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Abstract
The human intestinal microbiome plays a major role in 
human health and diseases, including colorectal cancer. 
Colorectal carcinogenesis represents a heterogeneous 
process with a differing set of somatic molecular 
alterations, influenced by diet, environmental and 
microbial exposures, and host immunity. Fusobacterium 
species are part of the human oral and intestinal 
microbiota. Metagenomic analyses have shown an 
enrichment of Fusobacterium nucleatum (F. nucleatum) 
in colorectal carcinoma tissue. Using 511 colorectal 
carcinomas from Japanese patients, we assessed the 
presence of F. nucleatum. Our results showed that the 
frequency of F. nucleatum  positivity in the Japanese 
colorectal cancer was 8.6% (44/511), which was lower 
than that in United States cohort studies (13%). Similar 
to the United States studies, F. nucleatum positivity 
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in Japanese colorectal cancers was significantly 
associated with microsatellite instability (MSI)-high 
status. Regarding the immune response in colorectal 
cancer, high levels of infiltrating T-cell subsets (i.e. , 
CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been 
associated with better patient prognosis. There is also 
evidence to indicate that molecular features of colorectal 
cancer, especially MSI, influence T-cell-mediated 
adaptive immunity. Concerning the association between 
the gut microbiome and immunity, F. nucleatum has 
been shown to expand myeloid-derived immune cells, 
which inhibit T-cell proliferation and induce T-cell 
apoptosis in colorectal cancer. This finding indicates that 
F. nucleatum possesses immunosuppressive activities by 
inhibiting human T-cell responses. Certain microRNAs 
are induced during the macrophage inflammatory 
response and have the ability to regulate host-cell 
responses to pathogens. MicroRNA-21 increases the 
levels of IL-10 and prostaglandin E2, which suppress 
antitumor T-cell-mediated adaptive immunity through 
the inhibition of the antigen-presenting capacities of 
dendritic cells and T-cell proliferation in colorectal cancer 
cells. Thus, emerging evidence may provide insights for 
strategies to target microbiota, immune cells and tumor 
molecular alterations for colorectal cancer prevention 
and treatment. Further investigation is needed to clarify 
the association of Fusobacterium  with T-cells and 
microRNA expressions in colorectal cancer.

Key words: BRAF ; CpG island methylator phenotype; 
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Core tip: The human intestinal microbiome plays a 
major role in human health and diseases, including 
colorectal cancer. Metagenomic analyses have shown 
an enrichment of Fusobacterium nucleatum (F. nu
cleatum) in colorectal carcinoma tissue. Our results 
showed that the frequency of F. nucleatum positivity 
in Japanese colorectal cancer was 8.6%, which was 
lower than that in United States cohort studies (13%). 
F. nucleatum  positivity was significantly associated with 
microsatellite instability-high status. Additionally, F. 
nucleatum possesses immunosuppressive activities by 
inhibiting T-cell responses. Thus, emerging evidence may 
provide insights for strategies to target microbiota, 
immune cells, and molecular alterations for colorectal 
cancer prevention and treatment.
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INTRODUCTION
The human intestinal microbiome encompasses at 
least 100 trillion (1014) microorganisms and plays a 
major role in human health and diseases, including 
colorectal cancer[1-3]. Colorectal carcinogenesis 
represents a heterogeneous process with a differing 
set of somatic molecular alterations, influenced by 
diet, environmental and microbial exposures, and host 
immunity[4,5]. Fusobacterium species (a group of non-
spore-forming, anaerobic gram-negative bacteria) 
are a part of the normal human oral and intestinal 
microbiota. The species of the Fusobacterium genera 
are highly heterogeneous, and some of them have 
been recognized as opportunistic pathogens implicated 
not only in periodontitis[6-8] but also in inflammatory 
bowel disease (IBD)[9-11], pancreatic abscess[12,13], and 
hepatic abscess[12-15]. Regarding gastrointestinal cancer, 
metagenomic analyses have shown an enrichment of 
Fusobacterium nucleatum (F. nucleatum) in colorectal 
carcinoma tissue, which has been confirmed by 
quantitative PCR for the 16S ribosomal RNA gene DNA 
sequence of F. nucleatum[16,17]. Studies have shown 
that a greater amount of F. nucleatum in colorectal 
carcinoma tissue is associated with high degrees of 
microsatellite instability (MSI-high) and CpG island 
methylator phenotype (CIMP)[18].

Accumulating evidence indicates that innate and 
adaptive immunity influences tumor evolution[19]. 
Attesting to an important role of T-cell-mediated 
adaptive immunity in inhibiting tumor progression, 
therapeutic antibodies against immune checkpoint 
molecules, including CTLA4, PDCD1 (programmed cell 
death 1; PD-1), and CD274 (programmed cell death 
1 ligand 1; PD-L1), can effectively enhance antitumor 
T-cell activity in various malignancies[20,21]. Emerging 
evidence indicates that tumor genetic alterations and 
tumor-host interactions have complex roles in the 
effectiveness of T-cell-based immunotherapies[22-25]. 
Although these immunotherapies appeared to be less 
effective for colorectal cancer, high-level infiltrates of 
T-cells in colorectal cancer tissue have been associated 
with better patient survival[26-28], and a recent study 
has suggested a potential role for the immune 
checkpoint pathway in suppressing the antitumor 
immune response in a subset of colorectal cancers[29].

Regarding the association between the gut 
microbiome and immunity, a number of studies have 
shown that F. nucleatum has immunosuppressive 
activities via inhibiting human T-cell responses 
to mitogens and antigens[30-35]. Additionally, F. 
nucleatum inhibitory protein has been shown to arrest 
human T-cells in the G1 phase of the cell cycle[33]. 
Furthermore, F. nucleatum can induce apoptotic 
cell death in peripheral blood mononuclear cells and 
Jurkat T-cells[31]. This F. nucleatum-induced cell death 
is mediated through the aggregation of the immune 
cells, which might have important implications for the 
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pathogenesis of this bacterial species[35]. These findings 
indicate that F. nucleatum suppressively modulates the 
tumor-immune microenvironment.

Thus, the results of these studies suggest a 
complex link between the gut microbiome, immunity, 
and molecular alterations in colorectal tumorigenesis. 
A better understanding of the relationship between 
microorganisms and immune cells in the tumor 
microenvironment is needed in order to effectively 
target the microbiota and immunity for colorectal 
cancer prevention and therapy.

amount of F. nucleatum in 
colorectal carcinoma tissue and 
the association with MSI
Using quantitative PCR, Mima et al[36] have reported 
that F. nucleatum was detected in 76 (13%) of 598 
colorectal carcinomas (stages Ⅰ-Ⅳ) within the well-
known United States cohort studies (the Nurses’ 
Health Study and the Health Professionals Follow-
up Study) and in adjacent non-tumor tissue in 19 
(3.4%) of 558 cases analyzed. In the 558 pairs of 
colorectal carcinoma and adjacent non-tumor tissues, 
the amount of F. nucleatum was higher in colorectal 
carcinoma tissue than in paired adjacent non-tumor 
tissue[36].

We also collected 511 colorectal carcinoma tissues 
(stages Ⅰ-Ⅳ) from Japanese patients who underwent 
endoscopic resection or other surgical treatment 
and assessed the presence of F. nucleatum via gene 
expression analysis. Genomic DNA was extracted 
from formalin-fixed paraffin-embedded (FFPE) tissues. 
The amount of F. nucleatum in colorectal carcinoma 
tissue was measured by quantitative PCR assay as 
previously described[36]. Considering the influence 
of contaminating stromal cells, we performed micro
dissection only in cases with F. nucleatum positivity 
and conducted quantitative PCR again using the DNA 
extracted from the carcinoma component. Our current 
data demonstrated that F. nucleatum positivity was 
detected in 44 (8.6%) of the 511 Japanese patients 
with colorectal cancer (Table 1). The frequency of F. 
nucleatum positivity in the Japanese patients was 
significantly lower than that in the United States cohort 
study[36].

Some cohort studies observed associations of 
highly enriched Fusobacterium in colorectal cancer 
tissues with CIMP-high, MSI-high, and MLH1 methy
lation in patients with colorectal cancer[18,36,37]. 
Consistent with these reports, our current data using 
Japanese populations showed that high expression of 
F. nucleatum in colorectal cancers was significantly 
associated with MSI-high status (Table 1). We also 
examined the relationship between the amount 
of F. nucleatum and patient mortality; however 
F. nucleatum status in colorectal cancers was not 

associated with cancer-specific survival. The role of 
F. nucleatum in colorectal carcinogenesis remains 
uncertain. Recent studies showed that F. nucleatum 
increases the production of reactive oxygen species 
(ROS) and inflammatory cytokines (e.g., IL-6 and 
TNF) in colorectal cancer[38]. Inflammation and ROS 
can reduce the enzymatic activity of mismatch repair 
(MMR) proteins and cause epigenetic silencing of the 
mismatch repair protein MLH1 leading to MSI[39]. 

Association between immune cell 
and clinical outcome in colorec-
tal cancer
The abundance of tumor-infiltrating T-cells has been 
associated with improved clinical outcomes in colorectal 
cancer patients[28,40]. Although the exact mechanism 
remains uncertain, the adaptive immune system 
may play an important role in suppressing tumor 
progression[27,41]. Tumor-infiltrating T-cells may be an 
indicator of a host immune response to tumors and 
are attractive targets for immunotherapy[42-45]. Tumor-
infiltrating lymphocytes may also reflect specific 
molecular alterations associated with indolent tumor 
behavior. Previous studies have shown that lymphocytic 
infiltration is associated with MSI in colorectal 
cancer[40,46-48]. Truncated peptides produced by frame
shift mutations due to MSI may be immunogenic and 
contribute to host immune response[41,43,49]. However, 
little is known about the relationship between tumor-
infiltrating T-cells and other tumor molecular features, 
including the CIMP status, and KRAS, BRAF and PIK3CA 
mutations. 

We previously utilized a database of clinically and 
molecularly annotated colorectal carcinoma cases 
(n = 768; stages Ⅰ-Ⅳ) in the United States cohort 
studies[28]. Using tissue microarray and automated 
Ariol image analysis system, we quantified densities of 
CD3+, CD8+, CD45RO+, and FOXP3+ T-cells within 
neoplastic epithelial areas. Our data demonstrated 
that tumor-infiltrating CD45RO+ T-cell density 
is significantly associated with longer survival of 
colorectal cancer patients, independent of clinical, 
pathological, and molecular features (i.e., MSI, CIMP, 
and KRAS, BRAF and PIK3CA mutations). In addition, 
MSI-high is an independent predictor of CD45RO+ 
T-cell density. The strong association between MSI and 
CD45RO+ T-cell density supports the hypothesis that 
truncated peptides produced by MSI and frameshift 
mutations may elicit a host immune response and 
recruit CD45RO+ T-cells[41,49]. 

In most studies, MSI in colon cancer has been 
associated with improved survival[27,41,50,51], although 
the mechanism underlying this association is largely 
unknown. Similar to these reports from United States 
and Western countries[27,41,50,51], our current Japanese 
population-based study showed a significantly lower 
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mortality rate (log-rank test: P = 0.048) in the MSI-
high group than in the MSS/MSI-low group using 
the Kaplan-Meier method (data not shown). These 
results suggest one explanation that a host immune is 
stimulated in response to MSI-high colorectal cancer. 

Association between F. 
nucleatum and immune response 
in colorectal cancer
Myeloid-derived immune cells can inhibit T-cell 
proliferation and induce T-cell apoptosis[52]. Recently, 
Kostic et al[38] reported that F. nucleatum selectively 
expands myeloid-derived immune cells in colorectal 
cancer. In particular, myeloid-derived immune cells 
were enriched in F. nucleatum-fed mice vs controls. 
Myeloid-derived immune cells have been proposed to 
be myeloid cells present in the bone marrow, spleen, 
or tumor microenvironment that are able to suppress 
T-cell responses[53]. During tumor progression, reactive 
myeloid cells might mediate immunosuppression 
either by the self-limiting mechanism of T helper 
type (Th)1 inflammation resolution, such as ROS and 
IL-10 production, or by switching to a wound repair 

and angiogenic protumor Th2 inflammation with the 
expression of arginase, TGF-b, and IL-10[54]. These 
results indicate that F. nucleatum suppressively 
modulates the tumor-immune microenvironment 
because T-cell-mediated adaptive immunity plays 
an important role in preventing the development of 
tumors and inhibiting tumor progression[55]. Thus, 
immunosuppression by F. nucleatum may affect 
patient mortality in colorectal cancer. Additionally, the 
data in the United States cohort studies along with 
these lines of experimental evidence revealed that the 
amount of tissue F. nucleatum is inversely associated 
with CD3+ T-cell density in colorectal carcinoma 
tissue[36].

Association between microRNA 
expression and immunity in 
colorectal cancer
MicroRNAs constitute a class of small non-coding RNA 
molecules that function as post-transcriptional gene 
regulators and have been increasingly recognized 
as biomarkers of various human cancers[56-71]. 
Regarding colorectal cancer, we recently discovered 

Clinical and molecular features Total (n ) F. nucleatum expression

Negative Positive P -value
All cases 511 467 (91)  44 (8.6)
Gender
   Male 286 (56) 267 (57) 19 (43) 0.075
   Female 225 (44) 200 (43) 25 (57)
Age (mean ± SD) 67.1 ± 11.8 67.3 ± 11.7 65.0 ± 12.1 0.220
Tumor size (mm) (mean ± SD) 49.8 ± 24.1 49.2 ± 24.5 56.4 ± 19.6 0.063
Tumor location
   Rectum 207 (41) 194 (42) 13 (30)
   Distal colon 133 (26) 121 (26) 12 (27) 0.240
(Sigmoid colon to splenic flexure)
   Proximal colon 171 (33) 152 (33) 19 (43)
(Transverse colon to cecum)
Disease stage
   Ⅰ   56 (11)   53 (11)    3 (6.8) 0.470
   Ⅱ 160 (31) 142 (30) 18 (41)
   Ⅲ 235 (46) 216 (46) 19 (43)
   Ⅳ   60 (12)   56 (12)    4 (9.0)
KRAS mutation (codon 12/13/61/146)
   Wild-type 354 (69) 324 (69) 30 (68) 0.870
   Mutant 157 (31) 143 (31) 14 (32)
BRAF mutation (codon 600)
   Wild-type 483 (95) 445 (95) 38 (86) 0.031
   Mutant    28 (5.5)    22 (4.7)   6 (14)
PIK3CA mutation (exon 9/20)
   Wild-type 451 (88) 414 (89) 37 (84) 0.390
   Mutant   60 (12)   53 (11)   7 (16)
MSI status
   MSS/MSI-low 470 (92) 435 (93) 35 (80)   0.0059
   MSI-high    41 (8.0)    32 (6.9)   9 (20)

Percentage (%) indicates the proportion of cases with a specific clinical or molecular feature within a given category of F. nucleatum detection by quantitative 
PCR. The P-values were calculated using t-test for age and tumor size and by means of the χ 2 test or Fisher’s exact test for all other variables. F. nucleatum: 
Fusobacterium nucleatum; MSI: Microsatellite instability; MSS: Microsatellite stable.
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that microRNA-31 (miR-31) expression is significantly 
up-regulated in BRAF-mutated cancers compared 
with that in wild-type cancers using microRNA array 
analysis[67]. Moreover, associations were identified 
between miR-31 expression and poor prognosis for 
colorectal cancers.

Certain microRNAs are induced during the macro
phage inflammatory response and have the ability 
to regulate host-cell responses to pathogens[72]. In 
addition, pathogens themselves may regulate micro
RNA expression[73]. MicroRNAs influence networks that 
control innate and adaptive immunity and apoptosis 
by regulating signalling pathways[71,72]. Among the 
various microRNAs, microRNA-21 (miR-21) has been 
shown to play roles in immunity and colorectal carci
nogenesis[74-76]. In fact, high-level miR-21 expression 
in colorectal cancer tissue has been associated with 
worse clinical outcome, suggesting that miR-21 could 
act as a prognostic tumor biomarker[77,78]. Studies have 
shown that miR-21 increases the levels of IL-10 and 
prostaglandin E2 (PGE2) in colorectal cancer cells[78-82]. 
IL-10 and PGE2 have been shown to suppress 
antitumor T-cell-mediated adaptive immunity through 
the inhibition of the antigen-presenting capacities of 
dendritic cells and T-cell proliferation and through the 
recruitment of myeloid-derived suppressor cells into 
the tumor microenvironment[83-86].

CONCLUSION
The association between highly enriched F. nucleatum 
in colorectal carcinoma tissues and MSI-high status 
was observed in both the United States cohort studies 

and Japanese population-based study. Previous studies 
have reported that the frequency of colorectal cancers 
with MSI-high status in Japan (less than 10%)[63,67,87] 
tend to be lower than those in the United States 
and Western countries (approximately 15%)[28,88-91]. 
Therefore, the low rate of MSI-high colorectal cancer 
in Japan might be due to the amount of F. nucleatum 
in carcinoma tissues because our current data showed 
that the rate of F. nucleatum positivity in Japanese 
patients was significantly lower than that in the United 
States cohorts. MSI-high status in colorectal cancer 
has been associated with high levels of infiltrating 
T-cells, as mismatch repair defects in MSI-high tumors 
cause numerous frameshift mutations and truncated 
proteins, which elicit antitumor T-cell-mediated 
adaptive immunity[40,46,49,92]. However, MSI status is 
not the sole determinant of the immune response 
to colorectal cancer because the amounts of tumor-
infiltrating T-cells considerably overlap between 
MSI-high and microsatellite stable (MSS) colorectal 
tumors[28,29,40]. Hence, there must be other factors that 
influence the antitumor immune response to colorectal 
cancer.

T-cell-mediated adaptive immunity plays an 
important role in regulating tumor evolution and in 
inhibiting tumor progression[55]. The immunity includes 
multiple steps involving the clonal selection of antigen-
specific cells, their activation and proliferation in 
secondary lymphoid tissues, and their recruitment into 
the tumor microenvironment[93]. In a mouse model, F. 
nucleatum recruits myeloid-derived suppressor cells 
into the tumor microenvironment[38]. Myeloid-derived 
suppressor cells can inhibit T-cell proliferation and 

F. nucleatum

 Myeloid-derived immune cells↑

ROS↑IL-10↑

PGE2↑

MLH1 
inactivation

T-cells↓
(i.e. , CD3+ cell)

MSI

microRNA-21↑

?

Figure 1  Hypothesis of potential mechanism about the association of Fusobacterium nucleatum in colorectal cancer with immune cells and molecular 
alterations. F. nucleatum increases the production of ROS and inflammatory cytokines in colorectal cancer. Inflammation and ROS can cause epigenetic silencing of 
the mismatch repair protein MLH1 leading to MSI. F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses and modulates tumor-
immune microenvironment suppressively. MicroRNA-21 increases the levels of IL-10 and PGE2, which suppress antitumor T-cell-mediated adaptive immunity in the 
tumor microenvironment. F. nucleatum: Fusobacterium nucleatum; MSI: Microsatellite instability; PGE2: Prostaglandin E2; ROS: Reactive oxygen species.
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induce T-cell apoptosis[52]. Virulence factors derived 
from F. nucleatum also inhibit T-cell proliferation[33,94]. 
The experimental evidence may be consistent with a 
recent finding that a higher abundance of F. nucleatum 
in colorectal carcinoma tissue was associated with a 
lower density of T-cells, as measured by CD3 in the 
tumor microenvironment[36]. These findings support 
a role of F. nucleatum in down-regulating antitumor 
T-cell-mediated adaptive immunity.

Both tumor molecular and immunity analyses are 
increasingly important in cancer research and clinical 
practice. MicroRNAs play roles in carcinogenesis 
and immunity and can be potential biomarkers or 
therapeutic targets. MicroRNA-targeting therapies 
for human disease, including cancer, are currently 
being investigated[69,95,96]. Accumulating evidence 
suggest miR-21 increases the levels of IL-10 and 
PGE2 in the tumor microenvironment, which can 
lead to the suppression of antitumor T-cell-mediated 
adaptive immunity[84-86]. In light of these findings, 
it would be intriguing for future research to explore 
a potential strategy for inhibiting miR-21 and its 
immunosuppressive effect in immunotherapy and 
immunoprevention for colorectal cancer. In contrast, 
no study has reported whether F. nucleatum regulates 
microRNA expressions, including miR-21. Therefore, 
functional analysis and/or human population-based 
study are expected to identify the association between 
F. nucleatum and miR-21 expression in colorectal 
cancer.

We have summarized the hypothesis of the 
potential mechanism underlying the association of 
F. nucleatum in colorectal cancer with immune cells 
and molecular alterations in Figure 1. F. nucleatum 
increases the production of ROS and inflammatory 
cytokines in colorectal cancer. Inflammation and 
ROS can cause epigenetic silencing of the mismatch 
repair protein MLH1 leading to MSI. F. nucleatum 
possesses immunosuppressive activities by inhibiting 
human T-cell responses and modulates tumor-immune 
microenvironment suppressively. miR-21 increases the 
levels of IL-10 and PGE2, which suppress antitumor 
T-cell-mediated adaptive immunity in the tumor 
microenvironment.

Thus, emerging evidence may provide insights 
for strategies to target microbiota, immune cells, 
and tumor molecular alterations for colorectal cancer 
prevention and treatment. Further investigation is 
needed to clarify the association of Fusobacterium with 
T-cells and microRNA expressions in colorectal cancer.
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