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Abstract
Effective adaptive immune responses rely upon 
appropriate activation of T cells by antigenic peptide-
major histocompatibility complex on the surface of 

antigen presenting cells (APCs). Activation relies on 
additional signals including co-stimulatory molecules on 
the surface of the APCs that promote T cell expansion. 
The immune response is further sculpted by the 
cytokine environment. However, T cells also respond to 
other environmental signals including hormones, neuro
transmitters, and vitamins. In this review, we summarize 
the mechanisms through which vitamins A and D impact 
immune responses, particularly in the context of T cell 
responses.
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Core tip: Vitamins are organic compounds that are 
required in small quantities as nutrients. When used 
as dietary supplements, vitamins can be used to treat 
diseases and maintain physiological processes including 
bone and skin health. Vitamins also play important roles 
in immune system including lymphocyte activation, and 
T helper cell differentiation. Among all the vitamins, 
vitamin A and D have garnered more interest in clinical 
setting. In this review we have focused on how vitamin 
A and D regulate adaptive immunity especially how 
both the vitamins modulate T cell responses. We 
have highlighted the mechanisms how these vitamins 
affect T helper cell differentiation. How these vitamins 
affect inflammatory disorders including allergy and 
autoimmune diseases have also been described in this 
review. The purpose of this review is to suggest the 
potential of dietary supplements such as vitamin A and 
D can be used to treat inflammatory disorders.
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Vitamins are organic compounds required in small 
amounts in the human body. As humans cannot 
synthesize vitamins in sufficient quantity, essential 
vitamins are provided by diet or dietary supplements. 
In recent years vitamins have generated considerable 
clinical interest as they promote pivotal activities in the 
immune system. Vitamins modulate a wide range of 
immune responses including lymphocyte activation, 
homing, and T helper cell differentiation. An association 
of vitamin B6-deficiency and poor immune parameters 
has been observed, and a separate study has observed 
that vitamin B6 is important for normal T-cell function 
in vivo[1,2]. Systemic administration of vitamin B2 is 
used to treat septic shock[3]. Food supplementation 
of vitamin E is used for hepatitis B treatment[4]. The 
maintenance of healthy bones in inflammatory bowel 
disease might be enhanced by vitamin K[5]. Vitamins 
A and D modulate the immune system in very specific 
ways influencing both the adaptive and innate immune 
system. The bioactive metabolites of these vitamins 
have hormone-like properties, making them distinct 
from other vitamins. Vitamin D deficiency is recognized 
as a worldwide problem with health consequences 
including increased incidence of food allergy, while 
vitamin A deficiency has been acknowledged as a public 
health problem[6,7]. This review is aimed at highlighting 
the mechanisms of vitamin A- and D-dependent 
regulation of an optimal T cell response.

VITAMIN D SYNTHESIS
The term vitamin D refers to both vitamin D3 (chole
calciferol) and vitamin D2 (ergocalciferol) (Figure 1A)[8]. 
Vitamin D is acquired either from diet or from conversion 
of 7-dehydrocholesterol in the sebaceous gland of animal 
skin upon exposure to sunlight, though levels generally 
decrease with aging[8,9]. To become biologically active, 
vitamin D undergoes several modification steps (Figure 
2A). The enzymes CYP27A1, CYP2R1 among others 
are required for the formation of 1, 25-hydroxyvitamin 
D3 (1, 25D3), also known as calcitriol, the biologically 
active form of vitamin D[8]. CYP27B1 (one of many 
cytochrome P450 vitamin D hydroxylases) converts 
25-hydroxyvitamin D (25-D) to 1, 25-dihydroxy vitamin 
D3 by 1α-hydroxylation[8,10]. CYP27B1 is found in 
placenta, monocytes and macrophages[11]. 1, 25D3 is 
released into circulation from kidney, an important organ 
of 1α-hydroxylation reaction[8,12]. Transport of vitamin 
D in blood is aided by vitamin D binding protein[11]. 
This protein does not affect the amount of 1, 25D3 
entering cells or the synthesis of vitamin D target 
proteins[13]. Cultured alveolar macrophages can secrete 
1, 25D3[14]. The level of circulating 25-hydroxyvitamin 
D is the defining parameter of vitamin D sufficiency or 
insufficiency. There is considerable debate though as to 
what should be considered as the cut-off level of required 
vitamin D in the healthy body. Even though some 
studies recommend concentrations of 20-30 ng/mL 
of 25-hydroxyvitamin D as an indicator of vitamin 

insufficiency, one study has argued that 20-50 ng/mL 
of 25-hydroxyvitamin D is normal[15,16]. Toxicity induced 
by high concentrations (> 150 ng/mL) of vitamin D is 
rare[17,18].

VITAMIN A SYNTHESIS
Metabolites of vitamin A include 11-cis-retinaldehyde 
and all-trans retinoic acid (atRA); also known as 
retinoic acid (RA) (Figure 1B)[19].The abundance of 
RA is regulated by retinol dehydrogenases and retinal 
dehydrogenases (RALDH), while degradation is 
controlled by CYP26[20]. Though Rdh5-deficient mice 
are viable, Rdh10 mutants exhibit characteristics 
similar to RA deficiency[21]. Carotenoids and retinoids 
are converted to RA in the intestine, liver and finally in 
target cells[22]. Proteins including cellular retinol-binding 
proteins (CRBP), cellular retinoic acid binding proteins 
(CRABP) and retinol-binding proteins play important 
role in the biochemical conversion of retinoic acid[23]. 
The key retinoid in circulation binds to retinol-binding 
protein 4 (RBP4)[24]. STRA6, a retinoic acid inducible 
gene, facilitates the uptake of RBP4 in tissues[25]. 
Retinol can be obtained from animal retinyl esters by 
hydrolysis. Unesterified retinol gets converted to retinyl 
ester by lecithin-retinol acyltransferase enzyme[22]. Free 
retinol binds to retinol-binding protein while in plasma 
it binds to transthyretin[26]. Inside the target cell retinol 
binds to CRBP to give rise to retinal which subsequently 
gets converted to RA by RALDH[27]. When RA binds to 
CRABP, RA translocates to nucleus where it can bind to 
different nuclear receptors. The synthesis of vitamin A is 
shown in Figure 2B.

VITAMIN D SIGNALING
1, 25D3, responsible for most of the biological actions 
of vitamin D binds to the vitamin D receptor (VDR), a 
member of the superfamily of the nuclear receptors[28]. 
While expressed at low to moderate levels in most 
human tissues and cell-types, the highest expression 
of VDR is found in kidney, bone and intestine[29]. The 
presence of a structurally conserved α-helical ligand-
binding domain (LBD) and a DNA-binding domain are 
the hallmarks of the nuclear receptor superfamily[30,31]. 
A molecule having roughly the size of cholesterol and 
at nanomolar concentrations can activate VDR[32]. The 
LBD of ligand-binding receptors have a 400-1400 Å3 
ligand binding pocket[33]. VDR forms a heterodimer with 
retinoid X receptor (RXR) in the presence of vitamin 
D[8]. This heterodimer is required for the recognition 
of a vitamin D response element (VDRE) that lies in 
the regulatory region of vitamin D target genes. The 
VDRE is found both in proximal promoter regions and in 
regions located far away from the promoter[34,35]. VDRE 
is composed of direct repeats (DRs) of PuG(G/T)TCA 
motifs that are separated by a 3 bp (DR3) or 6 bp or 8 
bp separation of everted repeats (ER6 or ER8)[36-38]. The 
3 bp spacing of DR3 allows a proper platform for VDR/

Goswami R et al . Vitamins and T cell response

40 March 27, 2016|Volume 6|Issue 1|WJI|www.wjgnet.com



RXR heterodimer formation that has been confirmed 
by genome-wide analyses for VDR binding sites[39]. 
However, VDR binding to DR3 covers approximately one 
third of all genomic binding sites suggesting additional 
mechanisms for VDR to associate with the genomic loci. 
These mechanisms include binding with unrecognized 
proteins and tying up to other transcription factors[39]. 
Therefore VDR would possibly recruit co-activators and 
co-repressors to gain access to its target genes. In 
addition to transactivation, VDR/RXR heterodimers can 
cause transrepression at their target genes[40,41].

Chromatin immunoprecipitation (ChIP) has been 
used extensively to analyze genome-wide binding of 
VDR[42]. The regulatory regions of VDR target genes 
including CYP24A1, CYP27B1 and CCNC were analyzed 
for VDR binding by ChIP[43-45]. More than 2500 genomic 
VDR-binding sites were observed when human lympho
blastoid cells were treated with vitamin D[46]. Similarly 
when human monocytes were stimulated with vitamin 
D, approximately 1200 VDR peaks were observed[47]. 
After 3 h stimulation with vitamin D, human colorectal 
cells show 1674 VDR-binding sites that co-localize with 
RXR[48]. ChIP-seq studies also confirm VDR-binding 
sites on vitamin D target gene including VDR and 
MYC[49,50]. When different cell lines and differences in 
ligand stimulation time were taken into account it was 
observed that roughly 20% of the genomic sites are 
identical in assessing VDR-binding sites[39]. It has been 
suggested that VDR may not bind regulatory genomic 
regions to open the gene loci as a “pioneer factor”, but 
rather VDR would act as an “accessory factor”, binding 
already accessible regions of a gene[39].

VDR and other nuclear receptor interactions with 
chromatin have been well described[51,52]. Recruitment 
of RNA pol II and chromatin modifying enzymes has 
been observed with VDR on human genes including 
CYP24A1 and MYC[43,50]. VDR-dependent changes in 
the transcriptome have been assessed by both mRNA 
and miRNA microarrays as well as by ChIP-seq[39,53]. 
ChIP-seq data suggested that VDR either has a very 
promiscuous DNA binding specificity, or that VDR 
interacts with other DNA-binding transcription factors 
that alter the DNA binding site[39]. 

VITAMIN A SIGNALING
The biologically active form of vitamin A, atRA binds to 
RXR and retinoic acid receptor (RAR). Both RAR and 
RXR have three subtypes: α, β, and γ; each encoded 
by separate gene[54]. Each subunit of the receptor has 
multiple isoforms[55]. RAR and RXR both belong to 
the retinoid receptor family. RARα, RXRα and RXRβ 
are constitutively expressed in mouse embryos[19]. 
Functional redundancy is observed between RAR and 
RXR isotypes[20]. The functional domains of retinoid 
receptor include the N-terminal DNA binding domain 
(DBD) and a C-terminal LBD separated by a central 
hinge region[55]. The DBD, a highly conserved domain, 
contains two zinc finger modules while the activation 
function-2 (AF-2) domain is part of the LBD[22]. RAR can 
be activated by atRA, while RXR is activated by 9-cis 
RA[22]. Ligand binding to LBD causes a conformational 
change in the receptor complex[22]. AF-2 also plays an 
important role in the conformational change[22]. RAR-
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repeats-(A/G)G(T/G)TCA with spacing of either 2 bp 
(DR2) or 5 bp (DR5)[19]. AGTTCA is the most efficient 
hexamer for RAR binding[60]. In vitro studies have 
suggested a role of DR1 as a RARE; however, the 
in vivo significance is not completely understood[61]. 
Protein poly (ADP-ribose) polymerase 1 (PARP-1), 
present on RAR-inducible promoters in cells, can bind 
directly to RAR and other mediators[62]. The events that 
determine whether a specific RARE will have activation 
or repression function are also not well understood.  

VITAMIN A AND D RECEPTOR 
POLYMORPHISMS
VDR is located at chromosome 12q13.1 in human 
and its locus covers more than 100 kb[63]. The locus 
contains eight introns and nine exons[63]. In the VDR 
gene four restriction enzyme polymorphisms have 
been identified: ApaI (rs7975232), BsmI (rs1544410), 
FokI (rs10735810), and TaqI (rs731236)[63]. FokI is 
located in exon 2, ApaI and BsmI are located in intron 
between exon 8 and 9 and TaqI is located in exon 
9[63]. There is no structural change in the VDR protein 
because of the ApaI, BsmI and TaqI single nucleotide 
polymorphisms[64]. The FokI polymorphism, however, 

RXR heterodimer binds to the DNA region known as 
retinoic acid response elements (RAREs) located in the 
enhancer regions of RA target genes[19]. Even though 
RA functions by binding to RAR, RA can also signal by 
binding to PPAR-β/γ, an orphan nuclear receptor[56].

The availability of retinoic acid is governed in a 
spatiotemporal and tissue-specific fashion[57]. Transcri
ptional regulation mediated by RA involves many co-
activator and co-repressor proteins[19]. In the absence 
of ligand, the RAR/RXR heterodimer binds to a co-
repressor complex containing nuclear receptor co-
repressor (NCoR) 1 and 2 (known as SMRT), polycomb 
repressive complex 2, and proteins having histone 
deacetylase activity[19,58]. NCoR/SMRT contains two 
conserved consensus sequences[54]. Once ligand bind
ing occurs (such as RA), the RAR/RXR heterodimer 
interaction with the co-regulatory protein is altered with 
increased binding towards co-activator proteins and 
reduced interactions with the co-repressor proteins. 
Co-activator proteins have multiple LXXLL motifs that 
interact with ligand-activated RAR/RXR heterodimers. 
Proteins including SRC complexes and histone acety
ltransferase such as p300 can interact with RAR/RXR 
heterodimers[54,59]. In the presence of appropriate 
ligand, co-activators preferentially bind to RAR but not 
RXR. Functional RARE sites consist of hexameric direct 
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results in a second protein variant[65]. Additionally, 
the FokI polymorphism has been associated with 
serum 1, 25D3 concentration in twins with multiple 
sclerosis[66]. In systemic lupus erythematosus (SLE) 
patients, an association between serum 1, 25D3 level 
and FokI polymorphism has been observed[67]. In 
contrast to vitamin D serum concentrations, there is 
no association between the FokI polymorphism and 
the clinical spectrum in SLE and multiple sclerosis 
(MS) patients[67,68]. However, the BsmI and TaqI 
polymorphisms are associated with risk of autoimmune 
diseases including MS, SLE[63]. VDR polymorphisms 
have also been associated with increased susceptibility 
to infections including human immunodeficiency virus-1, 
tuberculosis and hepatitis B virus[69]. Single nucleotide 
polymorphism (SNPs) in vitamin A and D receptor 
genes in healthy Caucasian children and adults correlate 
with the efficacy of vaccine-mediated immunity[70]. 

Vitamin A receptor allelic variations and haplotypes 
affect immune responses to measles vaccine[69]. A 
specific RARB haplotype (resulting from SNPs rs6550978 
and rs6777544) was associated with variations in 
measles antibody titers and measles-specific IL-2 and 
IFN-γ secretion, while the RARB AAC haplotype was 
concurrently associated with variations in measles 
antibody titers, and IL-10, IFN-α, and TNF-α secretion in 
Caucasians[69]. Using ChIP-seq new RAR-binding loci has 
been identified along with diverse spacing and topology 
of DNA[71,72].

VITAMIN D AND RETINOIC ACID: 
SIGNALING IN T CELLS
Nutrient status and metabolism affect CD4+ T cell 
development[73]. Both vitamin A and D control the 
expression of key players of innate and adaptive 
immune responses[74,75]. T cells are directly regulated by 
vitamin D via various mechanisms[76]. VDR expressed 
in T cells has high affinity for 1, 25D3, and the 
concentration of free 25-hydroxyvitamin D to antigen 
presenting cells regulates the balance between inflam
matory and regulatory T cell responses[77,78]. Inhibitory 
responses has been observed in vitro on adaptive 
immune cells in the presence of vitamin D[79]. Activated 
T cells have increased VDR expression compared to 
naïve T cells[80]. Both increased and decreased VDR-
dependent Foxp3 expression in murine model has been 
reported[81]. Murine Th1, Th2, and Th17 cells express 
significant Vdr transcripts, and the defined functions of 
VDR in these Th subsets is summarized below[81]. In the 
following sections we highlight the specific of vitamin D 
activity on each Th subset. The function of vitamin D in 
peripheral CD4+ T cells is summarized in Figure 3A.

Th1 cells
Th1 cells are characterized by the production of IFN-γ 
following differentiation stimulated by IL-12. IFN-γ 
activates and enhances the microbicidal activity of 

macrophages, and as such Th1 cells provide immunity 
against intracellular bacteria, fungi and protozoa[82,83]. 
T-bet is a master regulator of Th1 cell development[84]. 
In addition, both STAT4 and STAT1, the signaling and 
transcription factors downstream of IL-12 and IFN-γ, 
respectively, promote Th1 cell differentiation[85,86]. IL-12 
signaling also induces the transcription factor IRF-1, 
required for Th1 cell differentiation[87]. 

Several reports have demonstrated the effect of 
vitamin D in peripheral T cell responses. 1, 25D3 leads 
to an inhibitory effect on adaptive immune cells[79]. Cell 
proliferation is inhibited and the expression of IL-2, 
a T cell growth factor is attenuated in the presence 
of 1, 25D3[88,89]. Memory T cells that have abundant 
expression of VDR show profound inhibitory effect of 1, 
25D3[90]. Vitamin D suppresses the development of Th1 
cells while promoting Th2 cell differentiation[91]. 1, 25D3 
directly inhibits IFN-γ production in vitro[92,93]. In vivo Th1 
cell development is impaired in the presence of vitamin 
D that correlates with protection from inflammatory 
bowel disease[94]. Even though VDR-deficient animals 
have normal CD4+, and CD8+ cells; IFN-γ production 
by CD4+ T cells is significantly increased[95]. Vitamin 
D attenuates the production of IL-12 and IFN-γ from 
human leukocytes infected with Mycobacteria[96]. Mice 
lacking VDR augment IFN-γ responses and increase 
clearance rates of L. major in vivo[97]. The effects of 
the vitamin D response on host response to Candida 
infections is not completely understood though vitamin 
D deficiency results in enhanced replication of M. bovis, 
while addition of vitamin D suppresses tuberculosis 
replication[96,98,99]. In summary, vitamin D decreases 
IFN-γ production and IL-12 by DCs thereby attenuating 
Th1 responses.

Th2 cells
Naïve T cells activated by antigen in the presence of IL-4 
differentiate into Th2 cells that secrete IL-4, IL-5 and 
IL-13. Th2 cells provide immunity against extracellular 
parasites[100]. IL-4 acts as a positive feedback loop for 
Th2 differentiation, while IL-5 is eosinophil recruitment 
and development cytokine[101,102]. IL-13 plays a key 
role against parasite infections[103]. GATA3 acts as the 
master regulator of Th2 cells, while c-Maf expressed in 
Th2 cells is a potent transactivator of IL-4[104,105]. IL-4-
induced STAT6 is also required for the development of 
Th2 cells[106,107]. 

In Th2 cells 1, 25D3 enhances the production of 
IL-4[93]. When injected subcutaneously in mice in an 
allergic asthma model, vitamin D increases allergen-
induced T-cell proliferation, IL-4 and IL-13 and IgE 
production[108]. Surprisingly airway eosinophilia is 
attenuated following vitamin D administration[108]. 1, 
25D3 polarizes human T cells and murine T cells to a 
Th2 phenotype[109]. With increased concentrations of 
vitamin D, STAT6 expression is up regulated in human 
PBMCs, and STAT6 is required for the therapeutic 
effects of 1, 25D3 in EAE[109]. When pregnant rats are 
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supplemented with high dose of vitamin D, the offspring 
develop allergic responses due to altered Th1/Th2 
ratios[110]. Patients with allergic bronchopulmonary 
aspergillosis have attenuated Aspergillosis-induced Th2 
responses in the presence of vitamin D[111]. However, 
when vitamin D-deficient healthy females when under
go vitamin D supplementation there is significant 
difference in the expression of IL-4, IFN-γ, GATA-3, T-bet, 
STAT6 and STAT4[112]. Overall, vitamin D augments Th2 
differentiation by increasing the secretion of IL-4, IL-5, 
IL-10 and Th2-specific transcription factors.

Th17 cells
In the presence of TGF-β, IL-6 and IL-21, naïve CD4+ 
T cells differentiate into Th17 cells that produce IL-17, 
IL-21 and IL-22[113-115]. Th17 cells provide immunity to 
several extracellular pathogens including defense against 
infections from Candida, Citrobacter and Klebsiella[116,117]. 
The transcription factor RORγt is required for Th17 
differentiation[118]. IRF4, an inducer of GATA3 in Th2 cells 
is also required for Th17 development[119]. 

Vitamin D suppresses Th17 cell responses partly by 
inhibiting IL-6 and IL-23 production, cytokines required 
for Th17 cell differentiation and commitment[120-123]. 
One report suggested that vitamin D can prevent 
experimental autoimmune uveitis owing in part to 
direct suppression of Th17 cells[124]. In vitro 1, 25D3 
inhibits Th17 cytokine production via VDR but does not 
suppress Th17 gene transcription[125]. Mechanistically, 
1, 25D3 induces the expression of C/EBP homologous 
protein that suppresses the production of Th17 
cytokines[125]. The inhibitory effect of 1, 25D3 on IL-
17A transcription has been attributed to competition 
with NFAT at the level of DNA binding, recruitment 
of histone deacetylase to the IL17A promoter and 
sequestration of Runx1 by 1, 25D3[126]. The same 
study has also demonstrated that 1, 25D3 represses 
mIl17a transcription by attenuating recruitment of the 

transcription factor Runx1 to the Il17a promoter[126]. 1, 
25D3 also inhibits Th17 differentiation in both young 
asthmatic patients and healthy controls through a 
dendritic cell-dependent mechanism, inhibiting the 
expression of IL-17, IL-23R, RORC, and CCR6[127]. 
Overall, studies suggest Th17 cell polarization is 
attenuated by vitamin D.

Treg cells
Regulatory T cells (Tregs) control pro-inflammatory 
responses of effector Th cells and promote self-
tolerance[128]. Naïve CD4+ T cells exposed to TGF-β 
develop into inducible Tregs in the periphery, and 
these cells have similar properties to natural Tregs, 
derived from the thymus including having suppressive 
functions[129,130]. The transcription factor Foxp3 has 
been identified as a reliable marker for Treg cells 
in both human and mice[131,132]. IL-10 signaling in 
Tregs maintains the expression of Foxp3 for immune 
regulation[133].

1, 25D3 induces the differentiation and expansion of 
Foxp3+ Treg cells through several mechanisms[122,134,135]. 
Immunoglobulin-like transcript 3, (a surface molecule 
expressed on DCs and macrophages) up-regulation 
by 1, 25D3 in DCs could induce the production of 
Treg cells, though this is likely dispensable for Treg 
induction[134]. When applied topically, vitamin D aug
ments the suppressive capacity of CD4+CD25+ cells 
and CD4+ T cells from skin draining lymph nodes 
have reduced ability to proliferate in vitro[135]. With 
the help of IL-2, 1, 25D3 increases the frequency of 
activation-induced human Foxp3+ T cells[136]. There 
is increased number of CD4+CD25+Foxp3+ Treg cells 
and increased CTLA4 expression when CD4+CD25-T 
cells are cultured in the presence of vitamin D in 
vitro[136,137]. Vitamin D supplementation is associated 
with increased percentage of circulating CD4+ Treg 
cells in healthy individuals[138]. When administered 
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orally, calcitriol induces Tregs and immature DCs via 
intestinal exposure while decreasing atherosclerosis in 
mice[139]. There is an in vivo correlation between vitamin 
D status and Treg suppressive function in relapsing-
remitting multiple sclerosis patients[140]. However, there 
is a negative correlation between the Th1/Th2 ratio 
and 25-D level[140]. A VDRE is present in the human 
FOXP3 conserved non-coding sequence (CNS) that is 
homologous to the enhancer 1 region of the mouse 
Foxp3 gene and there is enhanced FOXP3 promoter 
activity in the presence of 1, 25D3[141]. Vitamin D 
also induces the development of IL-10-producing 
Treg cells; although, vitamin D does not affect IL-10R 
expression[142-144]. Monocyte-derived DCs pretreated 
with 1, 25D3 up-regulate the expression of PD-L1 and 
when co-cultured these DCs convert CD4+ T cells to 
IL-10-secreting Treg cells[145]. 1, 25D3 in the presence 
of dexamethasone induces the population of IL-10-
secreting Treg cells in both murine and human CD4+ T 
cells[146]. Overall, Treg cell development is augmented in 
the presence of vitamin D.

Th9 cells
Naïve CD4+ T cells in the presence of TGF-β and IL-4 
differentiate into Th9 cells producing IL-9[147,148]. The 
transcription factors PU.1 and IRF4 are required for 
the development of Th9 cells[149,150]. The effect of 
vitamin D has also been ascertained in IL-9-secreting 
Th9 cells. 1, 25D3 inhibits the development of Th9 
cells in mice concomitant with increased IL-10[151]. 
Vitamin D attenuates the production of IL-9 in purified 
memory T cells from healthy controls and patients with 
asthma[152]. However, vitamin D-mediated inhibition of 
IL-9 production by Th9 cells is not possible with anti-
IL-10 treatment[152]. 

Additional mechanisms
Vitamin D might regulate Th cell development and 
function through additional mechanisms that include 
direct regulation of gene expression by vitamin rece
ptors, regulation of miRNAs, and by altering epigenetic 
regulatory mechanisms. miRNAs control effector T cell 
differentiation and function[153]. Vitamin D-mediated 
regulation of T helper cells via modulating miRNA has 
not been studied in great detail. Vitamin D induces 
the expression of miR-22 in colon cancer cells that 
can potentially be therapeutic[154]. In addition, vitamin 
D-mediated regulation of miRNA has been established 
in bone[155]. T helper cell differentiation is also regulated 
by epigenetic modifications[156]. Vitamin D-mediated 
signaling via VDR entails both histone acetyltransferase  
and histone deacetylase (HDAC)[157]. Histone and 
DNA methylation are also regulated by vitamin D[158]. 
Vitamin D prevents the migration of T helper cells into 
CNS thereby attenuating experimental autoimmune 
encephalomyelitis (EAE)[159].

Retinoic acid and peripheral T cell responses
Retinoic acid affects specific adaptive immune responses 

and elicits effector CD4+ T cell responses[79,160,161]. 
Retinoic acid augments T-cell proliferation by inducing 
IL-2 secretion[162]. RA induces gut-homing receptors on 
T cells[163]. Depleting vitamin A significantly attenuates 
the number of IgA-secreting cells in rat ileum[164]. 
Vitamin A-deficient mice demonstrate defective Th-cell 
activity[165]. Retinoic acid augments the expression of 
gut-homing molecules α4β7 and CCR9 on CD4+ T cells 
maintaining intestinal homeostasis[166]. In the following 
sections we highlight the specific of retinoic acid on each 
Th subset. The function of retinoic acid on T helper cells 
is summarized in Figure 3B.

Th1 cells: Vitamin A deficiency leads to enhanced 
production of IFN-γ-secreting Th1 cells[167]. Retinoic 
acid inhibits Th1 cell development by attenuating IFN-γ 
production directly via RAR but not RXR[168]. In RA-
treated immunized mice there is reduced expression of 
Th1-specific transcription factors T-bet and IRF-1[169]. 
RA also attenuates the expression of STAT4 and T-bet 
in a mouse model of autoimmune insulitis[170]. Whether 
atRA can regulate Th1/Th2 balance in a strong Th1 
environment has been assessed[171]. In Gata3-deficient 
CD4+ T cells, atRA induces the expression of IL-4 while 
reducing the secretion of IFN-γ[171]. atRA abrogates 
the induction of Th1 cells in spleen and lymph nodes 
in vivo[172]. In RARα-transfected Jurkat cells, atRA 
significantly down-regulates Ifng promoter activity[173]. 
However, a report published this year argues RA is 
important for Th1 cell stability while preventing a 
switch to Th17 cells[174]. RA is required for STAT4-
dependent T-bet expression in Th1 cells[174]. At Th1 
lineage associated loci, RA-RARα regulates enhancer 
activity[174]. Overall, retinoic acid inhibits the production 
of Th1 cytokines both in vitro and in vivo.

Th2 cells: Vitamin A-deficient mice demonstrate poor 
antibody responses owing to significant decreases in 
Th2-cell frequency[165]. In the absence of exogenous 
cytokines, atRA significantly attenuates IFN-γ production 
but does not change IL-4 production[175]. When Th2-
polarizing cytokines are present, atRA significantly 
enhances IL-4 secretion in the presence of antigen-
presenting cells[175]. atRA enhances the transcription 
of Th2-associated genes including Gata-3, c-Maf and 
IL-4Rα in murine CD4+ T cells[168]. atRA has also been 
shown to have a similar Th2-promoting effect on human 
MBP-specific T cell lines in vitro[176]. A recent report 
suggested that in vitamin A-deficient mice, mesenteric 
lymph node DCs induce a Th subset producing high 
IL-13 and TNF-α[177]. Induction of this specific subset 
was mediated by B220-CD8α-CD103-CD11b+ DCs 
and was dependent on IL-6 and OX40L but inhibited 
by RA[177]. Both atRA and 9-cis RA are equally potent in 
promoting human Th2 cell development[178]. The role 
of specific retinoic acid receptors in either Th1 or Th2-
mediated disease pathology has remained unclear. 
RARα induces human Th2 cytokine production that 
correlates with the expression of CD38 and CD69[179]. 
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Similarly, RAR agonists, Am80 and Tp80 mimic the 
effect of RA[168]. However, one study reported that 
Am80 did not have any effect on IFN-γ production by 
Th1 clones[180]. atRA enhances the percentage of IL-5+ 
Th2 cells while RARα antagonist Ro415253 reduces the 
percentage of IL-5+ Th2 cells from house dust mite 
specific short-term cell lines[181]. Therefore, the studies 
indicate that retinoic acid promotes Th2 differentiation 
and maintains Th1-Th2 balance.
 
Th17 cells: atRA and RARα suppress the formation of 
Th17 cells and induce the production of Foxp3+ Treg 
cells[182,183]. The atRA-mediated inhibition of Th17 cells is 
independent of IL-2, STAT3 and STAT5 to overcome the 
effect of IL-6; however some initial IL-2 signaling may 
be required for the regulatory function of atRA[182,183]. 
In Th17 cells, RA attenuates the expression of TGF-β-
induced IL-6Rα and the transcription factor IRF4[184]. 
RA also suppresses Th17 cell development from Th1 
precursors[174]. In the absence of RA signaling there is 
increased expression of Th17-specific genes including 
Rorc, Il23r, Il22, Il21[174]. Overall, retinoic acid blocks 
the development of Th17 cells by down-regulating 
RORγt expression.

Treg cells: atRA plays an important role in immune 
tolerance via induction of Treg cells. In the presence of 
RA there is an induction of Foxp3+ Treg cells in murine 
CD4+ T cells[184]. 1, 25D3 augments dexamethasone-
induced expression of IL-10 by Tregs[185]. There is 
increased expression and phosphorylation of the TGF-
β-induced molecule Smad3 but not Smad2 in the 
presence of RA[184]. RA can override the negative effect 
of co-stimulatory molecules and specific secreted 
cytokines in enhancing the conversion of naïve T cells 
to Treg cells[186]. Even though there is RA-mediated 
induction of Smad3, enhanced Treg conversion is 
Smad3-independent[186]. The same study demon
strated that RARα, but not RARα1 deficiency blocks 
Treg cell conversion[186]. TGF-β also induces ERK1/2-
signaling pathway and Smad3 and ERK1/2 have 
complex interaction that is cell type-specific[187]. In 
human Tregs generated from cord blood ERK1/2 
signaling is impaired, while in relapsing-remitting 
multiple sclerosis patients the activity of ERK1/2 is 
altered[188,189]. In contrast, ERK1/2 signaling is activated 
by atRA leading to enhanced Foxp3 expression[190]. atRA 
induces CTLA-4, part of the T-cell co-stimulatory signal 
that differentially regulates ERK signaling pathway 
and is required by TGF-β to generate CD4+CD25+ 
Tregs[191-193]. For the development of human inducible 
Tregs (iTregs), the addition of atRA is required, even 
though atRA does not affect proliferation or survival of 
human CD4+ T cells[194,195]. After atRA treatment, human 
natural Tregs (nTregs) become resistant to conversion 
to Th1 and Th17 cells with sustained expression of 
Foxp3[191]. atRA induces the expression of Foxp3+Tregs 
from naïve CD4+ T cells but not from memory CD4+ 

T cells[195]. Maintenance of Foxp3 expression during 
nTreg expansion is mediated by atRA[196]. Even in the 
presence of inflammatory cytokines, atRA-pretreated 
Tregs maintain their suppressive capabilities[191]. 
Mechanistically atRA increases histone acetylation and 
methylation of Foxp3 promoter as well as conserved 
non-coding sites at the gene promoter[190]. In nTregs, 
atRA can inhibit methylation of Foxp3 in the presence 
of inflammatory cytokines[191]. In contrast to Th17 cells, 
retinoic acid induces the development of Foxp3+ Tregs 
indicating the reciprocal regulation between Th17 and 
Treg cells. Overall, the potential role of retinoic acid in 
peripheral T cells is described in Figure 3.

Retinoic acid has been shown to mediate epigenetic 
changes in embryonic stem cells[197]. Retinoic acid 
induces the expression of specific microRNAs and 
their precursors in human AML and in neuroblastoma 
cells[198,199]. miR-10a, which can act as tumor suppressor 
in breast cancer is also induced by retinoic acid 
and TGF-β altering the plasticity of T helper cells in 
process[200,201].  

Therefore, both vitamin D and retinoic acid could 
potentially regulate T helper cell differentiation via 
epigenetic modification and miRNA. 

ROLES OF VITAMINS IN ALLERGY AND 
AUTOIMMUNE DISEASES
Both vitamin D and retinoic acid have been implicated 
in allergy and autoimmune diseases[81,202]. This section 
highlights the role of both vitamins in allergy and 
autoimmune diseases such as EAE and type 1 diabetes 
(T1D).

Allergy
As both the prevalence of asthma and vitamin D 
deficiency has been increased it has been hypothesized 
that both of these parameters might be linked[203,204]. 
A cross-sectional study from the Third National Health 
and Nutrition Examination Survey suggests that serum 
vitamin D level is positively associated with FEV-1, 
the maximum amount of air to be expelled during the 
first second of forced expiration[205]. In Chinese adults 
with asthma, vitamin D deficiency has been associated 
with reduced lung function[206]. Low vitamin D levels 
have also been associated with markers of allergy and 
asthma severity[207]. Corticosteroids that are used to 
treat asthma patients function better in the presence of 
vitamin D, suggesting that low vitamin D concentrations 
might also impair therapy[208]. Serum 25-D level of 
less than 30 ng/mL has been associated with impair
ed lung function, airway hyper responsiveness and 
increased asthma exacerbations[209]. Vitamin D defici
ency in children with asthma being treated with 
inhaled corticosteroids is associated with reduced 
lung function[209]. However, one study did not find any 
correlation between the level of vitamin D and airway 
inflammation in a group of asthmatic children[210]. 
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However, vitamin D supplementation has not been 
suggested as a therapeutic in patients with symptomatic 
asthma[211]. A case control study performed in asthmatic 
children observed a possible association of vitamin D 
sufficiency status and VDR gene polymorphism[212]. 
Impaired maternal 1, 25D3 level during pregnancy 
impairs the production of Treg cells[213]. Even though 
most cohort studies have suggested that there is 
inverse correlation between maternal vitamin D level 
and early childhood risk of allergic sensitization, this 
is not consistent in all studies[214-216]. A recent study 
argued that neither serum 25-D level nor dietary intake 
of calcitriol is associated with allergy[217]. 

Retinoic acid-treated rabbit tracheal epithelial cells 
lead to enhanced mucin gene expression suggesting 
the potential role of retinoic acid in asthma[218]. Normal 
bone marrow cultures treated with atRA suppress 
eosinophil and basophil differentiation[219]. Further
more, human bronchial epithelial cell line BEAS-2B 
treated with RA, abrogates IL-4-induced production 
of eotaxin, an eosinophil chemoattractant[220]. The 
transrepression of eotaxin is not due to altered STAT6 
binding or AP-1 activity[220]. atRA reduces total cell 
counts and inflammatory cells in BAL fluid in asthmatic 
rats which could be due to reduced expression of NF-
κB and ICAM1[221]. RA also inhibits human bronchial 
smooth muscle cell migration by modulating PI3K/Akt 
pathway and is associated with inhibition of platelet- 
derived growth factor-induced actin migration[222]. 
In order to prevent atRA catabolism and clearance, 
liposome encapsulated atRA has been developed. 
When liposome-encapsulated atRA is administered 
intraperitoneally, OVA-induced IgE production and 
accumulation of IL-5 is increased[223]. However, when 
administered intranasally those parameters were not 
affected[223]. When inhaled atRA is given to a patient 
suffering from severe emphysema, inflammation and 
lung destruction are reduced[224]. In mouse models 
of allergic inflammation, atRA attenuates the asth
matic phenotype by inhibiting both Th2 and Th17 
responses[225,226]. In contrast, the expression of Foxp3 
is not altered after atRA treatment in the spleen of the 
asthmatic mice[226]. In an allergic asthma model when 
mice are treated with RAR inhibitor to block RA signaling 
the number of Foxp3+ cells were reduced in vivo[227]. A 
study has shown that atRA upregulates the expression 
of ORMDL3, a childhood asthma onset candidate gene 
via PKC/CREB pathway[227].

Autoimmune diseases: The function of vitamin D and 
retinoic acid have been studied in EAE (mouse model of 
multiple sclerosis) and T1D[228]. 

EAE: When naïve T cells with a TCR specific for myelin 
basic protein are transferred to recipient mice that are 
immunized later with MBP, recipients do not have EAE 
symptoms when they are treated with 1, 25D3[229]. This 
effect is mediated via VDR in T cells[230,231]. Peripheral 
CD4+ T cell priming and myelin-specific T cell trafficking 

remain unchanged after vitamin D treatment owing 
to an anergic T cell phenotype in vitamin D-treated 
groups[229,230]. A reduced number of Th1 cells in the 
periphery could also contribute to the therapeutic 
effect of vitamin D in treating EAE[232]. Vitamin D 
administered to rodents correlated with fewer CD4+ T 
cells in CNS, attenuated CNS pathology and reduced 
IFN-γ-production[81]. In healthy volunteers, vitamin D 
decreases the percentage of Th1 cells in circulation[233]. 
In contrast, it has been reported that vitamin D 
deficiency actually delays the onset of EAE[234]. Oral 
vitamin D treatment in healthy volunteers and in MS 
patients does not have a significant effect on the level 
of circulating IFN-γ[235,236]. 

Apart from Th1 cells, development of Th17 cells 
is affected by vitamin D in EAE. In EAE, there are 
reduced numbers of Th17 cells in the CNS after 
vitamin D treatment[237]. There are fewer Th17 cells in 
spleen in vitamin D-treated mice compared to placebo 
controls[125,238]. Vitamin D can either inhibit Th17 cytokine 
production or can suppress Il17 gene transcription in 
EAE[125,126]. When human CD4+ T cells are treated with 
vitamin D, the frequency of Th17 cells are attenuated, 
whereas increased doses of vitamin D reduce the 
proportion of Th17 cells in peripheral blood[137,233]. How
ever, vitamin D supplementation may not affect Th17 
cells in MS patients[239]. Th2 cells might also play a role in 
EAE[240]. Disruption of IL-4 slightly reduces the protective 
function of vitamin D in EAE, and there are increased 
IL-4 transcripts in the lymph nodes when vitamin D is 
administered before EAE induction[241,242].

In autoimmune diseases including MS there are 
defects in CD4+Foxp3+ Treg cells in peripheral blood 
cells and thymus[243-245]. There is correlation between 
percentage of Tregs and 25-D level as well as correlation 
of suppressive capacity of CD4+CD25+ Treg cells with 
serum 25-D level[239,246]. Seasonal increases in 25-D and 
1, 25D3 in healthy volunteers correlate with enhanced 
Foxp3+ Treg expression[247]. 

Retinoic acid suppresses EAE in rodents[176,248]. 
Production of IL-4 is correlated with better disease 
outcome when retinoic acid is used to treat EAE, while 
the level of IFN-γ, TNF-α, and IL-2 mRNA is attenu
ated[249]. Intraperitoneal injection of high dose of atRA 
protects animals from developing EAE and is associated 
with reduced IFN-γ and IL-17 production[184]. When 
synthetic retinoid AM80 is administered orally, early 
development of EAE is ameliorated concomitant with 
reduced Th17 cell differentiation[250]. The amelioration 
of EAE is mediated by down-regulation of MHC II 
molecules, CD80 and CD86 on the surface of DCs 
that results in altered polarization of both Th1 and 
Th17 cells[172]. As an additional potential mechanism, 
one report has suggested AM80 induces MDSCs 
thereby increasing the severity of EAE[251]. When atRA 
is combined with atorvastatin, a synergistic effect is 
observed in ameliorating EAE[252]. Tributylin, which 
activates RXR delays the onset of EAE[253]. Ligands for 
PPARγ and RXR generate additive anti-inflammatory 
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effects on EAE[254]. The decrease of pro-inflammatory 
cytokine production following helminth infection in 
multiple sclerosis patients is dependent on RA[255].

T1D: T1D is an autoimmune disorder where the 
immune system attacks the insulin-producing beta cells 
in the pancreas. The relationship between T1D and 
vitamin D is still not completely understood as most 
of the studies have been observational. Studies have 
observed that vitamin D supplementation may improve 
insulin sensitivity whereas, vitamin D deficiency has 
been suggested to affect the risk of T1D[256]. People 
diagnosed with T1D have a reduced level of vitamin 
D[257]. Approximately 15%-90% prevalence of vitamin D 
deficiency in patients with T1D has been reported[258-260]. 
A steady dose of vitamin D could reduce the risk of 
T1D[261,262]. Lower serum vitamin D level and insufficient 
supplementation during infancy may enhance the risk 
of T1D[263]. In addition, genetic association of VDR and 
age of onset of T1D has been assessed[264-266]. One 
progressive study observed no association between 
diabetes progression and vitamin D level[267]. Vitamin D 
deficiency during pregnancy may increase the incidence 
of T1D[268]. However, whether vitamin D intake during 
pregnancy would prevent children from developing T1D 
is not clear due to contradictory results[269]. A reduced 
level of vitamin D has been observed in children with 
T1D and multiple islet autoantibodies[270]. Both 1, 
25D3 and its analog TX527 suppress effector cytokine 
production and induce the production of IL-10-secreting 
CD4+CD25hiCD127lo T cells with regulatory function[271]. 
In NOD mice 1, 25D3 establishes tolerogenic DCs 
which are responsible for Treg expansion and IL-10 
production[272]. In the presence of vitamin D there is 
increased frequency of Tregs in the pancreatic lymph 
node in NOD mice[273]. Overall these results suggest 
that vitamin D deficiency correlates with increased risk 
of T1D. Thus vitamin D could help in managing some 
spectrum of the disease.

RA has been shown to attenuate inflammation in 
diabetic rat kidney and reduced proteinuria in diabetic 
rats[274]. In NOD mice with insulitis, atRA treatment 
suppresses diabetes associated with reduced IFN-γ-
producing T cells[170]. However, the percentages of 
IL-17- or IL-4-secreting cells are not affected. When 
CD8+ T cells from 8.3-NOD splenocytes are cultured in 
the presence of atRA and TGF-β, an induction of Foxp3+ 

CD8+ T cells is observed that suppress diabetogenic T 
cells both in vitro and in vivo[275]. atRA and exendin-4 
(which increases beta-cell mass and function) treatment 
before the onset of T1D prevents and reverses the 
disease; however, after the onset of the disease 
reversal of hyperglycemia or improved survival is not 
observed[276]. The suppression of T1D by retinoids is 
dependent on the presence of Tregs[277].

CLINICAL APPLICATIONS
As vitamin D deficiency is endemic and associated 

with various diseases, it is no surprise that vitamin 
D has its uses in the clinical practice. As previously 
mentioned, vitamin D aids in the suppression of allergic 
inflammation and autoimmune diseases including T1D 
and multiple sclerosis. A meta-analysis of 18 randomized 
controlled trials have suggested that even at a low dose 
vitamin D significantly reduces mortality[278]. Subsequent 
studies have indicated that the statin class of drug 
could attenuate mortality rate by enhancing the level 
of 25-D[279]. A 30% increase in the baseline dose of 
25-D reduces internal cancer by 60%, while the level 
of serum 25-D is an independent predictor of cancer 
risk[280]. Vitamin D attenuates the incidence of respiratory 
infections in children[281]. Vitamin D supplementation 
in food has been suggested to decrease the risk of 
autism[282]. Deficiency of vitamin D has been associated 
with increased risk of multiple chronic disorders[283,284]. 
Vitamin D is recommended to treat osteoporosis[285]. 
Seasonal deficiency of antimicrobial peptide (AMP) is 
secondary to vitamin D seasonal deficiency and could 
be linked, to flu epidemics[281]. Interestingly though 
vitamin D-sensitive AMPs inhibit HIV virus but vitamin 
D has been suggested play a role in the pathogenesis 
of HIV[286]. Vitamin D could provide respite against 
invasive bacterial diseases including meningococci 
and pneumococci. A therapeutic effect of vitamin D is 
also seen in non-small-cell lung cancer patients[287]. 
Consistent with its anti-inflammatory property, vitamin 
D enhances the life span in mouse model of SLE and 
inhibits contact hypersensitivity[288,289]. Vitamin D has 
also been successfully used to treat psoriasis[290]. It 
has also been suggested that vitamin D can potentially 
be used during transplantation. In rat model of renal 
transplantation vitamin D and its analogue prevents 
chronic allograft rejection while vitamin D delayed 
chronic allograft rejection in mouse model of aortic 
transplantation[291,292]. Intriguingly, VDR polymorphisms 
are associated with increased GVHD in bone-marrow 
transplantation patients[293]. It has been noted that the 
vitamin D analogue may be safer alternative to vitamin 
D-mediated immune modulation owing to its adverse 
effect in bone resorption and hypercalcemia[91].

Retinoic acid also has multiple clinical applications. 
A correlation between vitamin A supplementation and 
reduced diarrhea and mortality in HIV-infected children 
has been reported[294,295]. Retinoic acid has been 
suggested to induce terminal cellular differentiation in 
tumor cells[296]. Vitamin A has been demonstrated to 
maintain natural killer cell numbers that play important 
role in anti-tumor immunity[297]. atRA treatment doubles 
the survival rate of acute promyelocytic leukemia 
(APL) patients[298]. In the presence of HDAC inhibitor 
sodium phenylbutyrate, atRA induces remission in APL 
patient[299]. In addition, atRA along with trichostatin 
A, another HDAC inhibitor demonstrated significant 
inhibition of tumor growth associated with increased 
level of RARβ2 level[300]. RARα proteins play crucial role 
in the attenuating APL[54]. RA also initiates growth arrest 
of leukemia-initiating cells in APL mouse model[301]. 
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Retinoids have been suggested to induce irreversible 
differentiation of cancer stem cells[54]. Apart from cancer 
treatment, retinoic acid has also been suggested to 
treat autoimmune inflammation including EAE, adjuvant 
arthritis and experimental nephritis[180,249,302]. Retinoic 
acid has also been used for treating atopic dermatitis 
and psoriasis[303,304]. 

CONCLUSION
There is a paucity of data on the role of vitamin C, 
E, and K on adaptive immune system including the 
function in Th cell development. We have highlighted 
the role of vitamin D and retinoic acid on CD4+ T cells 
and their role in inflammatory disorders, but other 
vitamins likely also impact many of the responses 
we have described. Vitamin D-mediated paracrine 
signaling to CD4+ T cells affects its immunoregulatory 
mechanisms. The sources of vitamin D and the signals 
required to induce and inhibit vitamin D in vivo is crucial 
to the understanding of its role in health issues. Because 
of the use of common receptor RXR, vitamin D and reti
noic acid could potentially oppose each other’s contribu
tion in the development of T helper cells and modulation 
of inflammatory responses. 

A better understanding of the role of vitamin D in 
controlling effector CD4+ T cells could be achieved using 
animals that have T-cell-specific deletion of VDR. A 
study has demonstrated that vitamin D in combination 
with IL-2 induce the production of CTLA-4-expressing 
Treg cells[136]. CTLA-4 regulates the spectrum of T cell 
responses and CTLA-4 deficiency increases follicular T 
helper cells (Tfh cell) numbers[305]. Vitamin D also up-
regulates the expression of Helios and CD200, other 
markers of Tfh cells[81,306]. Whether vitamin D plays 
a role in the differentiation of Tfh cells has not been 
ascertained. Consumption of foods enriched with 
specific vitamins could alter the microbiota in our body 
leading to better immune responses.

There is ample indication that both vitamin D and 
retinoic acid could be used as future therapeutics to 
treat inflammatory diseases. Vitamin D and oral myco
phenolate mofetil lead to tolerance and acceptance of 
fully mismatched mouse islet isograft associated with 
increased frequency of CD4+CD25+CD152+ Tregs in 
a transplant model[307]. Mucosal vaccination might be 
aided by retinoic acid while vitamin D could be applied 
in transplant patients[308]. The role of vitamin D in 
cardiovascular disease remains unclear. The function of 
retinoic acid is also not explored in other inflammatory 
disease pathologies. However, the challenge remains in 
translating promising animal model results into humans. 
Once established, purchasing vitamins over the counter 
could be a safe and efficient approach to modifying 
immune responses.

KEY POINTS
Dietary supplementation of vitamin D and retinoic 

acid can be used to treat certain diseases; Skin, bone, 
dental health, cognitive function, and other physiological 
processes are maintained by vitamin D and retinoic 
acid; both vitamins A and D regulate immune system 
by affecting CD4+ T helper cell differentiation and 
lymphocyte activation; allergy and autoimmune diseases 
such as type I diabetes and EAE can be modulated 
indirectly by vitamin D and retinoic acid; Both vitamin 
D and retinoic acid have clinical implications for treating 
various inflammatory disorders.
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