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Abstract
The innate immune system is the first line of defense 

against invading pathogens. Innate immune cells reco
gnize molecular patterns from the pathogen and mount 
a response to resolve the infection. The production of 
proinflammatory cytokines and reactive oxygen species, 
phagocytosis, and induced programmed cell death are 
processes initiated by innate immune cells in order to 
combat invading pathogens. However, pathogens have 
evolved various virulence mechanisms to subvert these 
responses. One strategy utilized by Gram-negative 
bacterial pathogens is the deployment of a complex 
machine termed the type Ⅲ secretion system (T3SS). 
The T3SS is composed of a syringe-like needle structure 
and the effector proteins that are injected directly into 
a target host cell to disrupt a cellular response. The 
three human pathogenic Yersinia  spp. (Y. pestis , Y. 
enterocolitica , and Y. pseudotuberculosis ) are Gram-
negative bacteria that share in common a 70 kb viru
lence plasmid which encodes the T3SS. Translocation 
of the Yersinia  effector proteins (YopE, YopH, YopT, 
YopM, YpkA/YopO, and YopP/J) into the target host 
cell results in disruption of the actin cytoskeleton to 
inhibit phagocytosis, downregulation of proinflammatory 
cytokine/chemokine production, and induction of cellular 
apoptosis of the target cell. Over the past 25 years, 
studies on the Yersinia  effector proteins have unveiled 
tremendous knowledge of how the effectors enhance 
Yersinia  virulence. Recently, the long awaited crystal 
structure of YpkA has been solved providing further 
insights into the activation of the YpkA kinase domain. 
Multisite autophosphorylation by YpkA to activate 
its kinase domain was also shown and postulated to 
serve as a mechanism to bypass regulation by host 
phosphatases. In addition, novel Yersinia  effector protein 
targets, such as caspase-1, and signaling pathways 
including activation of the inflammasome were identified. 
In this review, we summarize the recent discoveries 
made on Yersinia  effector proteins and their contribution 
to Yersinia  pathogenesis. 
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Core tip: The study of Yersinia  type Ⅲ secretion system 
effector proteins has provided critical insights into 
bacterial pathogenic strategies and host innate immune 
responses. Identification of the crystal structure of 
YpkA revealed how a bacterial effector can counteract 
phagocytosis at multiple levels including inhibition of 
actin polymerization by sequestering actin, inhibition 
of actin signaling molecules via  both its kinase and 
dissociation-like inhibitor domains, and inhibition of actin-
cytoskeletal components via  phosphorylation. YpkA/
YopO multisite autophosphorylation may allow YpkA/
YopO to bypass regulation by host phosphatases and 
thus prolong its ability to interfere with phagocytosis. 
Additionally, an emerging theme is the role of caspases 
in anti-Yersinia  host defenses.
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INTRODUCTION
The Yersinia genus consists of Gram-negative coccoba
cilli or rod-shaped bacteria in which three are pathogenic 
to humans: Y. pestis, the causative agent of the plague, 
and the two enteric pathogens, Y. enterocolitica, and 
Y. pseudotuberculosis[1]. Infected fleas serve as a 
vector for the transmission of Y. pestis to humans. 
Alternatively, the pneumonic form of the plague can 
be transmitted from an infected individual to another 
person via aerosolized droplets. Y. enterocolitica and Y. 
pseudotuberculosis are transmitted through ingestion 
of contaminated food or water. Upon transmission, 
Y. pestis migrates to regional lymph nodes where it 
utilizes the type Ⅲ secretion system (T3SS; see below) 
to evade host immune cells. In doing so, Y. pestis is 
capable of replicating extracellularly and causes bubonic 
plague. If the infection becomes systemic it can result 
in the septicemic and pneumonic forms of plague. Y. 
enterocolitica and Y. pseudotuberculosis also have a 
trophism for lymphoid tissue whereupon ingestion the 
pathogens cross the specialized epithelial M cells found 
in the ileal tract of the small intestine. Once across the 
epithelial tissue of the small intestine Y. enterocolitica 
and Y. pseudotuberculosis infect the underlying lymphoid 
tissue such as the Peyer’s patches and mesenteric lymph 
nodes resulting in gastrointestinal diseases[2]. Systemic 
infections by the two enteric Yersinia pathogens are 
rare in humans, but mouse infection models show colo
nization of other tissues such as the spleen and liver. 

The T3SS is a virulence mechanism found in a wide 
array of Gram-negative bacteria that are pathogenic to 
mammals or plants, as well as in symbiotic bacteria of 

plants and insects[3]. The T3SS is composed of a needle-
like syringe termed the injectisome and the effector 
proteins that are injected directly into a target host 
cell from the bacterium’s cytosol to disrupt, hijack, or 
mimic host signaling proteins. Although the T3SS may 
be used for different functions depending on the life 
cycle and infection process of the pathogenic bacteria, it 
is primarily used to subvert the host response to favor 
survival of the pathogen. Bacterial pathogens lacking 
the T3SS, expressing a translocation-defective T3SS, or 
expressing an effectorless T3SS are attenuated in vivo, 
and thus underscore the essential role of the T3SS to 
bacterial virulence. 

All three pathogenic Yersinia species share in com
mon a 70 kb virulence plasmid that encodes proteins 
of the T3SS[4]. Expression of the proteins is observed 
at 37 ℃ under low Ca2+ concentration in vitro whereas 
in vivo it is also dependent on cellular contact of the 
Yersinia bacterium with the target host cell. Adhesion 
of the Yersinia bacterium to a target host cell is medi
ated through the binding of adhesion proteins such as 
invasin (Inv) and YadA to host cell surface proteins[5]. 
Once attached, the injectisome forms a pore at the 
plasma membrane of the host cell and subsequently 
translocates the effector proteins termed Yersinia outer 
proteins (Yops). There are 6 known Yop effector proteins 
that are translocated through the injectisome by 
pathogenic Yersinia species to disrupt the host response: 
YopE, YopH, YopT, YpkA (YopO in Y. enterocolitica), YopJ 
(YopP in Y. enterocolitica), and YopM (Table 1). Once in 
the target host cell these effector proteins function in 
concert to thwart the host response by altering the actin 
cytoskeletal structures to inhibit phagocytosis, as well 
as induce cell death and downregulate proinflammatory 
responses (Figure 1)[6].

Both the innate and adaptive immune systems 
mount a response to combat against invading patho
gens with the former being the first line of defense[7]. 
Macrophages, neutrophils, dendritic cells, and natural 
killer (NK) cells are innate immune cells that respond to 
resolving the infection. Upon ligand binding by receptors 
such as pattern recognition receptors innate immune 
cells engage in phagocytosis, production of reactive 
oxygen species (ROS), and induction of inflammation 
and cell death to combat the pathogen. All three Yersinia 
species are capable of downregulating innate immune 
responses to promote survival of the Yersinia pathogens. 
Cells of the innate immune system are also involved 
in activating the adaptive immune response, and thus 
highlight the significance of why pathogens evolved 
effective mechanisms to disarm the innate immune 
system. 

Recent studies are unveiling new target substrates 
and signaling pathways that are inhibited by the 
Yersinia effector proteins. The discovery of the crystal 
structure of YpkA, the identification of multisite YpkA 
autophosphorylation to activate its kinase domain, 
and the establishment that YpkA phosphorylates actin-
binding proteins are shedding light on YpkA and its 
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molecular function within the host cell. Additionally 
recent findings emphasize the central role of caspases 
in anti-Yersinia host defenses. Yersinia effector proteins 
and their effects on the host innate immune response 
are the focus of this review. Although we will be focusing 
our discussions on findings within the past 5 years, we 
will also draw upon relevant studies performed in the 
prior years. 

YERSINIA OUTER PROTEINS
YopH inhibits early response of innate immune cells to 
enhance Yersinia virulence
YopH is a 50 kDa protein tyrosine phosphatase (PTPase) 
containing an N-terminal substrate binding domain and 
a C-terminal PTPase domain[8,9]. Mouse infection stu
dies showed that YopH is essential to enhance Yersinia 
virulence, especially at the early stages of an infection 
to evade innate immune cells[10-13]. Studies on YopH and 
its PTPase activity demonstrate that it inhibits phagocy
tosis by epithelial cells, macrophages, neutrophils, 
and dendritic cells when working in concert with other 
Yops[10,14-19]. Translocation of YopH into these immune 
cells results in inhibition of the early calcium signaling 
and ROS production, as well as the production of some 
proinflammatory cytokines [tumor necrosis factor-α, 
interleukin (IL)-10, and IL-1β] and the chemokine, 
monocyte chemotactic protein 1[18,20-22]. YopH was 
recently implicated to function in concert with YopE to 

inhibit integrin β1-mediated inflammasome activation 
in epithelial cells; however whether YopH also inhibits 
inflammasome activation in immune cells still remains to 
be determined[23].

YopH targets kinases and/or adapter proteins of innate 
immune cells
To date, it has been reported that YopH binds to and 
dephosphorylates the focal adhesion kinase (FAK), 
Crk associated tyrosine kinase substrate (p130Cas), 
and paxillin in epithelial cells whereas p130Cas, Fyn-
binding protein, and SKAP-HOM are targeted in macro
phages[17,24-26]. Although not discussed here, YopH 
also affects the adaptive immune system where it 
targets lymphocyte-specific protein tyrosine kinase, 
linker for activation of T cell, as well as SLP-76 in 
T-cells[27,28]. Interestingly, YopH only targets a subset of 
these proteins in a cell specific manner. Recently, the 
translocation of YopH was shown to directly or indirectly 
affect phosphorylation of the PRAM-1/SKAP-HOM and 
the SLP-76/Vav/phospholipase C-γ2 (PLC-γ2) signaling 
cascades in polymorphonuclear neutrophils (PMNs)[21]. 
Moreover, the Grb-associated binder 1 and 2 (Gab1 and 
Gab2) adapter proteins, the phosphatidylinositol 3-kinase 
(PI3K) subunit, p85, and the Vav adapter protein were 
shown to associate with recombinant YopH in a pulldown 
experiment. The dephosphorylation of the p85 subunit of 
PI3K by YopH accounts for the previously reported YopH-
mediated dephosphorylation of PI3K to perturb PI3K-
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Yop effectors Enzymatic function Target substrates Cellular effects

YpkA/YopO Serine/threonine kinase Gαq, EVL, VASP, WASP, WIP, gelsolin, 
mDia1, INF2, and cofilin

Disruption of the actin cytoskeleton to contribute to inhibition 
of phagocytosis; additional effects are unknown

Guanine nucleotide 
dissociation-like inhibitor 

RhoA, Rac1, and Rac2 Disruption of the actin cytoskeleton to contribute to inhibition 
of phagocytosis

YopE GTPase activating protein RhoA, Cdc42, Rac2, and RhoG Disruption of the actin cytoskeleton to contribute to inhibition 
of phagocytosis; inhibition of caspase-1 activation and 

maturation of IL-18 and IL-1β
YopH Protein tyrosine phosphatase FAK, p130Cas, paxillin, Fyb, SKAP-HOM, 

PRAM-1, SLP-76, Vav, PLCγ2, p85, 
Gab1, Gab2, Lck, and LAT

Disruption of focal adhesion complexes and actin stress 
fibers to inhibit phagocytosis; inhibition of proinflammatory 
cytokine and MCP-1 production; inhibition of early calcium 
response and ROS production; inhibition of the PI3K/Akt 

pathway
YopP/J Acetyltransferase/cysteine 

protease/deubiquintase
TRAF2, TRAF6, IκBα, MAPKKKs, 
MAPKKs, IKKβ, RICK, and eIF2α

Inhibition of adhesion molecules, proinflammatory cytokine 
and chemokine production; activation of caspase-1 and 
maturation of IL-18 and IL-1β; induction of apoptosis

YopT Cysteine protease RhoA, Rac1, Cdc42, and RhoG Disruption of the actin cytoskeleton to contribute to inhibition 
of phagocytosis; inhibition of NFκB

YopM Leucine-rich repeat protein RSK and PRK isoforms, caspase-1, and 
IQGAP1

Inhibition of proinflammatory cytokine production; inhibition 
of caspase-1 activation; induction of apoptosis; induction of 

anti-inflammatory cytokine production

Table 1  The Yersinia  effector proteins, their host substrates, and cellular effects

IL: Interleukin; FAK: Focal adhesion kinase; PLC-γ2: Phospholipase C-γ2; MAPK: Mitogen-activated protein kinase; MAPKK: MAPK kinase; MAPKKK: 
MAPKK kinase; Akt: Protein kinase B; NFκB: Nuclear factor kappa b; IKKβ: Inhibitor of kappa B kinase beta; IκBα: Inhibitor of kappa B alpha; IQGAP1: 
IQ motif containing GTPase activating protein 1; Lck: Lymphocyte-specific protein tyrosine kinase; LAT: Linker for activation of T cell; eIF2α: Eukaryotic 
initiation factor 2; PRK: Protein kinase C-related kinase; RSK: Ribosomal S6 protein kinase; VASP: Vasodilator-stimulated phosphoprotein; WASP: Wiskott-
Aldrich syndrome protein; WIP: WASP-interacting protein; p130Cas: Crk associated tyrosine kinase substrate; Fyb: Fyn-binding protein; SKAP-HOM: Src 
kinase-associated phosphoprotein 55 homologue; PRAM-1: PML-retinoic acid receptor alpha regulated adaptor molecule 1; SLP-76: SH2 domain containing 
leukocyte protein of 76 kDa; EVL: Ena/VASP-like; INF2: Inverted formin 2; TRAF: TNF-receptor associated factor; RICK: Rip-like interacting caspase-like 
apoptosis-regulatory protein kinase; MCP-1: Monocyte chemotactic protein 1; ROS: Reactive oxygen species; PI3K: Phosphatidylinositol 3-kinase; mDia1: 
Mammalian diaphanous 1; Gab: Grb-associated-binder. 
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Figure 1  Modulation of host signaling pathways by the Yersinia effector proteins. Pathogenic Yersinia utilizes the T3SS to subvert the host innate immune 
response. During an infection, the Yersinia bacterium adheres onto the target host cell by using adhesion proteins such as YadA and invasin to bind onto host β1 
integrin. This enables the injectisome of the T3SS to form a pore at the host plasma membrane and the subsequent translocation of the Yersinia effector proteins 
directly into the cytoplasm. The Yersinia effector proteins localize to distinct subcellular locations where they mimic host proteins/functions to disrupt host signaling 
pathways. The Ser/Thr kinase YpkA binds actin monomers resulting in YpkA autophosphorylation and kinase activation. Upon GPCR activation of the host G protein 
Gαq, YpkA binds to and phosphorylates Gαq to inhibit Gαq-mediated activation of the Rho GTPases and subsequent actin stress fiber formation. YpkA also uses 
actin as bait for actin binding proteins (i.e., VASP, cofilin, and WASP) whereby YpkA then phosphorylates these proteins. In addition, YpkA binds onto the Rho 
GTPases, RhoA and Rac1, to inhibit the exchange of GDP for GTP. YopE is a GAP protein that facilitates the intrinsic GTPase activity of the Rho proteins resulting in 
their inactivation. The cysteine protease, YopT, disrupts the actin cytoskeleton by cleaving post-translationally modified Rho GTPases. Cleavage of the Rho proteins 
results in the mislocalization and inactivation of the Rho proteins. YopH, a PTPase, dephosphorylates focal adhesion components such as FAK, p130Cas, paxillin, 
Fyb, SKAP-HOM, PRAM-1, and SLP-76 to disrupt focal adhesion complexes, β1 integrin signaling, and activation of the Rho protein, Rac1. Together, the enzymatic 
activity of YpkA, YopE, YopT, and YopH affects organization of the actin cytoskeleton to inhibit phagocytosis. YopP/J is an acetyltransferase with deubiquitinase activity 
and a putative cysteine protease function. YopP/J targets signaling components of the MAPK and NFκB signaling pathways following activation of Toll-like receptor 
4 to inhibit production of proinflammatory cytokines. In addition to inhibiting the MAPK and NFκB signaling pathways, YopP/J activates the inflammasome complex 
resulting in the maturation of caspase-1, the production of IL-1β and IL-18, and the cell death process termed pyroptosis. YopE and YopT were implicated in inhibiting 
inflammasome and caspase-1 activation by targeting Rac1. YopM is a protein with leucine-rich repeats that localizes to the cytoplasm and the nucleus of the cell. 
The translocation of YopM results in the inhibition of proinflammatory cytokine production. Cytoplasmically-localized YopM inhibits caspase-1 activity by binding to 
the upstream component, IQGAP1, to pro-caspase-1, or to mature caspase-1. YopM also binds onto the PRK and RSK isoforms and inhibits phosphatase-mediated 
deposphorylation of these two host kinases. The underlying function of targeting these two kinases by YopM is still unclear, but is linked to the production of the anti-
inflammatory cytokine, IL-10. T3SS: Type III secretion system; GPCR: G protein-coupled receptor; IL: Interleukin; FAK: Focal adhesion kinase; MAPK: Mitogen-
activated protein kinase; NFκB: Nuclear factor kappa b; IQGAP1: IQ motif containing GTPase activating protein 1; PRK: Protein kinase C-related kinase; RSK: 
Ribosomal S6 protein kinase; GAP: GTPase activating protein; VASP: Vasodilator-stimulated phosphoprotein; WASP: Wiskott-Aldrich syndrome protein; p130Cas: 
Crk associated tyrosine kinase substrate; Fyb: Fyn-binding protein; SKAP-HOM: Src kinase-associated phosphoprotein 55 homologue; PRAM-1: PML-retinoic acid 
receptor alpha regulated adaptor molecule 1; SLP-76: SH2 domain containing leukocyte protein of 76 kDa.
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dependent chemokine production[22,29]. Interestingly, the 
p85 subunit of the PI3K protein complex (p85/p110) 
binds onto the Gab proteins enabling signal transduction 
through the PI3K signaling pathway following activation 
of the cell surface receptor[30]. Thus, YopH may exploit 
the Gab1, Gab2, and Vav adapter proteins in order to 
gain access to signaling molecules. 

YopE facilitates GTPase activity of the Rho family of 
GTPases 
YopE is a 23 kDa GTPase activating protein (GAP) that 
is translocated by Yersinia into the target host cell 
where it exerts its GAP activity on the Rho family of 
GTPases (for a review refer to[31]). YopE is essential to 
Yersinia virulence in vivo due to its effective ability to 
inhibit phagocytosis by innate immune cells[32]. Earlier 
findings showed that YopE stimulates the GTPase 
activity of RhoA, Rac1, and Cdc42 in vitro; however 
the selective targeting of the Rho proteins in cellulo or 
in vivo depends on the cellular localization of YopE and 
the Rho proteins[31,33-36]. In addition to the well studied 
Rho GTPases, YopE also targets RhoG and Rac2[33,35,37]. 
Intriguingly, activation of a Rho GTPase can mediate the 
activation of another Rho protein, and thus YopE may 
be targeting multiple Rho GTPases at once to enhance 
Yersinia virulence.

YopE-mediated inhibition of the Rho GTPases also 
perturbs inflammasome activation and ROS production 
The GAP activity of YopE on Rho proteins causes disru
ption of the actin cytoskeleton and inhibits phagocytosis; 
however, inactivating the Rho proteins also has other 
effects[38]. Thinwa et al[23] demonstrated that infection of 
epithelial cells with the YopE-deficient Y. enterocolitica 
mutant in part induces the maturation of caspase-1 and 
IL-18; a hallmark of inflammasome activation[39]. The 
discovery that YopE inhibits inflammasome activation is 
not new, but does corroborate the previously reported 
finding that YopE inhibits maturation of caspase-1 and 
caspase-1-mediated responses in macrophages[40]. 

Once in the lymphoid tissue Yersinia utilizes the T3SS 
to evade the host immune response. Infection of mice 
with a Y. pseudotuberculosis mutant strain deficient in 
expressing YopE showed higher association of Yersinia 
with PMNs one day post infection. Furthermore, the 
mutant can colonize and disseminate better in PMN-
depleted mice[13]. The translocation of YopE into ne
utrophils enables Yersinia to thwart the neutrophil 
response. The inhibition of ROS production along with 
phagocytosis by YopE is crucial for Yersinia colonization 
of the spleen of infected mice[37]. Since Rac2 is primarily 
expressed in hematopoetic cells it is likely that YopE 
targets Rac2 in immune cells such as neutrophils 
to perturb the killing of Yersinia during an infection. 
Additionally, the YopE-mediated inhibition of RhoG was 
speculated to affect proper neutrophil functions since 
RhoG-/- murine neutrophils are deficient in proper ROS 
production when stimulated with different agonists[35,41]. 
Although the reported Rac2-dependent ROS production 

is independent of RhoG, the activation of Rac2 at the 
early time points upon agonist stimulation was affected 
in RhoG knockout neutrophils[37,41]. Thus, it appears that 
YopE may be targeting multiple signaling pathways in 
immune cells that mediate the production of ROS. 

YopT targets the Rho family of GTPases
The cysteine protease, YopT, is a 35.5 kDa protein that 
is translocated into the target host cell by pathogenic 
Yersinia to target the Rho family of GTPases[42-44]. YopT 
is a member of the “CA” clan of cysteine proteases 
containing the conserved Cys, His, and Asp amino 
acids required for the catalytic activity of cysteine prote
ases[43]. The catalytic action of YopT was observed to 
act upon the post-translationally modified Rho GTPases 
where YopT cleaves upstream of the isoprenylated 
cysteine residue resulting in the mislocalization of the 
membrane-bound Rho protein, and the disruption of the 
actin cytoskeleton[45]. Unlike the other Yops, YopT is not 
found in all pathogenic Yersinia species namely in some 
serotypes of Y. pseudotuberculosis due to an internal 
deletion of the yopT gene. Thus, the molecular role of 
YopT is complemented by the other translocated Yops 
such as YopE in the yopT-deficient Yersinia strain as 
demonstrated in mouse infection studies[42,46]. Moreover, 
the inhibition of Rac1 by YopT and YopE inactivates 
caspase-1 suggesting an overlap of function between 
YopT and some of the other Yop effector(s)[40].

YopT has been demonstrated to play a role in 
inhibiting phagocytosis by macrophages and neutrophils, 
but not by dendritic cells[47]. The Rho GTPases are 
key signaling molecules involved in remodeling the 
actin cytoskeleton to mediate phagocytosis[48,49]. YopT 
has been shown to cleave the post-translationally 
modified RhoA, Rac1, and Cdc42 in vitro[50]. However, 
the enzymatic activity of YopT appears to be more 
selective in targeting different Rho protein(s) depending 
on the cell type and subcellular localization of the Rho 
proteins[35,51]. In addition to targeting the well studied 
Rho proteins, YopT also cleaves membrane bound 
RhoG to inhibit RhoG-mediated uptake of Yersinia; how
ever, since RhoG is also required for proper neutrophil 
functions, it remains to be tested whether YopT also 
affects other response mediated by RhoG in immune 
cells[35,41].

YopT induces expression of host’s KLF2 and GILZ to 
inhibit NFκB signaling 
The translocation of YopT results in decreased IL-8 
production suggesting that the catalytic activity of 
YopT on Rho proteins not only results in the disruption 
of the actin cytoskeleton, but also modifies the host 
transcriptional profile[22,46,52,53]. YopT was shown to 
mediate expression of the zinc-finger transcription 
factor, Kruppel-like factor 2 (KLF2), and the leucine 
zipper, glucocorticoid induced-leucine zipper (GILZ), 
in macrophages and/or epithelial cells upon infection 
with Yersinia[54,55]. In host cells both KLF2 and GILZ 
inhibit the NFκB signaling pathway to downregulate 
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NFκB-mediated proinflammatory responses[56,57]. Thus, 
YopT usurps a normal host regulatory mechanism to 
counteract anti-Yersinia immune responses. However, it 
is still unclear at what stage(s) of Yersinia infection KLF2 
and GILZ expression are required to promote Yersinia 
pathogenesis.

The multi-domains of YpkA/YopO
Yersinia protein kinase A (YpkA; YopO in Y. entero­
colitica) is an 80 kDa serine/threonine (Ser/Thr) kinase 
that when translocated into the target cell causes 
disruption of the actin cytoskeleton[58]. Interestingly, 
YpkA is a multifaceted effector protein with regards 
to the functional eukaryotic-like enzymatic domains 
that include a Ser/Thr kinase domain and a guanine 
nucleotide dissociation-like inhibitor (GDI) domain[59,60]. 
YpkA is the only Yersinia effector protein with two 
enzymatic domains. Activities of both domains affect 
the actin cytoskeleton by targeting the activation state 
of the Rho GTPases, RhoA and Rac1. Rho GTPases cycle 
between an active GTP-bound and an inactive GDP-
bound state where the former is catalyzed by guanine 
nucleotide exchange factors (GEFs) to exchange GDP 
for GTP. Active Rho proteins activate downstream 
effectors to remodel the actin cytoskeleton to regulate 
cellular processes such as phagocytosis[49]. The intrinsic 
Rho GTPase activity is facilitated by GAP that hydrolyze 
GTP resulting in the inactivation of the Rho proteins. 
Inactive Rho proteins are bound to GDI and are kept in 
an inactivate state. Similar to host GDI, the GDI domain 
of YpkA binds directly to the Rho GTPases to inhibit GTP 
loading whereas the kinase domain targets the alpha 
subunit of the heterotrimeric G protein complex, Gq, 
to inhibit activation of downstream Rho proteins by the 
LARG RhoGEF[60,61]. However, the YpkA GDI domain 
alone can mediate the disrupted actin cytoskeleton 
phenotype, and thus underscores the prediction that 
the kinase activity of YpkA also targets additional host 
signaling pathways (see below). Although mouse 
infection studies with Yersinia mutant strains expressing 
either a kinase inactive YpkA mutant or only the GDI 
domain controversially argue one domain being more 
essential than the other, these studies taken together 
suggest that both domains of YpkA contribute to Yersinia 
virulence[30,59,62,63]. 

The secretion/translocation domain of YpkA (Sec/
Trans; amino acids 1-77) located at its N-terminus 
mediates translocation of YpkA into the host cell[64]. 
Intriguingly though, multiple regulatory domains also 
overlap with the Sec/Trans domain of YpkA. To date, 
the chaperone binding domain (amino acids 20-77), 
the membrane localization domain (MLD; amino acids 
20-90), and the substrate-binding domain (SBD; amino 
acids 40-49) all overlap with the Sec/Trans domain[65,66]. 
Salomon et al[67] also showed that residues located 
within amino acids 1-125 of YpkA mediate binding 
to phosphoinositides to perhaps localize YpkA to the 
plasma membrane after being translocated. Altogether, 
the MLD, SBD, and phosphoinositide-binding residues 

may regulate an aspect of YpkA activity such as the 
phosphorylation of Gαq and/or the selective inhibition 
of Rho proteins. Downstream of these domains is the 
kinase domain (amino acids 150-400), the GDI domain 
(amino acids 431-612), and the actin binding domain 
(ABD; amino acids 709-729).

Kinase activation of YpkA and the targeting of actin 
regulating proteins
YpkA is expressed as an inactive kinase in the Yersinia 
bacterium[59]. The kinase activity of YpkA is activated 
by binding onto globular actin via the ABD upon 
translocation into the target cell[68]. The crystal structure 
of the Y. enterocolitica YopO-actin complex showed that 
actin binding allosterically positions the catalytic and 
activation loops of YpkA in an active conformation[69]. 
Actin binding induces YpkA autophosphorylation on 
ser90 and ser95 in vitro[59,66,68]. Interestingly, mutation 
of ser90 and ser95 to alanine on YpkA does not affect 
its kinase activity in cellulo whereas mutation of all serine 
residues on YpkA resulted in a catalytically inactive 
kinase[66]. Further analysis showed that mutation of all 
serine residues to alanine within amino acids 436-710 
to alanine does not affect YpkA kinase activity in vitro 
or in cellulo. Moreover, mutation of serine residues to 
alanine within amino acids 1-150 or 150-400 results in 
decreased YpkA autophosphorylation in vitro, but has no 
effect on its kinase activity in cellulo; however, mutation 
of all serine residues to alanine within amino acids 1-400 
results in an inactive YpkA kinase mutant[66]. Together, 
the results suggest that once translocated YpkA auto
phosphorylates on multiple serine residues within its 
N-terminus to activate its kinase domain. Additionally, 
due to the fact that YpkA is translocated at a lower 
level relative to other Yersinia effectors, it appears that 
the YpkA kinase activity has been fine tuned to where 
it can function efficiently within the target host cell by 
autophosphorylation on multiple serine residues[58]. 
It is predicted that this multisite autophosphorylation 
mechanism by YpkA enables it to bypass the regulatory 
control imposed by host proteins such as phosphatases. 

YpkA-mediated phosphorylation of Gαq results in 
the inhibition of the Gαq signaling cascade[61]. Activation 
of Gαq and its effector, phospholipase C, regulates an 
array of cellular responses such as neuronal signaling, 
platelet aggregation, cell growth and proliferation, and 
development[70]. However, further study is still needed to 
establish the molecular contribution of YpkA-mediated 
inhibition of Gαq to Yersinia pathogenesis. Although it 
remains to be explored, YpkA may be targeting Gαq-
mediated NFκB activation through the scaffolding 
protein, CARMA3. CARMA family members form a 
complex with Bcl10, MALT1, and TRAF6 to activate 
NFκB resulting in the induction of a proinflammatory 
response[71]. Alternatively, YpkA may be targeting Gαq 
to inhibit activation of the dual oxidase-dependent 
production of ROS[71,72]. The production of ROS is 
involved in mediating killing of pathogens by directly 
damaging the pathogen cellular components (i.e., 
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DNA damage and amino acid modification), as well as 
indirectly by regulating responses such as phagosomal 
protease activity and immune signaling[73]. In addition 
to binding directly to Gαq to mediate phosphorylation, 
YpkA utilizes actin as bait to recruit the actin filament 
elongators (EVL and VASP), the formin proteins 
(mDia1 and INF2), the nucleation-promoting factors 
(WASP and WIP), the actin filament severing protein 
(gelsolin), and the actin depoylmerizing protein (cofilin) 
for phosphorylation in vitro[69]. Since all of these 
proteins are involved in regulating actin assembly and 
disassembly, these proteins are likely targeted by YpkA 
to inhibit some aspect of phagocytosis as reported for 
VASP[74]. An alternative mechanism of phagocytosis 
(also known as bacterial uptake) is activated by binding 
of the Yersinia adhesion proteins, Inv and YadA, to host 
β1 integrin. Subsequently, focal adhesion proteins and 
Rac1 signal downstream molecules to remodel the actin 
cytoskeleton resulting in uptake of Yersinia[1]. Uptake of 
E. coli expressing the YadA protein by human umbilical 
vein endothelial cells was inhibited by the kinase activity 
of YpkA[68]. Phosphorylation of proteins regulating actin 
polymerization by YpkA may be responsible for the 
inhibition of bacterial uptake via the YadA-β1 integrin 
signaling pathway.

YpkA inhibits the Rac GTPases 
Early studies on YpkA identified the Rho GTPases as 
target substrates of the YpkA GDI domain where binding 
of YpkA to RhoA and Rac1 inhibits their activation[60,75,76]. 
Moreover, phagocytosis of opsonized sheep red blood 
cells (IgG-sRBC) by COS-7 cells expressing the Fcγ 
receptor showed that YpkA localizes to phagocytic cups 
and inhibits phagocytosis[77]. This is achieved through 
the selective inhibition of Rac1 by the GDI domain of 
YpkA suggesting that once translocated into innate 
immune cells YpkA inhibits Fcγ receptor-mediated 
phagocytosis. Interestingly, the Rac2 isoform was also 
identified as an interacting partner of YpkA[69,77]. Rac2 
is primarily expressed in hematopoietic cells at varying 
levels depending on the immune cell type and is involved 
in activation of the NADPH oxidase to produce ROS, as 
well as phagocytosis[78]. Thus, it is tempting to suggest 
that aside from targeting Rac1 for inhibition YpkA also 
inhibits Rac2 activity in immune cells. Additionally, the 
Rac1- and Rac2-regulated protein, PLC-γ2 isoform, was 
identified as an interacting partner with the YopO-actin 
complex[69,79]. This further supports the speculation that 
YpkA also targets Rac2 signaling in immune cells.

The many target substrates of YopP/J
YopJ (YopP in Y. enterocolitica) is a 34 kDa acetyltran
sferase with a deubiquitinating and putative cysteine 
protease function which was previously shown to inhibit 
production of proinflammatory molecules. YopP/J sup
presses a proinflammatory response by interfering 
with the mitogen-activated protein kinase (MAPK) and 
NFκB signaling pathways[80-84]. More recently, YopJ 
was reported to acetylate the MAPKK kinase family 

member, TAK1, and the Ser/Thr kinase, RICK, to inhibit 
their activity[85,86]. Production of chemoattractants (KC, 
MIP-2, and G-CSF) and adhesion molecules are also 
effected by YopP/J presumably to inhibit the early recruit
ment of neutrophils to the site of infection; however, 
inhibition of chemoattractant expression levels in vivo 
may involve the function of other Yop effectors[87-89]. 
Moreover, the YopJ homolog, YopP, of Y. enterocolitica 
inhibits phosphorylation of the Tyk2 kinase and STAT4 
of the Jak-STAT signaling pathway through a yet-to-be 
identified mechanism[90]. Of all the effectors that Yersinia 
translocates, it should be noted that YopP/J translocates 
at various amounts depending on the Yersinia strain 
which reflects its associated cytotoxicity[87,91,92]. This 
was further seen in studies conducted with different 
concentrations of recombinant YopJ[93-95]. 

YopP/J induces apoptosis through caspase-8
Similar to what was observed with extracellular Yersinia, 
translocation of YopJ by intracellular Yersinia induces 
apoptosis of macrophages[96]. Apoptosis is a process 
initiated by an extracellular “death” signal (extrinsic 
pathway) or an intracellular signal (intrinsic pathway) 
that converges on the mitochondria and the release 
of cytochrome C. The extrinsic and intrinsic pathway 
involve the activation of caspase-8 or caspase-9, respec
tively, and the subsequent processing of the effector 
caspases (e.g. caspase-3) to induce apoptosis[97]. YopP/
J-mediated inhibition of the MAPK and NFκB signaling 
pathways, along with Toll-like receptor 4 signaling, 
induces apoptosis of macrophages and dendritic 
cells[98-102]. This reported YopJ-induced cellular apoptosis 
was shown to be a result of signal transduction via the 
receptor-interacting Ser/Thr kinase 1 (RIPK1), Fas-asso
ciated death domain and caspase-8 signaling cascade 
to induce apoptosis[103,104]. Additionally, activated casp
ase-8 mediates the maturation of the inflammasome-
associated caspase-1[103,104]. Although inflammasome 
activation triggers the cell death process termed 
pyroptosis, YopJ-induced cell death is primarily through 
caspase-8-induced apoptosis[105,106]. However, in contrast 
to the experimental findings reported, YopJ-mediated 
activation of caspase-1 was observed in cells undergoing 
necrosis[107]. Since activated RIPK3 is downstream 
of RIPK1, and is the signaling molecule that triggers 
programmed necrosis termed necroptosis, it is likely the 
candidate for the observed necrosis[107,108]. In support 
of this is the evidence that YopJ-mediated activation of 
caspase-8 suppresses RIPK3 induced necrosis[103,104]. 
Thus, there appears to be an intimate crosstalk between 
caspase-8 and RIPK3 in determining the fate of a 
Yersinia infected cell containing YopP/J.

YopP/J utilizes host signaling pathways to promote 
Yersinia virulence 
YopP/J activity affects macrophages, dendritic cells, 
NK cells, and to varying degrees neutrophils[90,98,109-111]. 
However, activity of YopP/J in vivo varies depending on 
the Yersinia strain, YopP/J variant, experimental para
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meters, and infection model[62,92,112-115]. Nevertheless, 
translocation of YopP/J results in the inhibition of key 
signaling pathways that mediate a proinflammatory 
response, and also induces production of specific 
cytokines[83,89,116-118]. In particular is the well established 
observation that YopJ activity on the MAPK and NFκB 
signaling pathways mediates the maturation of cas
pase-1[98,103-105]. Activated caspase-1 cleaves pro-IL-18 
and pro-IL-1β to produce active IL-18 and IL-1β[39]. 
Studies using RIPK3/caspase-8 knockout mice showed 
reduced cytokine production in response to Yersinia 
infection, and thus, underscores the crucial role of 
caspase-8 and caspase-1 in mediating a host response 
to Yersinia when the MAPK and NFκB signaling pathways 
are inhibited[103,104]. Why would Yersinia utilize YopJ to 
induce the activation of caspase-8 and caspase-1? Is it a 
mechanism evolved by the host to counteract a Yersinia 
infection when the MAPK and NFκB signaling pathways 
are inhibited, or is it a virulence strategy employed by 
Yersinia? Recent studies are alluding to both situations 
being the case and are dependent on the association of 
caspase-1 with inflammasome components, NLRP12, 
NLRP3/ASC or NOD2[85,106,111]. Thus, although the func
tions of IL-18 and IL-1β induce an anti-Yersinia response, 
Yersinia may also exploit the normal functions of these 
cytokines at certain stages of infection to promote 
Yersinia virulence. YopJ was also linked to the inhibition 
of the host alpha subunit of the eukaryotic initiation 
factor 2 (eIF2α). Although the underlying mechanism 
and biological relevance is still unclear, modulating 
eIF2α activity by YopJ results in an increased cellular 
invasion of MEF cells by Yersinia and decreased cytokine 
production[119].

YopM is indispensable to Yersinia virulence
YopM is a leucine-rich repeat (LRR) protein that localizes 
to both the cytoplasm and the nucleus of the target 
host cell upon translocation[120,121]. The molecular 
contribution of YopM to Yersinia pathogenesis is still 
unclear; however, it has been shown to target immune 
cells to effect different immune cell populations of 
the spleen and liver of infected mice, downregulate 
proinflammatory responses, and upregulate the anti-
inflammatory cytokine, IL-10[122-125]. IL-10 downregulates 
the production of proinflammatory cytokines by mul
tiple innate immune cells, as well as regulates T cell 
function and proliferation[126]. The production of IL-10 
was proposed to counteract the PMN response against 
Yersinia; however whether YopM is solely responsible 
for inducing production of IL-10 remains to be further 
explored[124]. YopM was also shown to inhibit platelet 
aggregation[127]. Although YopM is required to enhance 
Yersinia virulence in mouse infection models, varying 
results suggest that the route of infection and mouse 
strain used affects the reported contribution of YopM to 
Yersinia pathogenesis[122]. Moreover, this could also be 
attributed to the LRR motifs of the YopM variants, as 
well as the natural route of infection of the pathogenic 
Yersinia species.

YopM targets extra- and intracellular host proteins
Of the six effectors that are translocated by the T3SS 
of the pathogenic Yersinia species into the target host 
cell, YopM has been shown to also be secreted into the 
extracellular matrix where it binds α-thrombin and α1-
antitrypsin[128-130]. Extracellular YopM can also penetrate 
culture cells[131]. Whether YopM enters the target host 
cells by crossing the lipid bilayer or via the T3SS it 
targets the ribosomal S6 protein kinase (RSK) and the 
protein kinase C-related kinase (PRK) isoforms[132,133]. 
Dephosphorylation of the RSK isoforms by phosphatase 
was inhibited by YopM in cellulo and in vitro[134]. The 
YopM mutant variant of Y. pseudotuberculosis 32777 
that is defective in binding RSK1 and PRK2 was unable 
to induce IL-10 production[133]. More recently, YopM has 
been shown to inhibit the activity of mature caspase-1. 
This is achieved by the binding of YopM to the substrate-
binding site of caspase-1, inhibition of recruitment of 
pro-caspase-1 to the inflammasome complex, and/or by 
targeting the scaffold protein, IQ motif containing GAP 1 
(IQGAP1), which is known to activate caspase-1[135,136]. 
Moreover, YopM has also been shown to activate 
caspase-3 to presumably induce apoptosis of PMNs and/
or macrophages in the liver of infected mice, and thus 
promote Yersinia virulence[137].

CONCLUSION
A major theme emerging from studies of the Yersinia 
effector proteins is the important role caspases play in 
host anti-Yersinia defenses. In particular are the effects 
of the Yersinia effector proteins on caspase-1 activity. 
Upon the detection of a pathogen by innate immune 
cells, the inflammasome complex is activated by the 
oligomerization of nucleotide-binding domain and 
LRR- containing (NLR) family of proteins. The caspase 
activation and recruitment domain found on NLRs or an 
associated adaptor protein such as ASC then recruits 
pro-caspase-1. Subsequently, autoproteolytic cleavage 
of pro-caspase-1 is induced to produce the mature 
caspase-1 form. Mature caspase-1 then mediates 
the maturation of IL-1β and IL-18, as well as induces 
pyroptosis. The targeting of Rac1 by YopE and YopT 
inhibits maturation of caspase-1 whereas the binding 
of IQGAP1, pro-caspase-1, and caspase-1 by YopM 
inhibits inflammasome activation, or the enzymatic 
function of caspase-1. Moreover, the dephosphorylation 
of FAK by YopH inhibits caspase-1 activation in epithelial 
cells which suggests that YopH also inhibits caspase-1 
activity when translocated into innate immune cells. 
Alternatively, YopP/J was shown to activate caspase-1 
through inflammasome activation, as well as the 
extrinsic cell death pathway. Whether this is beneficial 
or detrimental to Yersinia pathogenesis depends on the 
stage of infection; however, the kinetics of caspase-1 
activation in the presence of multiple Yersinia effector 
proteins requires further exploration. An additional 
translocated Yop protein, YopK, which is involved in 
regulating translocation of the Yersinia effector proteins 
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also inhibits inflammasome activation (for a review on 
YopK refer to[138]. Lastly, although YpkA has not been 
shown to affect caspase-1 activation or its activity, a 
study has shown that YpkA induces cellular apoptosis 
of murine macrophages through the intrinsic pathway 
which activates caspase-3[139]. Altogether, the Yersinia 
effector proteins effectively enable pathogenic Yersinia 
spp. to thwart the host innate immune response by 
regulating some aspect of programmed cell death, as 
well as inhibit the induction of proinflammatory cytokine 
production and phagocytosis. Future studies may lead to 
the identification of novel targets for the Yersinia effector 
proteins and thus additional targets for therapeutic 
interventions.
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