed in order to 
minimize both generalized and cardio-respiratory motion 
artefact (both accentuated in children due their reduced 
ability to co-operate with the scanning procedure, 
and their elevated heart rate and respiratory rate in 
comparison with adult patients), the equipment used, 
and some of the additional preparation steps that can 
be taken with children in order to facilitate the scanning 
process. 

In terms of generalized motion artefact, older children 
(typically greater than 7 years of age) with normal 
development are often capable of lying still and following 
instructions such that adequate quality images can 
be obtained. However, for neonates, infants, younger 
children and patients with developmental delay, specific 

strategies must be employed in order to minimize motion 
artefact. Approaches will vary depending on the age of 
the child, their clinical condition, and the expertise and 
resources available. For infants less than 6 mo, it may 
be possible to perform the scan during natural sleep 
after feeding[67], however early awakening will likely 
compromise the scan. Deep sedation using sedative 
medications is an option[68], but is avoided where possible 
due to risks of hypoventilation and aspiration. Thus, for 
children unable to breath-hold, the preferred approach 
is endotracheal intubation and mechanical ventilation 
under general anesthesia (GA). CMR under GA is 
resource intensive, requiring a pediatric anesthetist with 
cardiac experience and CMR compatible equipment. It 
is also challenging since intensive monitoring is required 
despite limited access to the child during the scan. 
However, with trained personnel, good communication 
and a comprehensive emergency plan in place, it has 
an excellent safety profile[69-71]. Additionally, it presents 
the opportunity to perform other invasive investigations 
during a single GA, for example trans-oesophageal 
echocardiography and endoscopic procedures. However, 
the decision for a child to undergo CMR under GA is not 
taken lightly and is usually made in discussion with the 
wider multi-disciplinary team. There should be careful 
consideration of the age and maturity of the child, the 
parents’ perception of the child’s ability to co-operate 
with a non-GA procedure, their clinical condition, relevant 
past experiences, the length of the scanning protocol, the 
risks of anesthesia and the benefits of the scan in terms 
of diagnosis and patient management[2,72]. 

In order to minimize the effect of cardio-respiratory 
motion on image quality, specific strategies are employed. 
For cardiac motion, the techniques used are broadly 
similar for adults and children. To obtain images of 
acceptable quality, CMR data is acquired over multiple 
heart beats, synchronizing the data acquisition to a 
particular time point in the cardiac cycle. MRI compatible 
electrodes and leads are applied to the patient’
s chest and specific software detects the ECG trace, 
synchronizing the CMR pulse sequence (and thus data 
acquisition) to the R wave. In this manner, with each 
cardiac cycle there is a new repetition of the pulse 
sequence. Images can be obtained either at a single time 
point in the cardiac cycle for still imaging, or at multiple 
time points for cine imaging and the resulting images can 
are laced together in a cinematic display. Two main ECG 
synchronization techniques exist: Prospective triggering 
and retrospective gating. Typically for still imaging using 
spin echo sequences, prospective triggering is used, 
whereas for cine imaging using gradient echo sequences, 
either technique can be used[6,73]. For respiratory motion, 
most pulse sequences enable data acquisition to be 
completed within a single breath-hold, thus older children 
can be taught to breath-hold with practice. Breath-
holding can also be achieved under general anesthetic, 
with the anesthetist strategically pausing the ventilator 
at specific times. In sedated infants and small children, 
breathing tends to be shallow and regular so a technique 
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employing multiple signal averages can be used to 
average out respiratory motion artefact at the expense 
of reduced spatial resolution. Alternatively, respiratory 
gating strategies can be employed to synchronize data 
acquisition to the respiratory cycle such as using a navi-
gator beam to track the motion of the diaphragm and 
gating data acquisition to a point in end expiration when 
the diaphragm is relatively still[73,74]. 

For pediatric CMR, the use of smaller coils placed 
directly on top of or underneath the child significantly 
improves image quality. Adolescent children can be 
imaged using a standard adult surface coil, while for 
younger children, infants and neonates, better image 
quality can be obtained with a smaller surface coil. 
Specific pediatric coils are commercially available for 
imaging the brain and spine, and while pediatric thoracic 
coils are becoming increasingly available, often adult coils 
designed for other applications (such as adult orthopedic 
extremity coils) are used for this purpose[75]. 

On a practical level, better outcomes are achieved with 
children when there is thorough planning and preparation 
prior to the scan. Some practical considerations and tips 
for achieving a successful outcome are described in Table 1.

CMR SAFETY CONSIDERATIONS
It is essential that all patients and any accompanying 
persons (such as parents) undergo thorough screening 
for the presence any implanted medical devices or 
foreign bodies - these include pacemakers, implantable 
defibrillators, neurostimulators, stents, cerebro-spinal 
fluid shunts, cerebrovascular clips and coils, cochlear 
implants, orthopedic devices, shrapnel, bullets and 

metal fragments[76]. Where the history is unreliable, 
plain radiographs can be used to aid the screening 
process. The strong magnetic fields of the scanner may 
disrupt the function of some electrically, magnetically 
or mechanically activated devices, and ferromagnetic 
objects risk becoming dislodged during the scan causing 
local tissue damage[77]. Many modern devices are 
designed to be MRI compatible - they may cause artefact 
but are not ferromagnetic and will not overheat or fail 
in the presence of the magnetic field. Older devices, on 
the other hand, are less likely to be MRI compatible, 
therefore it is essential to thoroughly check the safety 
information for each specific device and follow all 
recommendations made by the manufacturer. 

The use of GBCAs can also raise issues. Although the 
incidence of complications relating to the use of these 
agents is low, children are susceptible to all the adverse 
effects experienced by adults. These include feelings 
of coldness or warmth on injection, nausea, vomiting, 
headache, paresthesia, dizziness, itching, extravasation 
of contrast agent and allergic reactions ranging from a 
simple rash to anaphylaxis[78-80]. A serious complication 
of GBCAs is nephrogenic systemic fibrosis (NSF), a 
progressive, incurable and often fatal condition that involves 
widespread fibrosis of the skin, subcutaneous tissue, 
joints, skeletal muscles, and organs such as the eyes, 
lungs, heart and liver. It typically occurs in the context of 
renal dysfunction when GFR is less than 30 mL/min per 
1.73 m2, additional risk factors include the requirement 
for renal replacement therapy, concurrent hepatic disease 
and a pro-inflammatory state[81,82]. NSF is exceedingly 
rare, and even more so in children compared to adults[83]. 
This is surprising given the immature renal function of 
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Table 1  Tips for a successful pediatric cardiovascular magnetic resonance scan

Before the scan 
  Begin preparation for the scan well in advance of the appointment 
  If multiple children from the same family require scans (such as when screening for hereditary conditions), where possible arrange for all children to 
be scanned at a similar time (ideally on the same day) so they can prepare together 
  Discuss the procedure with the child in an age-appropriate manner and provide parents with a detailed description of the procedure so they can be of 
assistance 
  Play therapists can help prepare the child by talking them through pictures of the scan, and using dummy scanners to practice lying still and breath-
holding 
  Arranging a pre-scan visit to the CMR department and allowing the child to see the scanner before their scheduled appointment may help reduce 
anxiety 
  Perform a full metal screen on parents so that they can demonstrate going into the scanner if the child is anxious, and so that they can remain in the 
room for the duration of the scan to reassure the child if necessary 
  Some modern scanners have MRI compatible audio-visual equipment, where this is available allow the child to pre-select their own music or movie to 
play during the scan (ideally bringing a favourite one from home) – this may help them tolerate longer scanning times 
  Within reason, allocate a lengthier appointment for the scan to give the child time to get accustomed to the magnet, coils, ear protection and breath-
holding instructions 
During the scan 
  Be patient and flexible
  Minimize the time the child must spend in the scanner by only running sequences that will directly answer the relevant clinical questions 
  Run the most essential sequences first bearing in mind that the child may not tolerate the whole scan 
  For a breath-holding child, use short sequences only as they may struggle with a long breath-hold 
  An inspiratory breath-hold is easier for a child to understand and achieve compared to an end-expiratory breath-hold 
  For stress perfusion studies provide the child with a stress ball that can be repeatedly squeezed during administration of the stress agent to minimize 
side effects (6�) 
After the scan 
  Praise and reward the child with stickers and certificates even if the scan was not entirely successful, bearing in mind that for many conditions repeat 
scanning may be required in future so all attempts to alleviate bad experiences should be made



neonates and infants. Nevertheless, all patients should 
be screened for risk factors and renal function should 
be checked before GBCAs are administered[84]. If renal 
dysfunction is identified, local or national guidelines 
should be consulted and steps should be taken to 
minimize relevant risk factors with contrast-enhanced 
scanning only proceeding after careful consideration 
of the risks and benefits[85]. In light of this screening 
process, and the introduction of safer agents bound to a 
cyclic chelate[83], the incidence of GBCA-related NSF has 
fallen significantly in recent years[86]. 

Additional CMR safety considerations, especially with 
relation to neonates and infants, include the use of ear 
protection in order to prevent hearing damage from the 
acoustic noise of the scanner[87], and the requirement 
for close monitoring of body temperature. Scanning 
rooms are deliberately kept cool to reduce overheating 
of the electrical equipment however local heating of 
the coils in close proximity to the patient can still occur. 
Thus, small children, infants and neonates with reduced 
ability to control their body temperature are at risk of 
both hypothermia and hyperthermia during CMR[88]. 

CLINICAL APPLICATIONS IN CHILDREN
Disease of the aorta
Conditions amenable to assessment with CMR include 
coarctation, interrupted aortic arch, vascular rings and 

congenital connective tissue diseases[2]. Echocardiography 
is usually sufficient for diagnostic purposes for these 
conditions in neonates and infants, however CMR can 
be a useful adjunct in older children with poor acoustic 
windows, especially with regards to planning surgical or 
catheter intervention (Figure 2). CMR is also used first-
line for post-intervention follow-up[89-91]. The use of black 
blood sequences along with contrast-enhanced 3D MRA 
and non-contrast 3D SSFP allows delineation of arch 
geometry and morphology, evaluation of the presence 
of collaterals, the site and size of areas of stenosis, the 
extent of any aneurysm formation, and characterization 
of coarctation stents[92-97]. SSFP cine sequences are 
also useful for assessing aortic valve morphology (often 
bicuspid), and left ventricular function. Velocity encoded 
phase contrast imaging can be used to quantify collateral 
flow[98]. CMR can also be used for monitoring aortic 
dimensions, aortic root dilation and aortic regurgitation 
in cases of connective tissue disease such as Marfan’s in 
order determine optimum time for intervention[99,100].

Conotruncal anomalies
For tetralogy of Fallot (ToF) CMR is usually only performed 
pre-operatively if there are associated situs and aortic arch 
anomalies, however it is the preferred tool for the post-
operative serial follow-up of these patients[101]. Pulmonary 
regurgitation, right ventricular outflow tract (RVOT) ob-
struction and pulmonary artery stenosis are common 
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A B C

D E F

Figure 2  A 17-year-old girl with coarctation of the descending aorta, imaged by transthoracic echocardiography (A,C,E) and cardiovascular magnetic 
resonance (B,D,F). Imaging of the aortic arch using TTE can be challenging, depending on the suprasternal image quality A and especially in older children with 
poorer acoustic windows. CMR allows accurate measurement of the dimensions of the area of stenosis B and assessment of the remainder of the thoracic aorta and 
head and neck vessels. Flow velocity mapping D, similar to Doppler echocardiography C is used to measure peak velocity through the stenosed area and assess for a 
diastolic tail. In this case, the bicuspid aortic valve was not well visualised on TTE E but was clearly seen on CMR F. CMR: Cardiovascular magnetic resonance; TTE: 
Transthoracic echocardiography. 
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post-operatively and lead to right ventricular volume and 
pressure overload. This is initially well tolerated in childhood 
and adolescence, but may ultimately cause right ventricular 
dysfunction, arrhythmias and premature death[102,103]. 
Intervention is required in most cases, either with a surgical 
pulmonary valve replacement or percutaneous pulmonary 
valve implantation (PPVI) and the decision about when to 
intervene is controversial[104]. CMR can assist the decision 
making process[105,106]. LGE CMR contributes to risk 
stratification of these patients, SSFP cines enable accurate 
right ventricular volumetric and functional analysis (Figure 
3), and velocity encoded phase contrast sequences can 
be used for flow assessment in relation to the pulmonary 
regurgitation and stenosis. Contrast-enhanced 3D MRA and 
3D SSFP can also be used to delineate RVOT anatomy for 
intervention planning[107]. Similarly, with transposition of the 
great arteries (TGA), echocardiography is usually sufficient 
to define anatomy pre-operatively and the predominant 
role of CMR is for the investigation of late post-operative 
complications. These will vary depending on the corrective 
procedure performed, however for the most commonly 
performed arterial switch operation (ASO), complications 
include RVOT stenosis, supravalvular pulmonary artery 
stenosis, branch pulmonary artery stenosis, coronary 
ostial stenosis, dilatation of the neo-aortic root and neo-
aortic valve regurgitation[108-110]. Spin echo, gradient echo 
and phase contrast sequences are used for assessment of 
anatomy, stenosis and valvular function and 3D MRA and 
3D SSFP and first-pass perfusion sequences are useful 
for assessing the patency of the re-implanted coronary 
arteries[111-113].

Complex congenital heart disease
CMR is considered the first-line imaging modality for 

complex congenital heart disease (CHD) as it achieves 
superior delineation of anatomy and enables a concurrent 
hemodynamic assessment[2,101]. Specific congenital 
anomalies amenable to assessment with CMR include 
viscero-atrial situs anomalies, abnormal atrio-ventricular 
and/or ventriculo-arterial connections, septal defects, 
outflow tract malformations, abnormal extra-cardiac 
thoracic vessels and any associated tracheo-bronchial 
anomalies. CMR can also play a key role in the staged 
palliation of univentricular hearts[114]. Initially, it can 
help determine the approach required particularly in 
borderline cases where there is debate over whether to 
perform a single ventricular or bi-ventricular repair[115], 
and subsequently CMR can be used in conjunction with 
echocardiography and catheterization to perform an 
anatomical and functional assessment at each stage of the 
palliation process for evaluating outcomes and planning 
subsequent interventions[116-119]. 

Assessment of valvular disease, pulmonary vessels and 
shunts 
Although echocardiography remains the gold-standard 
modality for valvular morphological assessment, CMR can 
play a complementary role when acoustic windows are 
poor. SSFP cine imaging can be used to determine the 
functional consequences of valvular lesions, particularly in 
terms of the effect on ventricular volumes and myocardial 
mass, and velocity encoded phase contrast imaging 
permits visualization and quantification of regurgitant and 
stenotic jets[15]. In terms of the pulmonary vasculature, 
contrast-enhanced 3D MRA and 3D SSFP sequences 
provide good visualization of the morphology and dimen-
sions of the pulmonary arteries and veins, revealing 
anomalous connections and areas of stenosis, and 
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Figure 3  A 10-year-old girl with tetralogy of 
Fallot repaired at 1 year of age. She had a 1 year 
history of increasing exertional breathlessness and 
reduced exercise capacity. Her CMR showed near-
free pulmonary regurgitation with a dilated right 
ventricle and a reduced right ventricular ejection 
fraction. In view of these findings, she was offered a 
pulmonary valve replacement. A shows a 4 chamber 
SSFP cine image; B a short axis through the mid 
ventricle; C a right ventricular outflow tract view 
and D a transverse section through the thorax at 
main pulmonary artery level showing the dilated 
main pulmonary artery. RV: Right ventricle; LV: 
Left ventricle; MPA: Main pulmonary artery; SSFP: 
Steady state free precession; CMR: Cardiovascular 
magnetic resonance.
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velocity encoded phase contrast cines enable quantitative 
measurements of blood flow within these vessels[2]. 
CMR also permits evaluation cardiac shunts in terms of 
their location, flow direction, magnitude and functional 
consequences such as volume loading of any of the cardiac 
chambers whilst providing detailed anatomical information. 
Shunt quantification is performed using velocity encoded 
phase contrast cines to assess the ratio of pulmonary (Qp) 
to systemic flow (Qs), and this important hemodynamic 
parameter is often used as a determining factor when 
planning surgical or interventional management[120].

Assessment of coronary arteries
Imaging the coronary vessels is challenging due to small 
vessel size and an increased susceptibility to cardio-
respiratory motion artefact. Indications for coronary 
artery imaging in children include presence of congenital 
anomalous coronary arteries, vasculitis (in particular 
Kawasaki disease), before any surgery or interventional 
procedure close to the proximal course of the coronary 
arteries, and post-operatively for procedures involving 
transfer and re-implantation of the coronary arteries[2]. 
Although cardiac catheterization is considered gold 
standard for assessment of the coronary arteries, 3D 
SSFP CMR sequences can being increasingly used for 
this purpose[121-125]. First-pass perfusion and LGE imaging 
are also useful for the assessment of myocardial viability 
in the context of coronary artery pathology, and cine 
imaging can provide information about the functional 
consequences of myocardial ischemia where this is 
suspected. 

Cardiomyopathy
CMR permits detailed in vivo myocardial tissue charact-

erization and therefore can play a key role in the diag-
nosis, risk-stratification and ongoing management of 
these patients[126]. Dilated cardiomyopathy (DCM) and 
hypertrophic cardiomyopathy (HCM) are the most comm-
only encountered cardiomyopathies in children[127]. In 
DCM, the extent of both left and right ventricular dilation 
can be easily visualized and quantified using CMR. LGE 
imaging can help distinguish between DCM of ischemic 
and non-ischemic etiology[126], and SSFP cine sequences 
can be used to provide valuable information about global 
ventricular function especially in terms of contractility, 
relaxation impairment and wall motion anomalies. DCM 
in children is also known to be associated with anomalous 
coronary arteries, the presence of which can be determined 
using CMR[121]. Where myocarditis is suspected, spin 
echo sequences are useful in revealing the extent of 
inflammatory change[128]. Since left ventricular hypertrophy 
is generally considered an independent risk factor for 
cardiac events[129], accurate assessment of the magnitude 
and distribution of hypertrophy is essential in order to 
appropriately risk stratify and manage affected patients. 
Echocardiography is the most commonly used modality 
for the diagnosis and follow-up of HCM, however it has 
been shown that CMR can detect hypertrophy missed by 
echocardiography[130,131]. Ventricular mass and function in 
HCM can also be well characterized using CMR (Figure 4) and 
it has been demonstrated that with LGE imaging in HCM, 
the extent of myocardial fibrosis is closely correlated with 
the development of left ventricular dilatation and failure, and 
the risk of sudden cardiac death[40,132,133]. Where myocardial 
hypertrophy is related to a metabolic defect such as in 
Pompe’s disease or Fabry’s disease, CMR can play a useful 
role in the diagnosis of these conditions and in monitoring 
response to enzyme replacement therapies[134,135]. CMR 
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Figure 4  A new diagnosis of hypertrophic 
cardiomyopathy in a 12-year-old girl who 
presented as an out of hospital arrest with 
documented ventricular fibrillation. A shows 
a short axis view of the left ventricle at end 
systole at basal level. There is asymmetrical 
septal hypertrophy (arrowed) with a maximal 
wall thickness of 26 mm; B shows the same 
ventricular position in end systole; C and D 
are late gadolinium enhancement images 
demonstrating extensive patchy fibrosis of the 
hypertrophied septum (arrowed).
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can also be used in the assessment of iron overload 
cardiomyopathy. This predominantly affects children with 
inherited severe anemias such as thalassemia and sickle 
cell disease, where the excess iron load from regular 
blood transfusions deposits in the tissues of organs such 
as the heart and liver. In the myocardium, this causes 
fibrosis, systolic impairment ultimately cardiac failure. The 
measurement of T2*, a CMR relaxation parameter derived 
from local magnetic field inhomogeneities[6], has been 
shown to accurately reflect tissue iron load[136,137], thus CMR 
can be used as a means of evaluating the requirement for 
and response to chelation regimens[138-140].

Cardiac tumours
The most common cardiac tumours in children are benign 
fibromas or rhabdomyomas. Malignant secondaries from 
leukemia, lymphoma, neuroblastoma and nephroblastoma 
are rare, and malignant primaries, typically cardiac 
sarcomas, are rarer still[141]. Using spin echo, SSFP cine, first-
pass perfusion and LGE sequences it is possible to assess 
the size, site and malignant potential of the tumour through 
detailed tissue characterization, and assess hemodynamic 
relevance in terms of how any obstructive mass effects may 
impair myocardial or valvular function[142-144].

FUTURE DIRECTIONS
Technological advances in CMR hardware and software 
are continually occurring, resulting in faster sequences 
with shorter acquisition times, and improved image 
quality with greater spatial and temporal resolution. Such 
advances have permitted the development of real-time 
imaging, involving rapid and continuous data acquisition 
with nearly instantaneous image reconstruction and 
a reduced requirement for cardio-respiratory motion 
compensation - which is particularly advantageous in 
pediatrics[145-147]. Real-time imaging has also paved the 
way for the growing field of interventional CMR, whereby 
CMR performed using open magnets can be used to 
guide cardiac catheterization procedures, thus avoiding 
exposure to ionizing radiation[148]. However, although the 
concept of purely CMR guided interventional procedures 
is promising, a number of obstacles still exist that 
prevent it translating into routine clinical practice[149-151]. 
Thus, interventional CMR in current practice falls into 
the realm of hybrid CMR/X-ray cardiac catheter (XMR) 
laboratories. In these laboratories both modalities are 
present in the same room and the patient can be rapidly 
moved between them during the imaging process 
permitting cross-modality image integration. Additional 
emerging techniques include time-resolved 3D MRA 
permitting direct visualization of complex flow dynamics in 
vessels[152] and time-resolved 3D (4D) velocity encoded 
phase contrast imaging allowing quantification of flow 
parameters in multiple planes[153]. Higher field strength 
3T scanners also exist that yield a higher signal-to-noise 
ratio and better spatial resolution. This is particularly 
beneficial when imaging small children. However, these 
scanners have their own limitations and are not yet 

compatible with all CMR sequences[154].

CONCLUSION
CMR is emerging as helpful imaging tool in pediatric 
cardiology and is becoming increasingly available for 
a wide range of range of both congenital and acquired 
cardiac disease. Its non-invasiveness and lack of 
exposure to ionizing radiation are particular advantages 
with regards to the pediatric population, and CMR is 
well tolerated in children of all ages with an excellent 
safety profile when performed in specialist centres by 
experienced personnel. Outcomes are most successful 
when scans are undertaken using an individualized 
approach specifically tailored to the clinical question. 
In these circumstances, CMR is capable of providing 
detailed anatomical and functional information, and 
it is well suited to serial imaging for long-term follow-
up and as a means of planning and evaluating surgical 
and interventional management. In light of all the 
technological developments currently taking place in 
the field of CMR, it will be interesting to see what the 
future holds for this modality in the world of pediatric 
cardiology. 
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