
Abstract
Pancreatic cancer is the fourth most common cause of 
cancer deaths worldwide. Although recent therapeutic 
developments for patients with pancreatic cancer 
have provided survival benefits, the outcomes for 
patients with pancreatic cancer remain unsatisfactory. 
Molecularly targeted cancer therapy has advanced in 
the past decade with the use of a number of pathways 
as candidates of therapeutic targets. This review 
summarizes the molecular features of this refractory 
disease while focusing on the recent clinical and 
experimental findings on pancreatic cancer. It also 
discusses the data supporting current standard clinical 
outcomes, and offers conclusions that may improve the 
management of pancreatic cancer in the future.
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Core tip: Pancreatic cancer-related mortality is almost 
consistently caused by local recurrence and metastasis. 
The survival of patients after surgical resection remains 
poor, and the results of adjuvant chemotherapy and 
radiotherapy are still unsatisfactory. Therefore, new 
treatments are urgently needed. Recent developments 
in our knowledge of the underlying biological features 
of pancreatic cancer may be useful in establishing 
molecularly targeted therapy as a new strategy, similar 
to those used to treat other types of malignancies. 
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INTRODUCTION
Pancreatic cancer is the fourth most common cause 
of cancer deaths, resulting in 330000 deaths per year 
worldwide[1]. Many patients with pancreatic cancer 
are diagnosed at advanced incurable stages because 
of the absence of screening. Although advances in a 
variety of approaches have improved the management 
of pancreatic cancer, the 5-year survival rate remains 
lower than 5%[1]. Surgical resection is currently the 
only potentially curative treatment. However, even 
after resection, the 5-year survival rate is less than 
20% due to the high frequency of distal metastasis 
and local recurrence[2]. 

The treatment of inoperable pancreatic cancer 
has traditionally involved the use of gemcitabine with 
low response rates and a marginal survival benefit. 
The failure of clinical treatment in patients with 
pancreatic cancer is often due to the heterogeneous 
nature of the disease. This type of tumor involves 
not only cancer cells, but stellate cells and stroma, 
which were known as microenvironment. Stromal 
proliferation and reduced angiogenesis have been 
shown to contribute to therapeutic resistance despite 
the efficacy in experimental studies utilizing cell lines 
or animal models. A recent European study found 
that the combination chemotherapy of FOLFORINOX 
and gemcitabine is more effective than the use of 
gemcitabine alone. Albumin-bound paclitaxel (nab-
paclitaxel), which was approved by the FDA in 2013, 
can also be used in conjunction with gemcitabine 
to treat pancreatic cancer[3]. However, in most 
patients with advanced stages of the disease, these 
treatments only prolong survival by a few months, 
while combination therapy can also lead to significantly 
increased toxicity[4]. The development of effective 
pancreatic cancer treatments is urgently needed to 
overcome these obstacles.

To date, knowledge of the molecular basis of 
tumor initiation has led to the use of various kinds of 
targeting agents to produce better prognoses for some 
types of solid tumors. These agents, including those 
targeting the angiogenesis pathways, the epidermal 
growth factor receptor (EGFR), the mitogen-activated 
ERK kinase (MEK), the fibroblast growth factor 
receptor (FGFR), the phosphatidylinositol-3 kinase/
protein kinase-B/mammalian target of rapamycin 
(PI3K/mTOR), and the cancer stem cell compartment, 
may lead to significant advancements in pancreatic 
cancer treatment. In this study, we will review the 
current clinical and experimental results regarding 
molecular targets for the treatment of pancreatic 
cancer, and discuss potential future treatments. 

GENE ALTERATION AND MOLECULAR 
PATHOLOGY OF PANCREATIC CANCER
Recent studies have shown that pancreatic cancers 

include an average of 63 genetic alterations[5]. 
Therefore, in order to develop effective treatments for 
pancreatic cancer, the complicated gene alterations 
and pathological features of this tumor type need to be 
elucidated. The molecular analysis of pancreatic cancer 
has often shown the involvement of known cancer 
genes and traditional cancer signaling pathways. 
The KRAS gene, which encodes a small GTPase that 
regulates the downstream signaling of growth factor 
receptors, is a known mutated oncogene found 
in most pancreatic cancers at advanced stages[6]. 
Missense mutations in the KRAS cluster have been 
found in specific hotspots (most generally codon 
12)[7]. Recent studies have demonstrated that KRAS 
mutations are one of the earliest genetic events seen 
in human pancreatic intraepithelial neoplasia (PanIN) 
progression[8,9]. In addition to KRAS mutations, 
alterations in tumor suppressor genes such as INK4A, 
BRCA2, and LKB1 occur frequently in pancreatic 
cancer. The tumor suppressor gene, P16/CDKN2A, 
which encodes a critical cell cycle regulator, is 
inactivated in > 90% of pancreatic cancer[10]. Mutation 
of the p53 gene is closely associated with cellular 
responses to cytotoxic stress by contributing to both 
cell cycle arrest and cell apoptosis[11]. Mutations in 
p53 are also common in pancreatic cancer, as these 
have been reported in approximately 75% of patients 
and most frequently characterized by small intragenic 
mutations coupled with a loss of heterozygosity[5]. The 
missense mutation of SMAD4, a tumor suppressor 
gene that encodes the transforming growth factor beta 
(TGFβ) signaling pathway, is found in approximately 
55% of patients with pancreatic cancer[12]. Mutations 
in SMAD4 are associated with a poorer prognosis and 
widespread metastases, which suggests potential 
clinical implications[13]. The mismatch repair gene, 
MLH1, and the cationic trypsinogen gene, PRSS1, are 
also often mutated in pancreatic cancer[14]. Based on 
the typical age of onset related to the aforementioned 
mutations, these genetic lesions are thought to impact 
malignant progression rather than cancer initiation. 

Some pancreatic cancers harbor activating mu-
tations of BRAF rather than KRAS[15]. BRAF encodes 
RAF, a serine/threonine kinase belonging to a family 
of MEK (Figure 1A). MEK activates ERK, which forms 
the MAPK signaling pathway. Thus, active mutations 
of KRAS and BRAF eventually result in triggering the 
MAPK signaling, which is critical for the development 
of pancreatic cancer. Activation of the MAPK pathway 
is found not only in benign lesions, but also in late-
stage pancreatic cancer[16]. Overexpressed MAPK 
through a constitutively active form of RAF results in 
PanIN/pancreatic ductal adenocarcinoma formation; 
conversely, the silencing of MAPK signaling inhibits 
tumor initiation[17,18]. PI3K signaling is another 
important pathway that has been studied in great 
detail in pancreatic cancer along with the MAPK 
pathway. The PI3K signaling mediates cell growth 
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and survival via several downstream substrates such 
as Akt, p70-S6K, and mTOR (Figure 1A). Similar 
to the MAPK pathway, the consistent activation of 
PI3K has been shown to be closely associated with 

the carcinogenesis of pancreatic cancer[19]. The PI3K 
downstream effector, Akt, is amplified in 10%-20% 
of pancreatic cancers, providing genetic evidence 
to support the importance of this pathway in this 
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overexpressed in pancreatic cancer[31], targeting these 
pathways has attracted much attention. A recent 
study concluded that foretinib inhibits tumor growth, 
angiogenesis, and lymphangiogenesis in xenograft 
animals by inhibiting not only c-MET but VEGFR-2, 
VEGFR-3, and TIE-2 signaling as well. These results 
suggest that simultaneous inhibitory effects to reduce 
pancreatic tumor growth can be expected from 
multikinase inhibition[32]. 

EGFR pathway: EGFR, a transmembrane tyrosine 
kinase receptor of the ErbB family, plays an important 
role in tumor cell behavior. Aberrant EGFR activity leads 
to receptor dimerization and subsequently activates 
downstream signals, including members of the RAS 
and PI3K/Akt/mTOR pathways[33]. Overexpression 
of this growth factor receptor is seen in over 90% 
of pancreatic cancers[34]. Sustained EGFR activation 
has been reported in pancreatic cancer cell lines, and 
EGFR inhibitors have been found to lead to decreased 
proliferation[35]. Thus, EGFR pathway activation seems 
to provide a rationale for EGFR-targeted inhibition 
strategies. However, clinical trials using the anti-
EGFR and anti-Erbb2 antibodies have yielded negative 
results[36,37]. In contrast, a large randomized phase 
Ⅲ in which patients with pancreatic cancer were 
assigned to receive gemcitabine with or without 
erlotinib[38] reported that the patients who received the 
combination treatment had a modest but statistically 
significant improvement in overall median survival (OS) 
(P = 0.038) and progression-free survival (P = 0.004). 
The data from a subset analysis of this trial failed to 
indicate whether the KRAS mutation status or EGFR 
was a predictive marker for the therapeutic response 
to erlotinib[39]. Even though the median OS was only 
prolonged by 2 wk, this trial is remarkable because 
it is the only one to have shown an improvement in 
survival outcomes with combination gemcitabine/
erlotinib in metastatic pancreatic cancer. On the other 
hand, the oncogenic benefit of erlotinib should be 
balanced with its potential complications, some of 
which have been reported to be fatal[40]. Another EGFR 
monoclonal antibody, nimotuzumab, achieved survival 
benefits when added to gemcitabine (8.7 mo vs 6.1 
mo) with tolerable toxicity in a recent phase Ⅱ trial 
involving patients with locally advanced pancreatic 
cancer (J Clin Oncol 2013;31:abstr 4009). Clinical 
trials to evaluate the effects of nimotuzumab combined 
with gemcitabine are ongoing in patients with the RAS 
wild type of locally advanced or metastatic pancreatic 
cancer (NCT 02395016).

IGF1R pathway: IGF1R belongs to the insulin 
receptor family. IGFR1 signaling is highly expressed 
in pancreatic cancer, and this activation leads to a 
signaling cascade that triggers pathways such as ERK 
and PI3K/Akt/mTOR. It also plays a role in cancer 
survival and proliferation through RAS-dependent and 
-independent pathways. Inhibition of IGF1R signaling 

type of cancer[20]. Several growth factor receptors, 
including vascular endothelial growth factor (VEGF) 
and insulin-like growth factor 1 receptor (IGF1R), are 
aberrantly expressed in pancreatic cancer[21]. These 
pathways mediate the important genes involved in a 
variety of cellular functions such as growth, apoptosis, 
differentiation, and metastasis via these two pathways 
(Figure 1A). 

MOLECULARLY TARGETED AGENTS FOR 
PANCREATIC CANCER TREATMENT
Within the last decade, numerous targeted agents 
have been examined individually or in combination 
with cytotoxic agents for the treatment of pancreatic 
cancer. The growth stimulating signaling described 
above has been targeted by molecular therapies for 
many kinds of cancer. Taken together, a number of 
paracrine signaling pathways, such as Hedgehog, Wnt, 
Notch, and TGFβ, might also contribute to cancer stem 
cell signaling and tumorigenesis (Figure 1B)[22]. These 
characteristics of pancreatic cancer may contribute to 
the development of molecularly targeted therapies. 
Figure 1 schematically summarizes the current 
understanding of inhibitors in pancreatic cancer. Table 
1 summarizes clinical trials using molecular targeting 
agents.

Signaling pathway
Angiogenesis pathway: Angiogenesis is crucial 
for the growth of malignancies. Anti-angiogenic 
therapies have shown efficacy in renal cell carcinoma, 
colorectal cancer, lung cancer, glioblastoma, and 
ovarian epithelial cancers[23]. VEGF is one of the key 
factors of angiogenesis that promotes tumor growth 
and metastasis[24]. VEGF is overexpressed in over 
90% of patients with pancreatic cancer[25], thus 
providing justification for VEGF-targeted therapy for 
pancreatic cancer. In contrast, a randomized phase Ⅲ 
trial (CALGB 80303) found no improvements in the 
survival of patients who were given a combination 
of bevacizumab, which is a monoclonal antibody to 
VEGF, and gemcitabine, compared to the results of 
those treated with gemcitabine and a placebo, despite 
promising outcomes in phase Ⅱ[26]. Taken together, 
efforts to use targeted agents such as sorafenib and 
axitinib have been unfavorable[27-29]. A phase Ⅱ trial 
using TL-118, a novel anti-angiogenic drug, combined 
with gemcitabine to treat metastatic pancreatic 
cancer (NCT01509911) is currently ongoing (Table 
1). Foretinib was developed as an ATP-binding site 
competitor to inhibit receptor tyrosine kinases with 
reported activity against VEGFRs, RON, c-Met, c-KIT, 
FLT-3, and platelet-derived growth factor receptors 
(PDGFRs)[30]. Mounting evidence has indicated that 
foretinib targets multi-additional kinases, resulting 
in the growth inhibition of tumors. Since hepatocyte 
growth factor (HGF) and c-MET are frequently 
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enhances the cytotoxicity of gemcitabine in pancreatic 
cancer xenografts[41]. However, the IGF1R inhibitor, 
AMG-479, and the monoclonal antibody, cixutumumab, 
failed to provide any survival benefits in a previous 
study (NCT01231347) (J Clin Oncol 2012;30:abstr 
198). Meanwhile, the use of IGF1R in conjunction 
with ErbB would appear to be a good strategy 
for overcoming the chemoresistance common in 
pancreatic cancer. A previous study demonstrated that 
the simultaneous blockade of IGF1R and EGFR/Her-2 
synergistically inhibits the pancreatic tumor growth 
and completely abolishes the activation of IRS-1, Akt, 
and MAPK phosphorylation. These results suggest that 
the combined application of these two inhibitors averts 
the resistance associated with monotherapy[42]. 

RAS pathway: The RAS/RAF/MEK/ERK (MAPK) 
pathway is activated by numerous growth signals 
via their receptors, including EGFR, and is crucial in 
mediating uncontrolled growth and survival[43]. As 
previously discussed, MAPK plays a crucial role in the 
development of pancreatic cancer. Although trametinib, 
a MEK inhibitor, is currently approved for the treatment 
of melanoma, this drug has failed to show survival 

benefit when combined with gemcitabine in advanced 
pancreatic cancer (J Clin Oncol 2013;31:abstr 291). 
A phase Ⅱ trial of another MEK inhibitor, AZD6244, in 
combination with erlotinib as a second line treatment 
of advanced pancreatic cancer is currently underway 
(NCT01222689).

PI3K/Akt/mTOR pathway: Upon activation by 
RAS or EGFR, PI3K activates Akt, which subsequently 
triggers multiple downstream targets such as mTOR, 
leading to the regulation of many essential cellular 
processes, including cell growth, metabolism, survival, 
metastasis, and resistance to chemotherapy[44]. The 
PI3K-Akt pathway is activated in 59% of patients 
with pancreatic cancer[45]. Deregulation of this 
pathway through absent or reduced expression of 
PTEN (phosphatase and tensin homolog, a natural 
antagonist of PI3K) is frequently found in pancreatic 
cancer[46]. A phase Ⅱ trial is currently testing the 
combination of an Akt antisense oligonucleotide, 
RX-0201, with gemcitabine in metastatic pancreatic 
cancer (NCT01028495). A phase I study of BKM120, 
a pan-class 1A PI3K inhibitor, with mFOLFOX6 in 
patients with metastatic pancreatic cancer is also now 

Table 1  Current clinical trials for pancreatic cancer

Target 
molecule

ClinicalTrials.gov 
identifier

Sponsor Agent Treatment
setting

Study
phase

Comments

EGFR NCT00561990 Oncoscience AG Nimotuzumab First line Ⅱ/Ⅲ GEM ± nimotuzumab
NCT02395016 Biotech Pharmaceutical Nimotuzumab First line Ⅲ GEM ± nimotuzumab

MEK NCT01222689 National Cancer Institute selumetinib First line Ⅱ Selumetinib + erlotinib
PI3K NCT01571024 UNC Lineberger Comprehensive 

Cancer Center
BKM120 First line Ⅰ BKM120 + mFOLFOX6

Akt NCT01028495 Rexahn Pharmaceuticals RX-0201 First line Ⅱ RX0201 + GEM
mTOR NCT00981162 Roswell Park Cancer Institute Everolimus Second line Ⅰ/Ⅱ Everolimus + sorefenib
Angiogenesis NCT01509911 Tiltan Pharma Ltd TL-118 First line Ⅱ TL-118 + GEM
Src FOLFOX-D, 

NCT01652976
University of Florida Dasatinib First line Ⅱ  5-Fluorouracil + leucovorin + 

oxaliplatin + dasatinib
Jak NCT01423604 Incyte Corporation Ruxolitinib Second line Ⅱ Ruxolitinib + capecitabine

NCT01822756 Incyte Corporation Ruxolitinib First line Ⅰ Ruxolitinib + gemcitabine or nab-
paclitaxel

Notch NCT01098344 Cancer Research UK MK0752 First line Ⅰ MK0752 + GEM
Hedgehog NCT01130142 Infinity Pharmaceuticals, Inc. IPI-926 First line Ⅰ/Ⅱ IPI-926 + GEM
Wnt NCT01351103 Novartis Pharmaceutical LGK974 First line Ⅰ LGK974 alone

NCT01302405 Prism Pharma Co., Ltd. PRI-724 First line Ⅰ PRI-724 alone
NCT02050178 OncoMed Pharmaceuticals, Inc OMP-54 F28 First line Ⅰ GEM + nab-paclitaxel + OMP-54 F28
NCT02005315 OncoMed Pharmaceuticals, Inc Vantictumab

(OMP-18R5)
First line Ⅰ GEM + nab-paclitaxel + vantictumab 

Stroma Halo-109-202, 
NCT01839487

Halozyme Therapeutics PEGPH20
(hyaluronidase)

First line Ⅱ GEM + nab-paclitaxel ± PEGPH20

S1313, NCT01959139 Southwest Oncology Group PEGPH20 First line Ⅰ/Ⅱ FOLFIRINOX ± PEGPH20
PARP NCT01585805 National Cancer Institute Veriparib First line Ⅱ GEM + cisplatin ± veriparib

NCT01296763 Sidney Kimmel Comprehensive 
Cancer Center

Olaparib First line Ⅰ/Ⅱ Irinotecan + cisplatin + mitomycin C 
± olaparib

Others NCT01210911 Academisch Medisch Centrum Metformin First line Ⅱ Erlotinib + metformin + GEM
NCT01373164 Eli Lilly and Company LY2157299

(TGF-b 
inhibitor)

First line Ⅱ LY2157299 + GEM

NCT01621243 Momenta Pharmaceuticals, Inc M402 (heparan 
sulfate)

First line Ⅰ/Ⅱ GEM + nab-paclitaxel ±M402

NCT01783171 National Cancer Institute (NCI) Dinaciclib First line Ⅰ Dinaciclib + MK-226

GEM: Gemcitabine.
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recruiting (NCT01571024). Everolimus, an mTOR 
inhibitor, has shown antitumor activities, including 
the inhibition of cell proliferation, apoptosis, and 
angiogenesis, and displayed synergistic effects when 
combined with other anticancer agents[47]. A phase 
Ⅱ study was conducted to explore treatment activity 
of the combination of capecitabine with everolimus in 
patients with advanced pancreatic cancer. The results 
revealed a response rate (RR) of 6.5% and an OS of 8.9 
mo, suggesting that this combination therapy might 
enhance the efficacy of capecitabine[48]. Sorafenib, a 
multikinase inhibitor targeting Raf-1, BRaf, VEGFR1, 
VEGFR2, VEGFR3, and PDGFRβ, has been confirmed 
to be efficacious against advanced hepatocellular 
carcinoma[49]. It acts by inhibiting Raf-1 and BRaf as 
well as the activities of VEGFR1, VEGFR2, VEGFR3, and 
PDGFRβ. A phase Ⅰ/Ⅱ combination trial of sorafenib 
and everolimus in advanced pancreatic cancer has 
been completed, but the results have yet to be released 
(NCT00981162). Metformin, an antidiabetic drug that 
has direct metabolic effects through the activation of 
adenosine monophosphate-activated protein kinases, 
can inhibit the mTOR pathway by activating the tumor 
suppressor gene, TSC2. A randomized phase Ⅱ 
study exploring the activity and safety of erlotinib and 
metformin combined with gemcitabine in patients with 
metastatic pancreatic cancer is also currently underway 
(NCT01210911).

Src pathway: Src, a family of proto-oncogenic non-
receptor protein tyrosine kinases, plays a pivotal role 
in regulating multiple signal transduction pathways via 
its interactions with a number of proteins, including 
receptor tyrosine kinases and G-protein coupled 
receptors. C-Src is frequently overexpressed and/or 
aberrantly activated in a number of malignancies 
including 70% of pancreatic cancers[50]. Dasatinib, a 
compound related to saracatinib, was examined in a 
phase Ⅱ trial in patients with metastatic pancreatic 
cancer; however, encouraging results were not obtained. 
A phase Ⅱ trial to explore the efficacy of dasatinib 
combined with 5-fluorouracil, leucovorin, and oxaliplatin 
against metastatic pancreatic cancer is currently 
recruiting subjects (FOLFOX-D, NCT01652976). 

JAK/STAT pathways: Activation of the Janus kinase/
signal transducer and transcription (JAK/STAT) pathway 
has been found in many human cancers[51]. JAKs are 
a family of cytoplasmic tyrosine kinases, comprised 
of four members-JAK1, JAK2, JAK3, and Tyk2. JAK 
activation occurs upon the binding of a ligand to cell 
surface receptors, which leads to the creation of sites for 
interaction with proteins that contain phosphotyrosine-
binding Src homology 2 (SH2) domains. STATs, a family 
of downstream transcription factors for JAKs[52], contain 
a tyrosine residue phosphorylated by JAKs, leading 
to nuclear translocation. In the nucleus, STATs serve 
as transcription factors that initiate the transcription 

of downstream target genes. Abnormalities of the 
JAK/STAT pathway contribute directly to cellular 
transformation, increased cell proliferation, apoptosis, 
and angiogenesis. JAK mutations and STAT activation 
have been reported in pancreatic cancer[53,54]. In 
a randomized phase Ⅱ study of capecitabine plus 
either ruxolitinib or placebo, patients with metastatic 
pancreatic cancer demonstrated an improvement in 
survival (NCT01423604). An early phase clinical trial 
of ruxolitinib and gemcitabine with or without nab-
paclitaxel is also currently underway (NCT01822756).

Cancer stem cells
A small population of pancreatic cancer stem cells 
(CSCs) has been suggested to be resistant to chemo-
therapy and radiation therapy. CSCs are believed to 
be responsible for tumor carcinogenesis, progression, 
and metastasis in cancers including the pancreatic 
type[55,56]. Hedgehog, Notch, and Wnt have been 
shown to play a pivotal role in the development of 
pancreatic cancer stem cells[57]. Remarkable progress 
in understanding the involvement of CSCs in pancreatic 
cancer might highlight these cells as attractive targets 
for therapy.

Notch signaling: Recent evidence has suggested 
that Notch signaling is implicated in tumor growth and 
survival as well as involved in the development and 
function of many organs[58]. This pathway is thought 
to sustain a pool of pancreatic progenitor cells at an 
early stage of pancreatic development, and regulates 
pancreatic ductal cell differentiation[59]. Notch ligands 
and receptors have been shown to be highly expressed 
in pancreatic cancer; they also promote epithelial-
mesenchymal transition (EMT) by regulating several 
transcription factors such as Snail, Slug, and TGFβ[60]. 
A number of studies have shown that chemotherapy-
resistant pancreatic CSCs are related to Notch 
signaling activation[61]. The ALPINE trial is a phase Ib 
study exploring the anti-Notch2/3 inhibitor, OMP-59R5, 
in combination with nab-paclitaxel and gemcitabine in 
patients with untreated metastatic pancreatic cancer 
(J Clin Oncol 2014;32:abstr). This study showed good 
tolerability and positive responses (partial response 
= 46%, durable complete response = 77%). One 
appealing target for blocking this pathway is the 
g-secretase enzyme, which causes proteolytic cleavage 
and controls the release of the Notch intracellular 
domain as well as the production of its active form. 
Clinical trials are currently underway to investigate the 
effects of MK0752, a g-secretase inhibitor, combined 
with gemcitabine in patients with advanced pancreatic 
cancer (NCT01098344).

Hedgehog signaling: The Hedgehog (HH) pathway 
regulates embryogenesis, which is undetectable in 
normal pancreatic tissue. HH binds to the extracellular 
receptor and the transcriptional target gene, Patched 
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(Ptch), the latter of which releases the Smoothened 
seven-transmembrane protein (SMO). This allows 
SMO to translocate to the cell surface and results 
in the activation of GLI transcription factors and the 
consequent induction of HH target genes, including GLI 
and Ptch1 (Figure 1B). The pathological behavior of HH 
signaling is well known, and an increased expression 
has been observed during pancreatic tumorigenesis[62]. 
It has been found that hedgehog signaling is 
phosphorylated in earlier pancreatic tumor lesions, and 
the expression of pathway substrates becomes elevated 
during the progression to an advanced stage[63]. HH 
signaling has also been shown to be closely associated 
with KRAS mutations, which drive the early stages 
of pancreatic neoplasia[64]. Interestingly, HH signaling 
in pancreatic cancer is localized to the stromal 
compartment, and the overexpression of sonic HH in 
the pancreas is sufficient to initiate precancerous lesions 
in transgenic mice, which contributes to maintaining 
the tumor microenvironment[65,66]. Interestingly, the 
attenuated action of sonic HH has resulted in improved 
gemcitabine delivery, the depletion of dense stroma, and 
an enhanced vascularization of the tumors in mouse 
models[67], suggesting that this pathway could be an 
appealing target for drug development. GDC-0449, 
also known as vismodegib, a small-molecule SMO 
antagonist, inhibits the HH signaling pathway. A 
pilot study evaluating the effects of GDC-0449 in 
combination with gemcitabine was performed in 
patients with metastatic pancreatic adenocarcinoma; 
however, the joint use of GDC-0449 and gemcitabine 
was not found to be superior to the sole use of 
gemcitabine in the treatment of metastatic pancreatic 
cancer[68]. Similarly, a randomized phase Ⅱ trial of 
gemcitabine with or without vismodegib in treating 
patients with recurrent or metastatic pancreatic cancer 
also yielded disappointing results (NCT01064622). 
A phase Ⅱ randomized study evaluating IPI-926, a 
small molecule SMO antagonist, in combination with 
gemcitabine in metastatic pancreatic cancer patients 
was recently completed, and the publication of its 
results is highly anticipated (NCT01130142).

Wnt signaling: Evidence that the Wnt signaling 
pathway plays a pivotal role in the regulation of stem 
cells has been accumulating[69,70]. Recent studies 
of Wnt signaling have suggested its roles in tumor 
biology and the pathogenesis of pancreatic cancer. 
Based on findings, it is plausible that the dysregulation 
of Wnt signaling pathway is closely associated with 
pancreatic cancer chemoresistance[71]. Wnt signaling 
inhibitors such as LGK974 and PRI-724 are currently 
under investigation in active phase Ⅰ clinical studies 
on advanced solid tumors including pancreatic cancers 
(NCT01302405 and NCT01351103, respectively). 
An open-label phase 1b dose-escalation study to 
elucidate the safety and tolerability of OMP-54 F28 
(NCT02050178) and Vantictumab/OMP-18R5 

(NCT02005315) when combined with nab-paclitaxel 
and gemcitabine is currently in progress.

TGFβ: TGF-β is intimately involved in regulating 
numerous physiological processes, including cellular 
differentiation, homeostasis, and EMT in pancreatic 
cancer[72]. A phase Ⅱ study of gemcitabine in 
combination with LY2157299, a specific type 1 receptor 
inhibitor of TGFβ, or a placebo is currently being 
implemented (NCT01373164).

Stromal environment
One of the most important obstacles that impairs 
the effects of anticancer agents is the extracellular 
matrix (ECM) and stromal cells[73]. It has been 
reported that tumor-stroma interactions result in a 
complicated signaling network that leads to tumor 
progression in many kinds of solid cancers[74,75]. 
Pancreatic cancer shows abundant stroma in the tumor 
microenvironment[76]. Pancreatic cancer is uniquely 
characterized by a rich tumor stroma that might 
interfere with the delivery of agents to tumors and 
induce a complex interplay of intercellular signaling. 
Stromal depletion strategies such as the degradation of 
hyaluronic acid could potentially facilitate drug delivery 
to tumor sites[67]. Currently, there is a randomized phase 
Ⅱ trial comparing the treatment effects of PEGPH20, a 
pegylated formulation of recombinant hyaluronidase, 
in combination with nab-paclitaxel and gemcitabine 
comparing the treatment effects of PEGPH20 with the 
treatment effects of nab-paclitaxel alone in metastatic 
pancreatic cancer (Halo-109-202, NCT01839487). A 
partially randomized phase Ⅰ/Ⅱ evaluation of modified 
FOLFIRINOX with or without PEGPH20 in patients 
with newly diagnosed metastatic pancreatic cancer 
is also now under testing (S1313, NCT01959139). 
Heparan sulfate proteoglycans (HSPGs) are complex 
polysaccharides that regulate several aspects of cancer 
biology, including tumorigenesis, tumor development, 
and metastasis[77]. HSPGs have been shown to be 
associated with the tumor microenvironment by 
binding to factors that support tumor proliferation. 
M402, a mimetic of heparan sulfate, blocks the multiple 
interactions associated with heparan sulfate[77]. A 
phase Ⅱ clinical trial evaluating the effects of M402 in 
conjunction with standard chemotherapy is actively 
ongoing (NCT01621243).

Alternative poly (ADP-ribose) polymerase pathway
Breaks in the DNA double-strand are generally 
repaired by homologous recombination, which is 
mediated by BRCA1 and BRCA2 proteins that sustain 
genomic stability and cell death. The poly (ADP-
ribose) polymerase pathway takes on the main role 
in DNA repair when BRCA dysfunction occurs[78]. The 
PARP proteins undertake roles in a wide range of 
cellular functions including DNA transcription, DNA 
damage response, genomic stability maintenance, 
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and cell cycle regulation. Inhibitors of PARP enzymes 
result in synthetic lethality in cancers with DNA repair 
failure or homologous repair deficiency. They have 
also been shown to be clinically effective in cancers 
with poor DNA repair due to germ-line mutations in 
BRCA1 and BRCA2, which are estimated to be 5%-7% 
of patients with pancreatic cancer. A randomized 
phase Ⅱ trial of cisplatin plus gemcitabine with or 
without veliparib, which is a selective PARP inhibitor, 
in locally advanced or metastatic pancreatic cancer 
patients is ongoing (NCT01585805). Another PARP 
inhibitor, Olaparib, at 100 mg b.i.d. with 600 mg/m2 
of gemcitabine is tolerated in patients with advanced 
pancreatic cancer[79]. A randomized multi-center 
phase Ⅰ/Ⅱ trial is currently investigating the effects of 
irinotecan, cisplatin, and mitomycin C combined with 
olaparib in patients with advanced pancreatic cancer 
(NCT01296763). Conversely, a randomized, double 
blind phase Ⅲ study of olaparib monotherapy in 
patients with BRCA1/2 mutated metastatic pancreatic 
cancer who have not progressed from first line 
platinum-based chemotherapy is also now underway 
(NCT02184195).

RECENT EXPERIMENTAL STUDIES ON 
THE TREATMENT OF PANCREATIC 
CANCER
Despite numerous clinical trials utilizing known targeted 
agents, the overall advancement made in pancreatic 
cancer treatment has been relatively modest in 
comparison to the advancement made in the treatment 
of other types of tumors. Therefore, the exploration of 
novel agents targeted at certain signaling pathways is 
one of the most important undertakings to improve the 
outcome of patients with lethal pancreatic cancer. In 
this section, we will focus on the recent experimental 
studies that may open the door to the development 
of novel and hopefully more effective strategies for 
the treatment of pancreatic cancer. A list of novel 
therapeutic targets and drugs is presented in Table 2. 

Novel tyrosine kinase inhibitor
There is growing evidence to suggest that novel 
tyrosine kinase inhibitors can target multiple different 
pathways and/or signaling processes that have never 
been seen before in pancreatic cancer. As previously 
explained, utilizing the multikinase inhibitor, foretinib, 
may provide a simultaneous inhibitory effect on 
pancreatic cancer[32]. SKLB261 is a multikinase inhibitor 
obtained recently through lead optimization with 
reported activity against EGFR, Src, and VEGFR2. The 
application of SKLB261 has resulted in more potent 
antitumor activities than that of dasatinib, gemcitabine, 
or erlotinib in pancreatic cancer xenografts as well 
as more prolonged survival in mice compared with 

gemcitabine-treated groups[80]. Nintedanib, a triple 
angiokinase inhibitor that targets the VEGFR1/2/3, 
FGFR1/2/3, and PDGFRa/β pathways, has been shown 
to strongly inhibit the growth of pancreatic cancer cell 
lines in addition to enhancing the inhibitory effects 
of gemcitabine. Nintedanib also induces apoptosis in 
pancreatic cancer cells associated with stromal cells, 
providing a strong rationale for the clinical evaluation 
of nintedanib combined with conventional cytotoxic 
agents[81]. 

Masitinib, a multi-targeted protein tyrosine kinase 
inhibitor with possible anticancer activity, selectively 
binds to and inhibits both the wild-type and mutated 
forms of the stem cell factor receptor (c-Kit; SCFR), 
PDGFR, and FGFR3. In the recently conducted 
randomized phase Ⅲ trial, masitinib combined with 
gemcitabine prolonged the survival of patients in 
subgroups defined by an overexpression of acyl-CoA 
oxidase-1 (ACOX1) in secondary analyses. In the 
ACOX1 subgroup, the patients treated with masitinib 
plus gemcitabine showed a median OS of 11.7 mo 
(95%CI: 8.3-19.9) compared with a median OS of 5.6 
mo (95%CI: 3.7-12.9) for the placebo plus gemcitabine 
treatment-arm[82]. 

Hypoxia inducible factor-1 (HIF-1) is a principal 
mediator of cell adaption to hypoxia, and is extensively 
expressed in 88% of pancreatic tumors[83]. PX-478, 
an HIF-1 inhibitor, has been shown to promote the 
anti-cancer effects of gemcitabine, which are closely 
associated with immunogenic cell death in pancreatic 
cancer[84]. Recent studies have demonstrated that 
GSK3β is closely related to pancreatic cancer cell 
growth, providing a rationale for targeting GSK3β in 
the treatment of patients with pancreatic cancer[85]. 
GSK3β inhibition has been shown to induce apoptosis 
by a mechanism involving JNK-cJUN activation[86]. 
CXCR4 (CXC chemokine receptor type 4), a G-protein 
coupled receptor of CXCL12 (SDF-1), has been found 
to promote GSK3β expression and the invasion ability 
of pancreatic cancer cells by Akt signaling. This finding 
suggests that CXCR4 inhibition may open a new 
therapeutic avenue that will impact the capacity to 
effectively treat pancreatic cancer patients[87]. Forkhead 
box M1 (FOXM1) is a transcription factor in the FOX 
protein superfamily containing a conserved winged 
helix DNA-binding domain[88]. FOXM1 is an important 
transcription factor for many genes key to regulating 
a variety of processes in tumor pathogenesis, such as 
tumor cell survival, growth, and EMT. Several bodies 
of evidence have demonstrated that FOXM1 plays 
a crucial role in pancreatic cancer progression[89]. A 
recent paper asserted that FOXM1 contributes to the 
development of pancreatic cancer by enhancing the 
uPAR gene transcription and subsequently the EMT of 
cancer[90]. These findings suggest that the deregulation 
of FOXM1 signaling may be a new attractive strategy 
in the development of novel therapeutic targets to 
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control pancreatic cancer.

Micro RNA
Recently discovered micro RNA (miRNA) are short 
non-coding RNAs involved in the negative regulation 
of miRNAs translation. It is important to note that 
miRNAs mediate a variety of cellular functions 
and their dysregulation is a crucial event in tumor 
initiation[91]. The expression of miRNAs in pancreatic 
cancer cells differs from those in normal pancreatic 
cells and in patients with chronic pancreatitis. Over 
130 miRNAs have been proven to be deregulated in 
pancreatic cancer[92]. Several of these miRNAs play a 
role in new therapeutic prospects in the treatment of 
pancreatic cancer. It has been shown that nanomolar 
concentrations of antisense miR-21 and miR-221 
oligonucleotides significantly repress their targets and 
reduce the growth of pancreatic cancer cell lines[93,94]. 

A unique HSP70 inhibiting compound, miR-142-3p, 
regulates the triptolide, a diterpene triepoxide extract 
from the Chinese herb Tripterygium wilfordii, -induced 

inhibition of pancreatic cancer growth[95]. The miR-
146a compound plays a significant role in pancreatic 
cancer invasion and metastasis[96]. Interestingly, miR-
146a has been shown to restore the proteolytic activity 
of pancreatic cancer cells but with less expression in 
pancreatic cancer than in normal pancreatic tissue. 
Utilizing isoflavones or 3,3’-diinodolylmethane has 
been found to increase the expression of miR-146a, 
which may be a promising approach to blocking the 
invasion of pancreatic cancer. MicroRNA-494 (miR-494) 
is known to affect levels of FOXM1 in pancreatic 
cancer cell lines and act as a negative regulator of this 
transcriptional activator. It has also been shown to 
block nuclear translocation of β-catenin, which leads 
to cell proliferation, migration, and the increase of the 
sensitivity of pancreatic cancer cells to gemcitabine[97]. 

CONCLUSION
Pancreatic cancer illustrates genetic heterogeneity, 
and the complications in molecular signaling crosstalk 

Table 2  Recent experimental studies of targeted therapy for pancreatic cancer

Targeted therapeutics Ref. Cell lines (cell type) Main results

Multikinase inhibitors
   Foretinib Chen et al[32] Panc-1(P) Foretinib inhibited tumor growth, angiogenesis and 

lymphangiogenesis in xenograft animals, by inhibiting c-MET but 
VEGFR-2, VEGFR-3, and TIE-2 signaling

   SKLB261 Pan et al[80] BxPC-3 (P), Application of SKLB261 resulted in more potent antitumor activities 
than dasatinib, gemcitabine, or erlotinib in pancreatic cancer 
xenografts

Panc-1 (P), 
AsPC-1 (S), HPAC (P)

   Nintedanib Awasthi et al[81] AsPC-1 (S), A triple angiokinase inhibitor, nintedanib inhibited growth of 
pancreatic cancer cell lines, with gemcitabine enhancing inhibitory 
effects

BxPC-3 (P), 
Panc-1 (P),

MIA-PaCa-2 (P),
Dual inhibition
   Lapatinib and trametinib Lindberg et al[101] MAD 08-608, 08-738, 09-366 (P) Dual anti-EGFR and anti-HER2 therapy significantly enhanced the 

growth inhibitory effects of the MEK1/2 inhibitor trametinib
   ZSTK474 and RO5126766 Van Dort et al[99] Panc-1 (P) PI3K inhibitor and the Raf/MEK inhibitor RO5126766 resulted 

in high in vitro inhibition of both PI3Kand MEK1 also decreased 
cellular viability in pancreatic cancer cell line

   NVP-AEW541 and lapatinib Urtasun et al[42] NP-9, -18, -29 (P) Combined treatment with the IGF-IR and EGFR/Her-2 inhibitors 
synergistically inhibited pancreatic cancer cell growth which is 
associated with abolishment of Akt, Efk, and IRS-1 activity

CP15T, ,15A (p)

   Novel pathways
   PX-478 (HIF-a) Zhao et al[84] CFPAC-1 (S), BxPC-3 (P), Combined treatment with gemcitabine/PX-478 significantly 

enhanced the anti-tumor effect which is associated with 
immunogenic cell death

Panc-1 (P),
MIA-PaCa-2 (P)

   SB216763(GSK-3b) Marchand et al[86] Panc-1 (P), Inhibition of GSK-3βn induced apoptosis by mechanism involving 
MIA-PaCa-2 (P), BxPC-3 (P)

Micro RNA 
   miR-142-3p MacKenzie et al[95] MIA-PaCa-2 (P), Capan-1(S), A unique HSP70 inhibiting compounds, miR-142-3p regulate 

triptolide-induced inhibition of pancreatic cancer growthHEK-293 (P),
S2-013 (P)

   miR-146a Li et al[96] AsPC-1 (s), miR-146a takes significant roles in pancreatic cancer invasion and 
metastasis but lower expressed in pancreatic cancer compared with 
normal pancreatic tissue

Panc-1 (P)

   miR-494 Li et al[97] Colo357 (s), miR-494, identified to affect levels of FOXM1 in pancreatic cancer 
cell lines and act as a negative regulator of this transcriptional 
activator, blocked nuclear translocation β-catenin

Panc-1 (P)

VEGF: Vascular endothelial growth factor; EGFR: Epidermal growth factor receptor; HER2: Human epidermal growth factor receptor 2; MEK: Mitogen-
activated ERK kinase; PI3K: Phosphatidylinositol-3 kinase; IGF-1R: Insulin-like growth factor 1 receptor; FGFR: Fibroblast growth factor receptor; HSP: 
Heat shock protein; FOXM1: Forkhead box M1; P: Primary; S: Secondary.
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cause the failure of existing treatment strategies. 
Currently, only a few targeted agents, including 
erlotinib, have yielded a significant survival benefit for 
patients with pancreatic cancer. To overcome these 
obstacles, a considerable effort needs to be put into 
investigating the effective use of these therapies. 
Another challenge in evaluating novel targeted 
therapies in pancreatic cancer treatment is to identify 
underlying pathological features and incorporate 
them into trials with molecular biomarkers. Analysis 
of pancreatic cancer pathogenesis with its molecular 
characteristics may help to identify the biomarker-
defined subsets of patients that can be targeted to 
optimize the therapeutic benefit[98]. 

The identification of effective targeted combination 
therapies may be useful for generating enhanced 
strategies of treating pancreatic cancer. For instance, 
suppression of the PI3K/Akt /mTOR pathway may 
result in an escape via the MAPK pathway as well as 
in diminished effects due to the intensive crosstalk 
between these pathways. Therefore, a combination 
of agents that inhibit separate pathways may be 
crucial for achieving the desired efficacy against 
tumors. A recent study found that the application 
of a prototype dual-acting agent designed using the 
PI3K inhibitor, ZSTK474, and the Raf/MEK inhibitor, 
RO5126766, resulted in high in vitro inhibition of both 
PI3K and MEK1 as well as decreased cellular viability 
in pancreatic cancer cell lines[99]. In a previous study, 
the combined effect of the cyclin-dependent kinase 
inhibitor, dinaciclib, and the pan-Akt inhibitor, MK-2206, 
dramatically inhibited tumor growth and metastasis in 
eight pancreatic cancer models. Remarkably, several 
complete responses were induced by this combination 
treatment. These results suggest that blocking RAF in 
combination with other effector pathways downstream 
from KRAS may provide increased efficacy in pancreatic 
cancer treatment[100]. Notably, preclinical studies 
predicting the effects of combination therapies with 
EGFR and other pathway inhibitors in pancreatic cancer 
xenografts have presented promising results. A recent 
study asserted that dual anti-EGFR and anti-HER2 
therapy significantly enhanced the growth inhibitory 
effects of the MEK1/2 inhibitor, trametinib, in different 
patient-derived pancreatic cancer xenografts. This 
highlights the importance of designing therapeutic 
interventions that target not only the EGFR-HER2 but 
also the KRAS pathways to achieve maximal therapeutic 
efficacy[101]. 

Selecting drug combinations with novel agents 
that target not only tumor initiation but also the 
surrounding stroma may be one such approach. There 
is growing evidence to suggest that proteins expressed 
by stromal cells (Cox-2, stromal-derived factor, 
integrins, secreted protein acidic and rich in cysteine, 
and HH elements) are related to poor outcomes 
and the resistance to current therapies[102]. In the 
meantime, it is also essential to pay attention to the 

toxicity resulting from the use of targeted agents with 
conventional chemotherapy or agents targeting other 
pathways. A thorough understanding of the underlying 
mechanisms involved in toxicity will be crucial to 
furthering the development of pancreatic cancer 
therapies.

Thus far, most clinical trials involving targeted the-
rapies for pancreatic cancer have not yielded successful 
results. The lack of effectiveness of several targeted 
agents in pancreatic cancer, despite their success in 
treating other types of malignancies, suggests that 
pancreatic cancer has particularly challenging biological 
characteristics that have yet to be well defined. As 
discussed in this review, several experimental studies 
have demonstrated promising new pathogeneses and 
efficacy in the treatment of pancreatic cancer. There-
fore, continuing to develop and investigate treatments 
that fight pancreatic cancer from as many angles as 
possible will likely increase the chances of achieving 
positive outcomes for patients. 
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