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Abstract
Iron is essential for all organisms including microbial, 

cancer and human cells. More than a quarter of the 
human population is affected by abnormalities of 
iron metabolism, mainly from iron deficiency and iron 
overload. Iron also plays an important role in free radical 
pathology and oxidative damage which is observed 
in almost all major diseases, cancer and ageing. New 
developments include the complete treatment of iron 
overload and reduction of morbidity and mortality in 
thalassaemia using deferiprone and selected deferiprone/
deferoxamine combinations and also the use of the 
maltol iron complex in the treatment of iron deficiency 
anaemia. There is also a prospect of using deferiprone as 
a universal antioxidant in non iron overloaded diseases 
such as neurodegenerative, cardiovascular, renal, 
infectious diseases and cancer. New regulatory molecules 
of iron metabolism such as endogenous and dietary 
chelating molecules, hepcidin, mitochondrial ferritin 
and their role in health and disease is under evaluation. 
Similarly, new mechanisms of iron deposition, removal, 
distribution and toxicity have been identified using 
new techniques such as magnetic resonance imaging 
increasing our understanding of iron metabolic processes 
and the targeted treatment of related diseases. The 
uniform distribution of iron in iron overload between 
organs and within each organ is no longer valid. Several 
other controversies such as the toxicity impact of non 
transferrin bound iron vs injected iron, the excess levels 
of iron in tissues causing toxicity and the role of chelation 
on iron absorption need further investigation. Commercial 
interests of pharmaceutical companies and connections 
to leading journals are playing a crucial role in shaping 
worldwide medical opinion on drug sales and use but 
also patients’ therapeutic outcome and safety. Major 
controversies include the selection criteria and risk/benefit 
assessment in the use of deferasirox in thalassaemia and 
more so in idiopathic haemochromatosis, thalassaemia 
intermedia and ex-thalassaemia transplanted patients 
who are safely treated with venesection. Iron chelating 
drugs can override normal regulatory pathways, correct 
iron imbalance and minimise iron toxicity. The use of iron 
chelating drugs as main, alternative or adjuvant therapy 
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Core tip: Abnormalities of iron metabolism including iron 
deficiency and overload affect more than a quarter of 
the world’s population. Iron also plays a major role in 
free radical pathology and associated tissue damage. 
Iron chelating drugs can override normal regulatory 
pathways, correct iron imbalance and minimise iron 
toxicity. Deferiprone and especially its combination with 
deferoxamine can completely treat iron overload in 
thalassaemia. Deferiprone can minimise the toxic effects 
of pathological iron in neurodegenerative, renal and 
other diseases. Controversies in the risk/benefit asse
ssment for the use of deferasirox in many conditions 
appear to involve commercial influence on academic 
journals and physicians.
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INTRODUCTION
Iron is an essential metal found in all living organisms 
including microbial, cancer and normal human cells. 
More than a quarter of the human population is affected 
at some stages in their life by iron deficiency. Similarly, 
many millions suffer from other abnormalities of 
iron metabolism, such as iron overload in hereditary 
haemochromatosis which is caused by increased iron 
absorption and iron overload in thalassaemia which 
is a result of chronic transfusions[1,2]. Iron also plays 
an important catalytic role in free radical pathology 
and oxidative damage which is observed in almost all 
major iron loaded and non iron loaded diseases such 
as cardiovascular, neurodegenerative, hepatic and renal 
diseases, as well as in cancer and ageing[3]. 

Most of the diseases related to iron metabolic 
imbalance can be treated using established and effective 
therapeutic approaches, e.g., iron supplementation 
for the treatment of iron deficiency anaemia and vene­
section in hereditary haemochromatosis. Iron overload 
in thalassaemia is more difficult to treat using chelation 
therapy and the same applies for the treatment of the 
anaemia of chronic disease in many conditions such as 
cancer, rheumatoid arthritis and haemodialysis, where 
oral or intravenous iron, with or without erythropoietin 
combination may be used. 

Most of the therapies of abnormal iron metabolism 
described above are widely applied in developed 
countries but there are financial constrains for their use 
by patients in the developing countries. In particular the 
treatment of thalassaemia using regular transfusions and 
chelation therapy and also the use of erythropoietin in 
the anaemia of chronic disease is not affordable for the 
vast majority of patients in the developing countries[4,5]. 

The disease with the highest mortality and mor­
bidity rate related to iron metabolic disorders worldwide 
is thalassaemia, which is found mainly in developing 
countries of South East Asia, Middle East and Mediter­
ranean. More than 100000 thalassaemia babies are born 
every year with 9000 in India alone, most dying without 
treatment[4-6]. Despite that health facilities including 
blood transfusions are improving in developing countries, 
the cost of the chelating drugs is still not affordable 
for most patients living in these countries and there­
fore life expectancy is low[5]. Usually, non-transfused 
thalassaemia patients die by the age of 7 years and 
transfused but not chelated thalassaemia patients die 
by the age of 20 years, mainly from congestive cardiac 
failure due to cardiac iron overload toxicity[7,8]. The life 
expectancy of thalassaemia patients receiving chelation 
therapy increases substantially and many patients 
adhering to the chelation protocol with deferiprone (L1) 
and deferoxamine (DF) are now exceeding the age of 50 
years (Figure 1)[9].

However, despite the wide availability of the chelat­
ing drugs DF, L1 and deferasirox (DFRA) in developed 
countries and indications that the use of appropriate 
effective protocols can lead to the complete treatment of 
iron overload, their application to thalassaemia patients 
appears to be influenced by physician decisions asso­
ciated with literature rivalry and commercial interests[5]. 
As a result of the commercial interference and influence 
which is mainly caused by the manufacturers of chelating 
drugs and their marketing methods the overall treatment 
outcome, safety and survival of the thalassaemia patients 
is greatly affected[5].

Clinical trials and preclinical studies suggest that 
there are increasing prospects of using chelation and 
in particular L1 as a universal antioxidant in non iron 
overload diseases such as neurodegenerative, cardio­
vascular, renal and infectious diseases as well as cancer 
and ageing[10,11].

The discovery of new regulatory molecules of iron 
metabolism such as endogenous and dietary chelating 
molecules as well as the proteins hepcidin, ferroportin, 
mitochondrial ferritin and their role in normal and 
iron overload disease states is subject to continuous 
investigation[1,2]. Similarly, the identification of new 
mechanisms of iron deposition, removal, distribution and 
toxicity have increased further our understanding of iron 
metabolic processes and improved the use of specific 
targeting treatments in iron metabolic diseases. 

In general, the acquisition and distribution of im­
portant and significant knowledge for all diseases is 
becoming a major issue in the treatment outcome and 
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safety of patients. Within this context many contro­
versies related to the diagnosis and treatment of iron 
abnormalities have been identified involving influence 
by commercial interests, especially by pharmaceutical 
companies and related support by a section of leading 
medical journals in the selection and promotion of drug 
treatments with high risk and low benefit outcomes for 
patients[5]. 

The controversies are also extended to research 
findings in relation to basic mechanisms of chelating 
drug action and also to iron metabolism and toxicity. 
These issues include for example the impact of toxicity 
of non transferrin bound iron (NTBI) found mainly in 
iron loaded patients vs the lack of toxicity of injected 
iron used in anaemic patients. Similarly, the role and 
limitations of the function of hepcidin as a universal 
regulator of normal and abnormal iron metabolism are 
also questioned. 

Controversies associated to basic mechanisms of 
drug toxicity especially in the case of DFRA, for example 
in relation to the increased absorption of toxic metals 
such as Al are still unanswered[12,13]. Furthermore, the 
promotion of the use of DFRA instead of the safer and 
more effective use of venesection is also questioned 
especially in relation to the treatment of idiopathic 
haemochromatosis, thalassaemia intermedia and in ex-
thalassaemia transplanted patients. Another issue in 
relation to the use of DFRA which are also controversial 

is its effect in the mortality and morbitidy rate of trans­
fused patients with myelodysplastic, myelofibrosis, sickle 
cell anaemia and also in non iron loaded conditions. 

It appears that in general many controversial issues 
including the risk/benefit assessment of the use of iron 
chelating drugs worldwide in different conditions seem 
to be based on the marketing policies and commercial 
influence of pharmaceutical companies and not the 
therapeutic needs and safety of patients[5]. Within this 
context some recent developments in iron metabolism 
will be reviewed with emphasis on the topics and issues 
that affect the treatment of patients with iron metabolic 
disorders both in developed and developing countries. 
Similarly, recent developments that affect the treatment 
outcome and safety of patients including commercial 
influence and other non medical factors will also be 
discussed.

MOLECULAR ASPECTS OF IRON 
METABOLIC DISORDERS 
The molecular aspects of iron including its chemical 
and biochemical properties are important in the under­
standing of iron metabolism and chelation therapy. Iron 
is generally found in the ferrous Fe (Ⅱ) and ferric Fe (Ⅲ) 
oxidation states in the human body. For example, it is 
transported in the plasma by transferrin and stored in 
ferritin and haemosiderin in the ferric form, whereas it is 
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Figure 1  The chemical structure of the iron chelating drugs. L1 (A), DF (B) and DFRA (C) are currently used for the treatment of thalassaemia and other 
transfusional iron loading conditions. DTPA (D) and EDTA (E) have been previously used for the treatment of iron overload but are now used for the detoxification 
of toxic metals and in particular EDTA in alternative medicine. The maltol (F) iron complex is used for increasing iron absorption and 8-hydroxyquinoline (G) is a 
lipophilic chelator used for radiolabeling in diagnostic medicine and for experimental purposes. L1: Deferiprone; DF: Deferoxamine; DFRA: Deferasirox; DTPA: 
Diethylenetriaminepentaacetic acid; EDTA: Ethylenediaminetetraacetic acid.
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is estimated at 3-5 g. Most of the iron is found in blood 
in the form of haemoglobin (58%) in red blood cells, 
as myoglobin (9%) in muscle tissue and as intracellular 
ferritin/haemosiderin (30%) mainly in the liver and 
spleen[1,2,16]. 

Iron absorption, transport, storage, utilisation, 
recycling and excretion are mostly genetically controlled 
by effective regulatory metabolic pathways, homeostatic 
mechanisms and related proteins[1,2]. A large number 
of iron containing proteins play an essential role in 
physiological functions such as oxygen and electron 
transport, DNA synthesis, food oxidation, drug detoxi­
fication, etc.[1,2,14,19]. Genetic changes, iatrogenic, nutri­
tional and other factors can affect all the metabolic 
pathways and physiological functions related to iron and 
result in iron metabolic abnormalities. 

General aspects of iron metabolism have been 
previously reviewed[1,2,14,19]. Basically, under normal 
conditions iron is absorbed from the gut then trans­
ferred to transferrin in the blood which distributes and 
delivers iron to the tissues primarily for storage in the 
liver and utilisation in the production of haemoglobin 
in the bone marrow. Different but smaller amounts of 
iron are distributed to other cells and tissues primarily 
for storage and utilisation for the synthesis of iron 
containing proteins. Iron from the catabolism of hae­
moglobin of effete red blood cells is recycled and 
redistributed by transferrin. 

The transport and distribution of iron is tightly con­
trolled. Under normal conditions transferrin is saturated 
25%-35% with iron. The intracellular uptake of iron 
from transferrin and its storage or utilisation in the cells 
is regulated by the iron regulatory proteins through the 
translational control of the synthesis of the transferrin 
receptors at the cell surface and also that of intracellular 
ferritin. The amount of iron delivered to cells is mainly 
determined by the number of transferrin receptors and 
also the iron saturation of transferrin[1,2,14,19]. 

Cellular iron export is controlled by ferroportin and 
hepcidin. The latter is an iron-regulatory 25 amino acid 
peptide hormone produced by the liver. Serum hepcidin 
concentrations appear to correlate with liver hepcidin 
mRNA expression, transferrin saturation and nonheme 
liver iron[1,2,21]. It also appears that hepcidin controls iron 
export by binding to the protein ferroportin and causing 
its internalization from the cell surface and subsequent 
degradation. In general, it is thought that increased liver 
hepcidin expression decreases the activity of the cellular 
iron exporter ferroportin. For example in hereditary 
hemochromatosis, decreased activity of hepcidin in the 
enterocyte will increase basolateral iron transfer into 
plasma and consequently cause an increase in dietary 
iron absorption[22,23]. Hereditary hemochromatosis is 
mainly caused by a mutation in the HFE gene that 
involves the HFE protein which is predominant in the 
expression of hepcidin[24]. In contrast, in the anaemia of 
chronic disease the opposite action, i.e., increased activity 
of hepcidin in the reticuloendothelial macrophages would 
decrease iron transfer to plasma and consequently cause 

found in the ferrous form in haemoglobin and myoglobin 
bound to oxygen and also in other proteins involved 
in redox reactions[14]. It can also sometimes be found 
in the Fe (Ⅳ) form in haem, which is associated with 
pathological effects[15]. 

The solubility of iron under physiological conditions 
is an important property for its metabolic functions 
and toxicity. Ferric iron hydrolyses at pH 7.4 forming 
insoluble oxohydroxy polynuclear complexes which 
precipitate. The solubility of ferric iron is extremely 
low and at physiological pH 7.4 is estimated to be 
less than 10-18 mol/L. The amount of soluble iron is 
negligible compared to the iron turnover needed for the 
different physiological functions and in particular for the 
production of haemoglobin. The solubility of iron (Ⅲ) 
can increase by different methods such as by decreasing 
the pH, reducing iron (Ⅲ) to iron (Ⅱ) or using chelating 
agents. Examples of such processes in physiological 
conditions is the solubilisation of iron in food in the acidic 
medium of the stomach, reduction of iron (Ⅲ) to iron (Ⅱ) 
in the duodenum by a cytochrome b-like ferrireductase 
(Dcytb) and chelation and transport of iron (Ⅲ) by 
transferrin[1,2,14]. Another method for the solubility of 
polynuclear iron is achieved intracellularly by ferritin, 
which encloses the insoluble oxohydroxy polynuclear 
iron within a soluble protein shell[1,2,16,17].

The redox changes of iron are of biological and 
toxicological importance. In particular, iron toxicity arises 
mainly from the catalytic activity of ferrous iron in the 
formation of free radicals and other reactive oxygen 
species which have been shown to cause molecular 
damage to all organic biomolecules including lipids, 
sugars, proteins and DNA[3,18]. Such biomolecular da­
mage can lead to subcellular, cellular, tissue and organ 
damage, which can be permanent or reversible[19]. Ferric 
iron cannot catalyse the production of free radicals and 
is mostly not toxic unless it is reduced. However, in 
vivo iron (Ⅲ) can be reduced to iron (Ⅱ) by reducing 
agents such as ascorbic acid and other organic acids and 
consequently catalyse free radical production[20].

The presence of excess iron is considered a potential 
source of toxicity which can be expressed at the mole­
cular, subcellular, cellular, tissue and organ level. Such 
forms of excess iron in polynuclear form include ferritin,
haemosiderin and NTBI. Usually the damage to tissues 
and organs in iron loaded diseases depends on the 
concentration of excess stored iron mainly in the form 
of haemosiderin. At low iron concentrations of excess 
iron such damage is considered reversible due to 
the effective antioxidant protection mechanisms and 
antioxidant molecules and also the efficiency of the 
repair mechanisms[19]. However, at high concentrations 
excess iron can cause permanent damage and can be 
fatal, e.g., in cardiac iron overload in thalassaemia[7,8].

Under normal conditions iron is essential to all cells 
and plays an important role in physiological functions 
including the growth and development of the body. It is 
absorbed from ingested food in small quantities of about 
1-2 mg/d. The total body iron of normal adult humans 
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a decrease in the transport of iron to the bone marrow 
and reduction in haemoglobin production. 

In general iron balance in normal individuals is 
achieved when the rate of dietary iron absorption is 
equivalent to the rate of iron utilisation and excretion[25]. 
Iron imbalance can occur due to genetic, regulatory, 
environmental, iatrogenic and dietary factors. The 
imbalance is usually related to changes in the rate of iron 
absorption, utilisation, distribution, excretion, blood loss 
and intake from transfusions. Iron deficiency for example 
can occur if the rate of iron absorption is lower than the 
rate of iron excretion, e.g., nutritional iron deficiency 
in vegetarians[25]. Similarly, iron deficiency can occur 
if the rate of the iron utilised, e.g., by the foetus and 
the mother in pregnancy is higher than the rate of iron 
absorbed. Another example is the anaemia of chronic 
disease where iron is diverted and accumulated in the 
reticuloendothelial system instead of the erythropoietic 
tissues resulting in anaemia. Blood loss from trauma, 
haemorrhage and blood donation can also result in iron 
deficiency anaemia. 

In contrast, in iron overload the rate of iron absorp­
tion is higher than the rate of iron excretion, e.g., in 
hereditary haemochromatosis[26,27]. Iron overload can 
also be caused by regular red blood cell transfusions 
in conditions such as in thalassaemia, myelodyspasia 
and sickle cell diseases[7,8,28]. In contrast to the tissue 
damage observed in hereditary haemochromatosis and 
thalassaemia, which proceeds progressively for several 
years, the tissue damage observed in iron poisoning 
from the accidental ingestion of oral iron preparations is 
an acute form of iron toxicity and can be fatal in most 
cases within hours or days unless emergency treatment 
is provided[29,30]. 

Overall, many abnormalities exist in relation to 
body iron balance and distribution, the iron containing 
proteins and their function and the regulation of the iron 
metabolic pathways. Many of these iron abnormalities 
can lead to a number of serious diseases. Within this 
context, our understanding of the molecular aspects and 
metabolic pathways related to iron and chelation therapy, 
as well as other therapeutic interventions can improve 
therapeutic targeting in diseases of iron metabolism. 
At the same time misinformation on the iron metabolic 
pathways may lead to the development of ineffective or 
potentially toxic therapeutic interventions. 

The spectrum of therapeutic interventions in relation 
to iron metabolism is not limited only to abnormalities 
of iron metabolism but is extended to many other 
pathological conditions since iron is playing an important 
role in the growth and development of all type of cells 
including normal, microbial and cancer cells. Further­
more iron plays an important role in free radical meta­
bolism and pathology, which is a key factor in tissue 
damage in almost all pathological conditions[10,11,19].

Simple and inexpensive therapeutic procedures such 
as iron supplements to treat iron deficiency anaemia 
and red blood cell transfusions to treat refractory 
anaemias are widely used. In contrast, venesection is 

widely used in blood donation and to treat hereditary 
hemochromatosis[27]. Similarly, erythropoietin in com­
bination with iron is used in the treatment of the 
anaemia of chronic disease. The therapeutic targeting 
and interventions can involve many other aspects of the 
iron metabolic pathways including genetic manipulation, 
biological therapies using antibodies against regulators, 
e.g., hepcidin and erythropoietin or antibodies against 
receptors, e.g., transferrin receptors, etc[31,32]. 

A major role in the development of therapeutic 
strategies in the treatment of abnormalities of iron 
metabolism is the design of targeted therapies using 
iron chelators. Within this context, although the pri­
mary therapeutic role of iron chelating drugs is the 
treatment of transfusional iron overload, many other 
possible applications of chelators involving all metabolic 
aspects of iron could be developed. For example the 
iron chelating drugs DF and L1 could be used in the 
detoxification of other toxic metals such as aluminium 
overload, as antioxidants or as antimicrobial agents, 
etc[19,33-35].

THERAPEUTIC APPLICATIONS AND 
CONTROVERSIES IN THE USE OF 
CHELATING DRUGS IN IRON METABOLIC 
DISORDERS
Chelating drugs and chelators could in principle affect 
and target all the metabolic pathways and proteins 
involved in iron metabolism either directly through 
iron binding or indirectly through the intracellular iron 
pools. They can also affect other metabolic pathways 
indirectly which are related or influenced by chelation of 
other metals or related to other aspects of the chelator 
molecular structure not related to iron[14]. 

In principle iron chelators can remove, donate 
and exchange iron, form ternary iron complexes with 
proteins, other chelators or ligands. They can also be 
involved in redox reactions mainly with iron and copper 
and proteins carrying these metals. The chemical, 
biological, pharmacological and toxicological properties 
of the chelators are different to those of their iron 
complex or their metabolites. Chelators have to compete 
for iron at all the stages of iron absorption, storage, 
utilisation and excretion with endogenous natural low 
molecular weight chelators such as citrate, glutathione, 
ATP, ADP, etc., and also with protein chelators such 
as transferrin, lactoferrin, haem containing proteins 
etc[14,18,36]. Similarly, the presence of other metals may 
interfere with chelator iron binding and chelators may 
affect the metabolic pathways of other metals[37,38]. 
Overall many interactions can affect the efficacy and 
toxicity of the chelating drugs in vivo[14,36,37].

The mode of action, efficacy and toxicity of the 
iron chelating drugs DF, L1, DFRA and of other iron 
chelators are directly related to their physicochemical, 
pharmacological, toxicological, iron binding and other 
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properties (Figure 1 and Table 1). Within this context 
the property differences and mode of interactions with 
different molecular targets are the most important and 
critical parameters determining the specificity of the 
iron chelating drugs and also their targeting profile for 
the treatment of iron overload and other diseases (Table 
1)[14,36]. 

The primary use of the chelating drugs is the 
treatment of iron overload in thalassaemia and other 
transfusional iron loaded conditions. Iron overload 
toxicity from chronic transfusions involves multi-organ 
damage and low life expectancy. In the absence of 
chelation therapy thalassaemia patients die by the age 
of 20 years, mainly from congestive cardiac failure 
caused by cardiac iron overload toxicity[5,7,8]. 

There are big differences in the efficacy, tolerance, 
site of action, toxicity profile and the cost of the che­
lating drugs, which affects the morbidity and mortality 
of thalassaemia patients both in developed and 
developing countries (Table 1)[5,7,8]. 

There are also general variations among patients 
in response to each chelating drug, which is related to 
their differences in the absorption, distribution, meta­
bolism, elimination and toxicity[5,9,39-41]. 

The recommended doses for the chelating drugs in 
thalassaemia are 40-60 mg/kg per day for subcutaneous 
DF, 75-100 mg/kg per day for oral L1 and 20-40 

mg/kg per day for oral DFRA. Compliance is low with 
subcutaneous DF in comparison to oral L1 and DFRA. 
The site and level of iron removal is different among the 
chelators with L1 being the most effective in iron removal 
from the heart resulting in an increase in life expectancy 
in thalassaemia patients that have been using it in the 
last two decades[9,42]. In contrast, high morbidity and 
mortality have been reported in different categories of 
patients that have been treated with DFRA[43,44]. The 
efficacy of iron removal from thalassaemia patients by 
DFRA is lower than DF or L1, especially regarding iron 
removal from the heart[45]. The most effective treatment 
of cardiac iron overload are selected combinations of L1 
and DF[46]. 

Many of the controversies in the use of chelating 
drugs arise from the different influences and priorities 
for use by the regulatory authorities, clinicians and 
patients[45]. For example, there is no consensus in the 
ultimate goal or aim of the chelation therapy in thala­
ssaemia and other transfusional iron loaded conditions 
or the selective use of each of the chelating drugs for 
optimal therapy. There is also no consensus in the 
evaluation criteria and risk/benefit assessment for 
the use of each of the chelating drugs in personalised 
medicine[47]. In most countries the selection of the 
chelating drug for the treatment of iron loaded patients 
depends on the commercial influence of pharmaceutical 

Table 1  Property differences and mode of action of chelating drugs

Recommended doses for the chelating drugs in thalassaemia patients 
   DF subcutaneously 40-60 mg/kg per day; Oral L1 75-100 mg/kg per day; Oral DFRA 20-40 mg/kg per day
Transfusional iron loaded patient compliance with chelating drugs 
   Low compliance with DF in comparison to oral L1 and oral DFRA
Increase in iron excretion and route of elimination in iron loaded patients
   L1: Urinary iron; DFRA: Faecal iron; DF: Urinary and faecal iron
Effect of chelating drugs on iron absorption 
   Increase of iron absorption by the lipophilc maltol, 8-hydroxyquinoline and DFRA. Decrease of iron absorption by the hydrophilic DF, EDTA, DTPA and L1
Iron removal from diferric transferrin in iron loaded patients
   About 40% at L1 concentrations > 0.1 mmol/L, but not by DF or DFRA
Differential iron removal from various organs of iron loaded patients
   L1 preferential iron removal from the heart and DFRA from the liver
   DF from the liver or heart. (Efficacy is related to dose for all chelators)
Iron redistribution in diseases of iron metabolism by chelating drugs
   L1 and to a lesser extent DF can cause iron redistribution from the reticuloendothelial system to the erythron in anaemic rheumatoid arthritis 
   patients. DFRA may cause redistribution of iron from the liver to other organs in thalassaemia and other iron loaded patients. Enterohepatic circulation 
   by DFRA and metabolites
Increase excretion of metals other than iron, e.g., Zn and Al
   Order of increased Zn excretion in iron loaded patients: DTPA > L1 > DF
   DF and L1 cause increase Al excretion in renal dialysis patients
   DFRA causes an increase in Ca excretion and Al absorption (?) 
Iron mobilisation and excretion of chelator metabolite iron complexes
   Several DF metabolites have iron chelation potential and increase iron excretion but not L1 glucuronide
Chelating drugs minimising other drug toxicity
   L1 but not DFRA, inhibit doxorubicin induced cardiotoxicity
Combination chelation therapy
   L1, DF and DFRA combinations are more effective in iron excretion than monotherapy. The ICOC L1 and DF combination causes normalisation of the 
   iron stores in thalassaemia patients
Chelating drug synergism with reducing agents
   Ascorbate act synergistically with DF but not L1 for increasing iron excretion
Chelating drug antioxidant effects
   L1 and DF have shown antioxidant action in in vitro, in vivo and clinical settings. The antioxidant effects of DFRA are under evaluation

L1: Deferiprone; DF: Deferoxamine; DFRA: Deferasirox; ICOC: International Committee on Chelation; DTPA: Diethylenetriaminepentaacetic acid; EDTA: 
Ethylenediaminetetraacetic acid.
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companies[5]. The situation regarding the use of the 
chelating drugs in the developing countries where most 
patients live is not only concerning issues related to the 
risk/benefit assessment but mainly issues regarding 
their availability and cost. Such issues have been 
recently highlighted within the broad context of the 
use of orphan drugs in orphan and rare diseases which 
includes thalassaemia and other transfusional iron 
loaded conditions[5].

Recent developments involving mainly clinical find­
ings and the application of new diagnostic techniques 
such as magnetic resonance imaging (MRI) T2 and 
T2* has increased our understanding of iron metabolic 
and chelation pathways of iron removal and resulted in 
improved drug targeting therapies of iron toxicity[48-50]. 
These developments increased the prospects of the 
introduction of personalised medicine in thalassaemia 
and other iron metabolic disorders. Based on these 
findings the complete treatment of iron overload and 
reduction of morbidity and mortality in thalassaemia 
using L1 or the L1/DF combination has been recently 
achieved[9]. 

Similarly, recent developments involving the prospect 
of wider use of chelating drugs and in particular of L1 
as a universal antioxidant in non iron overload disea­
ses such as neurodegenerative, cardiovascular, renal, 
infectious diseases as well as other diseases including 
cancer and ageing has been investigated in clinical 
trials and within the broad context of the risk/benefit 
assessment because of the absence of other effective 
therapeutic approaches and developments in many of 
these conditions[9,36,51]. 

The introduction of L1 for the treatment of non iron 
loaded patients by targeting focal toxic iron deposits, e.g.,
in Friedreich ataxia and toxic labile iron, e.g., in diabetic 
and non-diabetic glomerular disease is a reflection of 
the antioxidant and safety potential of this drug[10,11,19]. 
The safety of L1 in many categories of non iron loaded 
diseases has also been confirmed in clinical trials 
involving patients with the anaemia of chronic disease, 
renal dialysis, infections, Parkinson’s and other neurode­
generative diseases, etc[10,11,19]. As in many other cases 
of drug development the introduction prospects of L1 in 
these diseases is based on commercial and not ethical 
criteria[5].

CONTROVERSIES REGARDING 
MOLECULAR ASPECTS OF IRON 
METABOLIC DISORDERS AND 
CHELATOR INTERVENTION
Normal iron metabolism is generally characterised by the 
normal function, pathways and activity of iron containing 
proteins including physiological levels of haemoglobin, 
serum ferritin, serum iron, serum transferrin saturation, 
liver and other organ iron store levels, e.g., those esti­
mated by MRI, etc[48-50]. These physiological levels 

are the main regular parameters measured in clinical 
laboratories and MRI units for the identification of iron 
overload and other metabolic abnormalities. 

Many of the disease models related to iron metabolic 
abnormalities appear in general to be affected by 
genetic, regulatory and iatrogenic factors. However, 
like in all other diseases there are different levels of 
pathological and compensatory mechanisms working 
in parallel with the main disease pathways and mecha­
nisms. Similarly, there are also many other factors such 
as dietary, pharmacological and environmental factors 
that can influence or supersede the normal pathways 
and affect the levels of iron, as well as the prognosis and 
treatment of patients with iron abnormalities. 

Some compensatory mechanisms of limited impact 
observed in beta thalassaemia are related to the variation 
of the age range of survival of non transfused patients. 
In these cases despite the absence of the production of 
normal haemoglobin (HbA) the survival is not uniform 
and can range from 1 to 7 years. The difference in the 
survival age among this group of patients appears to 
be related to a number of factors. For example beta 
thalassaemia patients producing higher levels of foetal 
haemoglobin (HbF) have increased survival prospects 
and agents inducing the production of HbF are the 
subject of clinical investigations and development for the 
treatment of beta thalassaemia[52,53].

Another compensatory mechanism in iron meta­
bolism is observed during venesection in hereditary 
haemochromatosis and blood donation where stored iron 
mainly originating from the liver is steadily transported 
to the bone marrow for restoring iron balance and the 
normal production of haemoglobin.

Variations in the progression of neurodegeneration, 
cardiomyopathy and other toxic side effects observed 
among Friedreich Ataxia patients is thought to be related 
to the production of the protein frataxin and many other 
factors influencing the rate of accumulation and toxicity 
of iron in mitochondria[54,55].

Many other iron regulatory and compensatory me­
chanisms operate under normal conditions and iron 
metabolic disorders. One major intervention mechanism 
or pathway that can supersede many regular pathways 
and can affect many diseases of abnormal iron meta­
bolism is targeted chelation therapy. Within this context, 
most physiological process related to iron can be affec­
ted including iron absorption, excretion and deloca­
lisation[14,36].

MECHANISMS OF IRON ABSORPTION 
AND THE INFLUENCE OF CHELATORS
Body iron intake under normal conditions is mainly 
controlled by the rate of iron absorption and the rate of 
iron turnover in the bone marrow for the production of 
haemoglobin and red blood cells. In considering the iron 
absorption mechanisms the main classical pathway is 
thought to involve the iron uptake from the gut lumen 
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by the enterocytes using the Dcytb and divalent metal 
transporter 1 pathway, incorporation intracellularly into 
the low molecular weight iron pool and ferritin. Iron 
within the enterocyte is then thought to be partially 
exported via the regularly controlled ferroportin/hepcidin 
pathway, oxidation of iron by hephaestin and lastly 
uptake by transferrin in plasma for distribution to all 
cell types of the body and in particular the hepatocytes 
for storage and the erythroid cells for the production of 
haemoglobin (Figure 2)[1,2]. 

Despite that this may appear to be the main iron 
absorption pathway under normal conditions there 
are clinical and laboratory evidence of alternative inde­
pendent mechanisms operating at different levels 
(Figure 2)[22]. Clinical evidence for the operation of 
alternative pathways of increased iron absorption which 
supersedes the main mechanism is observed in the use 
of iron supplements and food fortification, also in Bandu 
siderosis where excess iron is absorbed from iron pots 
used for cooking and lastly in acute iron poisoning from 
the accidental ingestion of tablets or other oral iron 
formulations[25,29,30]. In all the above cases the presence 
of increased quantities of iron in the gut results in 
excess iron absorption, transport and deposition in the 
body[22,25]. It appears from these and also other cases 
that the rate of iron absorption partly depends on the 
quantity of iron present in the gut[25,26]. 

In addition to the quantity, the quality of iron pre­
sented in the gut lumen is another determining factor 
affecting iron absorption with ferrous and haem iron 
being more readily absorbed than ferric iron (Figure 
2)[22,25,26]. Another, more effective pathway that super­
sedes the main pathway and causes substantially higher 
amounts of iron absorption is lipophilic iron chelator 

complexes including different haem compounds, which 
may have a use in the treatment of iron deficiency an­
aemia (Figure 2)[22]. For example the long term oral admi­
nistration of the lipophilic chelator 8-hydroxyquinoline
caused iron overload in animals and also oral admini­
stration of several lipophilic iron complexes such as those 
of 8-hydroxyquinoline, 2-hydroxy-4-methoxypyridine-
1-oxide and maltol caused several fold increases of iron 
absorption in comparison to animals used as controls 
(Figures 1 and 2)[56,57]. Maltol in particular, was originally 
identified as a chelator intended for clinical use in iron 
deficieny at the same time that L1 was identified for 
the treatment of iron overload[58]. Maltol also caused 
increased iron absorption in several clinical trials and 
in particular it reached phase Ⅲ clinical trial stage in 
patients with iron deficiency anaemia with inflammatory 
bowel disease[59,60]. 

In contrast to lipophilic chelator iron complexes, 
chelators forming charged hydrophilic iron complexes 
such as DF and L1 or chelators causing iron precipitation 
such as phytates and tannins appear to decrease iron
absorption and may have a use in the treatment of 
thalassaemia intermedia and hereditary haemochro­
matosis[22,57]. Similarly, chelators inhibiting iron absorption 
and the prevention of iron uptake by the cancer cells of 
the colon may have a preventative and therapeutic use 
in the iron induced colorectal cancer[61]. It is envisaged 
that overall many naturally occuring dietary compounds 
and medicinal drugs with chelating properties will affect 
iron absorption in a manner similar to that observed by 
lipophilic and hydrophilic chelators[18,25].

Another controversial issue in the mechanism of 
iron absorption which is also promoted in textbooks for 
cellular iron export is the suggestion of the presence or 

Lipophilic chelators,
e.g. , 8-hydroxyquinoline,
maltol and deferasirox

Lipophilic 
chelator
iron complex

Haem iron?

Enterocyte

Transport of iron to hepatocytes, erythroid and all other cell types 

Transferrin in plasma

Hepcidin

Ferroportin

Ferritin

Low molecular weight iron pool

DMT1

Hydrophilic chelator iron complex

Hydrophilic chelators, e.g. , deferoxamine, deferiprone

Iron

Figure 2  Iron absorption mechanisms at the enterocyte. Under normal conditions the regulatory pathway of iron absorption at the enterocyte involves the 
regulatory molecules DMT1, hepcidin, ferroportin and then iron transfer and uptake by transferrin in plasma. A parallel pathway of iron absorption may involve lipophilic 
dietary chelating molecules like maltol. Different pathway of iron uptake by the enterocyte also exists for haem iron. Adapted from ref. [22]. DMT1: Divalent metal 
transporter 1.
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need of an oxidation pathway for iron by hephaestin or 
caeruloplasmin before iron chelation by transferrin. This 
process and suggested pathway is questioned since 
transferrin has strong ferroxidase activity similar to the 
chelating drugs L1 and DF, oxidising Fe (Ⅱ) to Fe (Ⅲ) 
before chelation and ferric complex formation. In fact, 
the ferroxidase and iron binding activity of transferrin 
is one of the most effective and efficient antioxidant 
systems operating in blood plasma and no mediator 
protein is required or envisaged to participate in this 
process[62,63].

In addition to chelator iron uptake and transfer 
pathway by transferrin, many other pathways and 
mechanisms are thought to operate in parallel with 
the main proposed mechanisms. It should be noted 
for example that even in the case of the rare disease 
atransferrinaemia, iron is absorbed and finds its way to 
the liver and the erythropoietic tissues, suggesting that 
a compensatory mechanism is in operation in addition 
to transferrin for iron transport in blood and supply to 
the tissues[64]. Although this secondary pathway is not 
as efficient and leads in the long term to iron toxicity, 
the mechanism operating is not clear but resembles or 
is related to another controversial issue of iron meta­
bolism namely NTBI.

The formation and potential toxicity of NTBI has 
been previously discussed and reviewed with different 
opinions on the impact on iron overload and other 
diseases[62,63,65,66]. Almost all thalassaemia patients with 
serum ferritin greater than 500 μg/L appear to have 
fully saturated transferrin and different amounts of 
NTBI[62,63,65]. Despite that there is evidence of oxidative 
stress toxicity caused by NTBI in iron overloaded thala­
ssaemia, hereditary haemochromatosis and other 
categories of patients, there is no evidence that the 
level of toxicity by NTBI is sufficient to cause tissue 
damage. In contrast, the level of excess deposited 
iron and especially of haemosiderin iron is considered 
the main cause of tissue damage and organ toxicity 
(e.g., heart, liver, pancreas, etc.) in iron overload in 
thalassaemia and other conditions[48-50,67].  

Another controversy in relation to the NTBI toxicity 
in clinical practice is the regulatory health authorities 
approved administration of intravenous iron which is 
widely and routinely used in renal dialysis, inflammatory 
bowel disease and many other categories of anaemic 
patients. The amount of NTBI formed during intravenous 
iron is much higher than thalassaemia or other iron 
loading conditions but no permanent or serious iron 
related toxicity has generally been reported[68,69].

MECHANISMS OF IRON EXCRETION AND 
THE INFLUENCE OF CHELATORS
Iron excretion is a major area of iron metabolism, which 
however is generally neglected in comparison to iron 
absorption and other pathways of iron physiology. The 
mechanisms and pathways of iron excretion and iron 

loss as well as their implication on the body iron status 
have been previously reviewed[25,70]. Despite the fact 
that the presence of a regulatory iron excretion model 
has not yet been fully explored, such a pathway plays 
an important role in iron balance. For example, iron 
deficiency anaemia in adults under normal conditions 
can only be manifested if the rate of iron excretion or 
loss is higher than the rate of iron absorption[25,70].

In general several factors such as the body iron load, 
plasma iron concentration, physical activity, infections, 
pathological conditions and dietary habits affect the 
level of iron excretion[25]. The presence of regulatory 
iron excretion is also supported by other clinical findings 
such as the slow but steady reduction in the iron load of 
transplanted ex-thalassaemia patients in the absence of 
chelation or venesection[71,72].

The concept of iron excretion is mostly highlighted 
in studies involving iron chelation therapy in conditions 
of iron overload and also in iron balance studies of 
non iron loaded conditions. In the latter cases there 
have been reports of decrease in haemoglobin levels 
following treatment using L1 for several months, e.g., in 
Friedreich ataxia patients[73]. In iron overload the level 
of iron excretion generally depends on the chelating 
drug and the dose used and also the body iron load of 
the patients[74]. The iron pools affected during the iron 
mobilisation and the routes of excretion (faecal and 
or urinary) vary among the chelating drugs and other 
chelators[14,25,47]. In the case of L1 iron is excreted almost 
exclusively in the urine, DFRA is almost exclusively in 
the faeces and DF mostly in the urine and some in the 
faeces (Table 1)[14,25].

The efficacy in iron mobilisation of excess stored iron 
from the organs of iron loaded thalassaemia patients 
is different among the chelators used with L1 being 
the most effective in the mobilisation of excess iron 
from the heart, DF less effective and DFRA the least 
effective. In contrast DF and DFRA appear to be more 
effective in the mobilisation of iron from the liver than 
the heart[45,46,50,74,75]. In most clinical trials studying the 
efficacy and effects of iron removal by chelating drugs 
in iron loaded thalassaemia patients the results are 
inconclusive because of the use of different dose or 
range of doses[74].

The most effective chelation treatment leading to 
the complete normalisation of the iron stores in iron 
loaded thalassaemia patients is the combination of L1 
and DF (Figure 3)[76-80]. Specific dose protocols have to 
be used for this purpose, for example the International 
Committee on Chelation (ICOC) protocol which consists 
of daily oral L1 at 75-100 mg/kg per day and subcuta­
neous DF at 40-60 mg/kg at least 3 d/wk[77]. Thereafter 
monotherapy of L1 at 50-100 mg/kg per day is sufficient 
in most cases for maintaining normal range body iron 
store levels[78,80]. 

Many naturally occuring iron chelators present in 
food, usually of plant origin are expected to affect the 
rate of iron absorption and excretion in a mode of action 
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similar to that described by lipophilic and hydrophilic 
chelators. Within this context under normal conditions 
naturally occuring chelators with similar properties to 
the chelating drugs L1, DFRA and DF are expected to 
increase iron excretion and affect the overall body iron 
balance[25]. The chelating efficacy of naturally occuring 
chelators is concentration dependent and in most cases 
low and may act synergistically with other chelators or 
the chelating drugs in iron mobilisation. 

On the molecular level iron mobilisation by chelators 
is thought to proceed at different rates from the available 
chelatable pools with NTBI to be readily and instantly 
available by comparison to transferrin iron which is 
only available to L1 and can take about 1 h to reach 
completion in vitro[58,81]. The reaction is L1 concentration 
dependent and partial transit de-ironing from transferrin 
is observed in the serum of iron loaded thalassaemia 
patients[58,62,63,81-84]. 

In the intracellular iron mobilisation by chelators, 
the transit low molecular weight iron pool is readily 
available followed by haemosiderin and then ferritin 
iron[85]. The reaction is chelator concentration dependent 
and takes 2-3 d to reach completion[86]. In the iron 
mobilisation from ferritin the first in last out principle of 
iron removal operates. Less iron removal is observed by 
L1 and other chelators with ferritin molecules containing 
smaller iron cores in comparison to ferritin molecules 
containing larger iron cores[87]. It appears that there is 
lower exposure of the surface iron core to chelators by 
comparison to larger iron cores[87]. It was also observed 
that the solubility and mobilisation of iron by chelators 
increases in ferritin and haemosiderin with newly formed 
more hydrated oxohydroxy iron cores in comparison to 
ferritin and haemosiderin with less hydrated older cores 
of iron oxohydroxy bridges[85,87].

Mobilisation of iron by L1, DF and other chelators 
from other iron containing proteins, e.g., haemoglobin 
has not been shown[88]. Exception was lactoferrin where 
iron removal by chelating drugs has only been shown in 
the case of L1[89]. 

CONDITIONS WITH ABNORMAL IRON 
DEPOSITION AND THE RELOCATION OF 
IRON BY CHELATORS
Under normal conditions iron is considered to be uni­
formly distributed in the various organs. In hereditary 
haemochromatosis the storage of excess iron is primarily 
in the parenchyma cells of the liver. The storage of 
excess iron in transfusional iron conditions is mostly 
in the parenchyma and Kuppfer cells cells of the liver, 
spleen and cardiocytes. 

Until recently it was believed that in transfusional iron 
overload in thalassaemia, iron was uniformly distributed 
in the various organs and also that serum ferritin and 
liver iron reflected body iron store levels. However many 
clinical findings and iron load estimations using MRI T2 
and T2* suggests that serum ferritin is in most cases 
only related to liver iron stores but not to spleen, heart 
and pancreas iron load[50,90-93]. It was also observed 
using MRI that in many thalassaemia patients the liver is 
overloaded with iron but the heart has normal iron range 
levels. In contrast, in some thalassaemia patients the 
reverse is true, i.e., the heart is overloaded with iron but 
the liver has normal iron range levels (Figure 4)[14,90,93]. 
This last finding provides an explanation for many of 
the fatal cases of thalassaemia patients prior to the 
introduction of MRI, who died from congestive cardiac 
failure despite very low serum ferritin and liver iron 
concentration. Within this context, the prophylactic use 
of L1 is essential for preventing cardiac damage[94,95].

The role of spleen as a major iron storage organ, 
sometimes of equal importance to liver iron storage and 
also in the ferrikinetics of iron overload in thalassaemia 
patients was highlighted in a number of studies (Figure 
5)[96,97]. Despite that an increase in haemoglobin was 
expected following splenectomy in thalassaemia patients 
the substantial increase in serum ferritin provided further 
evidence that serum ferritin is not related to total body 
iron load but mostly to the concentration of stored iron in 
the liver[95]. Furthermore, following splenectomy excess 
iron may be diverted to the heart causing myocardiac 
iron loading and cardiomyopathy[97].

In general, it appears that serum ferritin and liver 
iron estimations are misleading regarding cardiac and 
other organ iron load as well as total body iron load in 
thalassaemia patients[93]. MRI T2 and T2* findings also 
appear to suggest that in many cases of iron loaded 
thalassaemia patients the deposition of iron in the liver, 
spleen and heart is not uniformly distributed within each 
organ[50]. These mosaic iron distribution of dense and 
light iron deposits in the liver and heart was particularly 
evident during the normalisation of the iron stores of 
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Figure 3  Clearance of iron overload of the liver and heart of a thala­
ssaemia patient using the deferiprone deferoxamine combination. The 
MR image changes before (A) and after (B) the L1/DF combination therapy. 
Short axis view of liver and heart of a thalassaemia patient at 4 mo before the 
L1/DF combination (A: Cardiac T2* was estimated as 9.3 ms and liver T2* as 
3.8 ms. The serum ferritin was 727 μg/L, 2.5 mo before the MRI scan) and 9 
mo after the combination (B: Cardiac T2* was estimated as 23.0 ms and liver 
T2* 26.2 ms. The serum ferritin was 166 μg/L, 0.5 mo after the MRI scan). 
Arrows indicate the liver and interventricular septum of the heart, respectively. 
Adapted from ref. [74]. MRI: Magnetic resonance imaging; L1: Deferiprone; DF: 
Deferoxamine.
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thalassaemia patients treated with the L1/DF ICOC 
combination protocol[50]. Similar findings of non uniform 
iron distribution are observed in liver and spleen biopsies 
(Figure 5). These findings provide an explanation for the 
high level of error of liver biopsies for estimating iron 
load which was previously observed in many studies 
with thalassaemia patients.

There are many acquired and hereditary conditions 
with abnormal iron distribution leading to body iron 
imbalance and in many cases specific tissue iron lo­
calisation and anaemia. In the anaemia of chronic 
disease iron is mostly stored in the cytoplasm of reti­
culoendothelial macrophages. This form of anaemia 
is observed in many chronic inflammatory and other 
conditions such as rheumatoid arthritis, chronic kidney 
disease and cancer[98,99]. It is believed that in these and 
other conditions there is an increased production of 
hepcidin and decrease in the ferroportin activity of the 
reticuloendothelial macrophages. These changes cause 
a decrease in iron transfer from the reticuloendothelial 
macrophages into plasma and subsequently reduction 
of iron availability to the bone marrow, reduction in hae­
moglobin production and consequently anaemia[1,2,98,99].

A similar mechanism of increased hepcidin pro­
duction leading to plasma iron reduction is thought 
to operate in the hypoferremia of infectious diseases. 
This mechanism appears to reduce transferrin bound 
iron and iron bioavailability to the siderophores of 
microbes restricting their growth[100,101]. This mechanism 
is important for iron loaded patients who are more 
susceptible to siderophilic bacteria infections and have 
increased incidence of morbidity and mortality asso­
ciated with infections[35,102]. A hepcidin independent 
pathway for the hypoferraemia in infections has also 

been identified[103]. Within this context pharmacologic 
modulation of iron metabolism and chelation therapy 
may be potential strategies to control infection[35,63].

There are many other diseases of abnormal iron 
deposition which originate from inherited, environ­
mental, iatrogenic and metabolic factors with different 
health implications. For example increased iron accu­
mulation and deposition is observed in mitochondria 
in sideroblastic anaemia and Friedreich Ataxia but not 
in the mitochondria of iron overloaded thalassaemia 
or hereditary haemochromatosis patients[54,55,95,104-106]. 
Furthermore, despite that iron is also diverted and 
causes mitochondrial iron deposition and anaemia in 
sideroblastic anaemia patients, in general no anaemia 
or abnormal serum iron or serum ferritin levels are 
observed in Friedreich Ataxia patients[9,107-109].

The localisation of focal deposited iron in the brain 
has been recently identified by MRI in many neuro­
degenerative and other diseases such as Friedreich 
Ataxia, Parkinson’s and Alzheimer’s diseases and 
Hallevorden-Spatz syndrome[110-115]. However, a major 
difference between the above conditions and iron 
overloaded thalassaemia patients is that in the latter 
group of patients there is no iron accumulation in the 
brain or related toxic side effects involving the nervous 
system. 

Chelation therapy could be introduced in many 
of the abnormally localised deposited iron conditions 
described above by bypassing the related mechanisms 
and may lead to the correction of the abnormality. Such 
intervention may restore iron balance, eliminate the 
associated iron toxicity or reduce the anaemia. Within 
this context a number of clinical trials were carried out 
using chelating drugs in different categories of patients 
where iron was not normally distributed. 

In one study the effect of L1 chelation therapy 
was investigated in the anaemia of chronic disease 
using a group of anaemic rheumatoid arthritis patients 
including some not responding to erythropoietin. The 
patients were treated with L1 up to 2 × 2 g/d for a 
week. A substantial increase in haemoglobin levels were 
observed at the end of the study[116,117]. The mechanism 
operating in this group of patients treated with L1 was 
thought to involve several stages. In the initial stage, 
the mobilisation of stored iron by L1 from different sites 
including the reticuloendothelial macrophages was 
anticipated as previously shown with in vitro macroph­
age cell studies[118]. In the subsequent stage, the iron 
mobilised by L1 was thought to be partly donated to 
unsaturated transferrin increasing transferrin iron satu­
ration as previously shown with in vitro studies and the 
7 h progressive increase in transferrin iron saturation of 
up to 80% in normal volunteers treated with L1[83,119]. 
In the last stage iron saturated transferrin increases the 
transfer of iron to bone marrow and other erythropoietic 
tissues causing an overall increase in the production of 
haemoglobin[116,117]. 

These studies suggest that the chelation pathway may 
compete and override the hepcidin and erythropoietin 
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Figure 4  Non homogeneous iron distribution among the organs of iron 
loaded thalassaemia patients. Differential iron loading of the heart and liver of 
two iron loaded thalassaemia patients using MRI and T2* estimation. A: Heavy 
haemosiderosis of the liver [T2* = 1.2 ms (normal T2* ≥ 6.3)] and normal T2* 
of the heart (T2* = 20.6). The top arrow shows the interventricular septum of 
the heart of the patient with no iron deposition (normal) where the bottom arrow 
shows the heavy iron loading within the liver parenchyma, demonstrated as low 
signal intensity (dark); B: Heavy haemosiderosis of the heart (T2* = 6.32 ms) 
and normal T2* of the liver (T2* = 19.2 ms). The top arrow shows the abnormal 
iron deposition in the interventricular septum of the heart of the patient, which is 
shown with low signal intensity (dark). The bottom arrow shows the liver of the 
patient with no iron deposition (normal). Adapted from ref. [14]. MRI: Magnetic 
resonance imaging.
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THE ROLE AND CONTROVERSIES OF 
MEDICAL JOURNALS IN SHAPING 
MEDICAL OPINION IN IRON METABOLISM 
AND CHELATION THERAPY 
The lucrative revenues of pharmaceuticals which only 
for the world’s twelve richest pharmaceutical companies 
based in the United States and Western Europe are 
estimated at 0.5 trillion United States dollars annually, 
depend on marketing policies and “lobbying” procedures 
involving physicians, journals, regulatory authorities, 
patient organisations and other groups[5,131-134]. Within
this context there are many grey areas and conflicts 
of interests regarding the role of pharmaceutical com­
panies and their influence on government, academia, 
medical journals and many other organisations or 
institutions[5,131-135].

Medical journals are major contributors in the 
dissemination of basic and clinical science information 
which is used to guide physicians and health profe­
ssionals in the selection of therapeutics, which are 
important for the patients’ treatment, safety, morbidity 
and mortality. Most of the clinical trials on the effects of 
therapeutics published by medical journals are authored 
by academics founded or sponsored by pharmaceutical 
companies[135]. Similarly, despite that most members 
of editorial boards and referees of medical journals 
are affiliated to academic institutions, the commercial 
influence on academia and in particular the medical 
journals are increasing. Most publications related to 
new patented drugs are usually biased in relation to 
efficacy and safety and are controlled by medical writers 
affiliated to the pharmaceutical companies[5,131-135]. Such 
information is recycled with repeated publications and 
citations of only positive results, which are attributed 
to only authors collaborating with the pharmaceutical 
companies.

The role of leading medical journals which are based 

pathways in the anaemia of chronic disease. 
Similar results of focal iron deposit removal and 

relocation was observed in other diseases involving 
different organs. Iron removal from focal iron deposits in 
the brain has been shown using L1 in a number of clinical 
trials involving Friedreich Ataxia patients. In one study 
nine Friedreich ataxia patients were treated with 20-30 
mg/kg per day of L1 for 6 mo. Substantial reduction of 
the stored toxic iron in the brain was diagnosed using 
MRI T2* following L1 treatment, which coincided with 
a reduction in ataxic gait and neuropathy[120]. Similarly, 
neurological and heart function benefits were identified 
in further L1 trials in Friedreich Ataxia and other 
patients[121-124].

Iron toxicity derived from focal or labile iron deposits 
has also been implicated in the tissue damage of many 
other diseases. Targeted chelation therapy was also 
used to prevent or minimize such toxicity. For example 
encouraging therapeutic results were observed in clinical 
studies involving about 50 non iron loaded patients with 
acute kidney disease using L1 at doses of 50-75 mg/kg 
per day for up to 9 mo[125]. No serious toxic side effects 
were reported during the studies in this category of 
patients and L1 was shown to improve kidney function 
and to cause a decrease in proteinuria[125].

The use of iron chelating drugs in many other 
conditions such as infections, inflammation, cytotoxic 
therapies, detoxification of other metals, drug toxicity 
as well as many other conditions involving proteins 
and pathways of iron metabolism is currently in pro­
gress[9,14,19,22,63]. However, many therapeutic develop­
ments are almost exclusively based on commercial 
and not ethical considerations[5,126-130]. Furthermore the 
impact and significance of academic findings in relation 
to therapeutic developments and their applications 
in medicine is the subject of selective promotion by 
editorial boards of medical journals most of which are 
commercial organisations, with commercial connections 
and interests. 

Figure 5  Non homogeneous iron distribution in the liver and spleen of an iron loaded thalassaemia patient. Liver and spleen biopsy photographs (× 20) of 
a 29-year-old, 55 kg male thalassaemia patient. The liver biopsy was obtained during splenectomy. A: Liver section showing non unifom iron deposition stained with 
Pearl’s Prussian blue. There are hemosiderin deposits in hepatocytes and Kupffer cells and especially within bile ducts; B: Spleen section where iron deposits were 
stained with Pearl’s Prussian blue. There are non uniform hemosiderin deposits within cytoplasma and nucleus of macrophages. Four months before the splenectomy 
the patient had an MRI T2* (ms) of heart 4.1, liver 0.0, spleen 2.9, and serum ferritin of 3850 μg/L. Adapted from ref. [96]. MRI: Magnetic resonance imaging.
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in Western Europe and North America in providing 
unbiased information on new patented drugs is also 
questioned, since almost all such journals are businesses 
and dependent on income from the pharmaceutical 
industry including advertisements, page charges, 
reprints, conferences, etc[5,131-135]. Such journals are 
leading in the marketing promotion efforts of multina­
tional pharmaceutical industry of new expensive 
patented products which sometimes are less safe or 
efficacious than generic drugs. Such promotions are 
considered to serve also the national interest of both 
the pharmaceutical industry and medical journals since 
the lucrative income from new patented drug sales are 
major contributors to the economy of the developed 
countries involved. However, these efforts in many cases 
undermine the safety and therapeutic outcome of many 
categories of patients because of inaccurate risk/benefit 
assessments and questionable clinical benefits made by 
physicians, e.g., in the use of chelating drugs[5]. 

Within this context some controversial cases of risk/
benefit assessments have been previously identified and 
reported during the marketing drive and promotion of 
the use of chelating drugs in relation to the treatment 
of thalassaemia and other conditions[5,43,44,136-140]. In 
particular the promotion and use of DFRA in hereditary 
haemochromatosis and ex-thalassaemia transplanted 
patients instead of venesection raises major ethical 
questions. Similar questions have been raised in the risk/
benefit assesment of the use of DFRA in thalassaemia 
intermedia instead of L1 or DF[22,138]. Furthermore, 
many clinical investigators have also questioned the 
therapeutic benefits from use of DFRA or of other 
chelating drugs in myelodyspasia and sickle cell anaemia 
patients[141,142].

One major controversial issue that led to exchanges 
between the pharmaceutical company marketing DFRA 
and an author questioning the safety of the use of DFRA 
in non iron loaded patients was highlighted in the journal 
Lancet and Expert Opinion in Drug Safety[43,44,143,144]. 
While the exchanges were published in the last 
journal only the pharmaceutical company’s view were 
published in the Lancet, overturning the Journal's rules 
of submission of correspondence including the length 
and timing of submission. The issue was raised in a 
letter to the Lancet editors asking among other for the 
declaration of the commercial links of the journal but the 
letter was not published. Furthermore the same issue 
and the favouritism for the company marketing DFRA 
was raised with the Lancet ombudsman, who indicated 
that he will investigate the issue but for more than 
two years is still under investigation and no reply was 
provided nor the Lancet’s commercial links declared. 

Similar issues in relation to chelating drug develop­
ment were raised with the journal Annals of Neurology 
regarding the use of L1 in Friedreich ataxia patients 
where the lack of crucial diagnostic and therapeutic 
outcome procedures in relation to focal iron levels and 
lack of iron balance studies were questioned[73]. The 
need for personalised medicine was also raised since 

there is wide variation in the severity of the disease 
and level of focal iron deposits in the heart and brain 
of Friedreich ataxia patients. In this case the editors of 
the journal referred to “expensive studies to track iron 
scores” and “the company developing the drug spends 
millions of dollars”. It should be noted that the original 
proposal for the use of L1 in Friedreich ataxia patients 
was suggested many years ago and L1 was developed 
following academic initiatives[5,36].

Commercial and academic conflicts in relation to 
L1 development are widely published in the medical 
literature since its discovery[5]. Most of the academics 
involved in such conflicts were financed directly or 
indirectly by competing pharmaceutical companies and 
not related to independent assessment on drug safety 
and efficacy[5]. Similarly, the implications of drug costs 
and drug availability to patients especially in developing 
countries, including that of the iron chelating drugs or 
other orphan drugs is rarely discussed or highlighted in 
medical journals[5].

There are many other issues in relation to the role 
played by medical journals in shaping medical opinion 
on drug use and development including that of iron 
chelating drugs. Such issues are many and vary. For 
example in most publications the ultimate aim of iron 
chelation therapy, which is the normalization of the iron 
stores of regularly transfused patients is avoided or 
not specified[5]. Similarly, the background history and 
information regarding drug assessment is not thoroughly 
investigated by the journal editors or specified in future 
publications even in the same journal. In one case a 
clinician reported liver toxicity in thalassaemia patients 
treated with L1 which was not confirmed by any other 
investigator[5,145,146]. This case reached the mass media 
and delayed the development of L1 but it may have 
caused the life of thousands of patients from cardiac 
failure[5,145,146].

Several other controversies are overlooked in publi­
cations related to chelating drug efficacy and development 
which affect patient safety and therapeutic outcomes. In 
many cases comparative therapeutic assessments are 
carried out in clinical trials using different dose protocols 
of the iron chelating drugs[5]. Similarly some journals 
overemphasize the importance of diagnostic techniques 
such as liver iron estimations or of NTBI, which are 
not critical for the prognosis of thalassaemia patients 
and other iron overloaded conditions in comparison to 
cardiac MRI T2* and T2[45,46,65,67]. This issue partly diverts 
attention from the difference in the ability of chelating 
drugs in the mobilisation of iron from the heart[12]. Within 
this context even the assessment of cardiac iron using 
MRI T2* was questioned when L1 was shown to be 
superior to DF in the removal of iron from the heart[147-149].

Many medical journals express their medical prefe­
rences for selecting articles based only on the opinion 
of clinical and other investigators associated with phar­
maceutical companies, while ignoring any other authors 
opinion and any new developments for example in the 
area of chelation[150-152]. The influence of medical journals 
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is also highlighted by the submission of publications of 
clinical investigations to the regulatory authorities. For 
example this resulted in the difference of timing in the 
regulatory approval of L1 first in India in 1994, then the 
European Union in 1999 and lastly in the United States 
in 2011[153]. Another example is the generic chelating 
drug EDTA which despite its approval about 50 years 
ago for metal detoxification it has been used ever since 
by millions of patients as alternative medicine for many 
conditions (Figure 1)[153-155]. It is only recently that the 
health authorities in the United States took an interest 
on its therapeutic properties in cardiovascular and other 
conditions[155,156]. 

Many future studies could be performed to elucidate 
further and improve the role of chelating drugs in 
iron metabolism and generally in health and disease. 
For example, the antioxidant role of chelating drugs 
used as monotherapy or in combination therapies 
with other antioxidants could be envisaged in different 
inflammatory conditions[19,157]. Similarly, the use of iron 
metabolism indices and algorithms could be introduced 
in different clinical conditions in order to best evaluate 
iron deficiency or overload and accordingly adapt iron 
chelation or iron supplementation and other related 
therapies[158]. 

CONCLUSION
Iron metabolic disorders affect more than a quarter of 
the world’s population with a different range of health 
implications and rates of morbidity and mortality. Iron 
deficiency anaemia is a major health hazard found 
mainly in developing countries but can be relatively easily 
treated using iron supplements or lipophilic chelator iron 
complexes. Similarly, hereditary haemochromatosis 
can be easily treated using venesection. In contrast, 
iron overload in transfusional iron overload for example 
in thalassaemia is fatal unless chelation therapy is 
introduced. In most cases L1 in combination with DF 
and L1 monotherapy can completely treat iron overload 
in thalassaemia. Deferiprone has also been shown to 
minimise the toxic effects of pathological iron found in 
neurodegenerative, renal and other diseases. Deferasirox 
is more toxic than L1 and DF and can mainly be used 
in patients not tolerating L1, DF or their combination. 
Controversies in the risk/benefit assessment for the use 
of DFRA in thalassaemia, other iron overloaded and non 
iron overloaded conditions appear to involve commercial 
interests, and influence of academic medical journals 
and physicians. 

In addition to iron overload many other abnor­
malities related to iron metabolism and toxicity can 
be treated using chelators. In particular, iron toxicity 
is a major factor in free radical pathology and tissue 
damage in many diseases. Iron chelating drugs can 
correct iron imbalance for example in the anaemia of 
chronic diseases and can also minimise iron toxicity 
related to proteins or pathways of iron metabolism. 

The role of medical journals in shaping medical 

opinion and updating biochemical and clinical findings 
including issues relating to the risk/benefit assessment 
of drugs as well as drug safety and efficacy are crucial 
for patient survival, morbidity and mortality. Many con­
troversies in relation to drug development and use with 
emphasis the iron chelating drugs are widely reported 
in the medical literature. Within this context commercial 
influence and contacts of the medical journals with 
the pharmaceutical industry and other commercial or 
government organisations should be declared.   
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