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Abstract
Several clinical and experimental studies have shown 
that lung injury occurs shortly after brain damage. 
The responsible mechanisms involve neurogenic 
pulmonary edema, inflammation, the harmful action of 
neurotransmitters, or autonomic system dysfunction. 
Mechanical ventilation, an essential component of life 
support in brain-damaged patients (BD), may be an 
additional traumatic factor to the already injured or 
susceptible to injury lungs of these patients thus worsening 
lung injury, in case that non lung protective ventilator 
settings are applied. Measurement of respiratory mechanics 
in BD patients, as well as assessment of their evolution 
during mechanical ventilation, may lead to preclinical lung 
injury detection early enough, allowing thus the selection 
of the appropriate ventilator settings to avoid ventilator-
induced lung injury. The aim of this review is to explore 
the mechanical properties of the respiratory system in 
BD patients along with the underlying mechanisms, and 
to translate the evidence of animal and clinical studies 
into therapeutic implications regarding the mechanical 
ventilation of these critically ill patients.
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Core tip: Clinical and experimental evidence supports that 
preclinical lung injury occurs shortly after brain damage. 
Brain-damaged patients exhibit altered respiratory system 
mechanics and hypoxemia, even in the absence of 
clinically evident lung injury. Measurement of respiratory 
mechanics in such patients may reveal brain damage 
related lung injury early enough, and facilitate selection 
of the appropriate ventilator settings to avoid ventilator 
induced lung injury. Lung protective ventilation, consisting 
of low tidal volume and moderate levels of positive end-
expiratory pressure, may prevent a further deterioration of 
respiratory dysfunction, and could be possibly associated 
with improved outcome. 

Koutsoukou A, Katsiari M, Orfanos SE, Kotanidou A, Daganou 
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2016; 5(1): 65-73  Available from: URL: http://www.wjgnet.
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INTRODUCTION
Brain damage (BD), either due to spontaneous hemo­
rrhage or trauma, represents one of the most important 
causes of death and disability in modern societies. Alth­
ough morbidity and mortality of these patients are due 
principally to their primary disease, medical complications 
are frequent, with respiratory dysfunction being the most 
common[1-3]. Up to one third of BD patients develop acute 
respiratory distress syndrome (ARDS), a complication that 
has been associated with poor outcome[4,5].

Several clinical and experimental studies have confirmed 
that lung injury occurs shortly after brain damage. Rogers 
et al[6] found a significant increase of the lung weight 
along with edema, congestion and hemorrhage in 50% 
of patients who died within 96 h after isolated brain 
damage.

Ultrastructural changes in type Ⅱ pneumocytes along 
with an inflammatory response in the lung, similar to 
that induced by high tidal volume ventilation, have been 
observed in animals within the first hours of traumatic 
brain injury[7]. Similarly, alterations in lung architecture, 
such as alveolar hemorrhage, proteinaceous debris 
and neutrophilic infiltration were detected by Weber 
et al[8] in experimental traumatic brain damage. In 
addition, decreased pulmonary tolerance to subsequent 
mechanical stress due to mechanical ventilation[9], as well 
as aggravation of preexisting lung injury[10] have been 
reported after massive brain damage in animals. 

Although experimental as well as clinical evidence 
support the existence of a close interaction between 
the brain and lungs[11], the mechanisms by which brain 
damage leads to alterations in pulmonary function are 
unclear. They may involve neurogenic pulmonary edema, 
inflammation, neurotransmitter-related engagement, or 

adverse effects of neuroprotective therapies[12,13].
Mechanical ventilation is an essential component of 

life support in brain damaged patients. It is well known 
that, despite being lifesaving, mechanical ventilation may 
nonetheless cause or perpetuate lung injury if alveolar 
overdistention and repeated alveolar collapse and re-
expansion occurs with each breath [ventilator-induced 
lung injury (VILI)][14]. Non lung protective mechanical 
ventilation could thus constitute an additional traumatic 
factor to the already injured or susceptible to injury 
lungs of such patients[9,15]. Indeed, recent research has 
found that a lung protective strategy is an independent 
predictor of favorable outcome of BD patients[16]. Further­
more, it has been shown that lung protective strategy 
prevented the decline of pulmonary function consequent 
to brain death and increased the number of lungs 
available for transplantation[17], a finding particularly 
important in the context of lung transplantation because 
of the scarcity of lung donors. In relation to the latter, 
it should be noted that preclinical lung injury may be 
present in BD patients with “normal” chest X-rays; thus it 
is of paramount importance to have a marker that could 
detect such an injury. 

Measurement of respiratory mechanics in brain 
damaged patients, as well as assessment of their 
evolution during mechanical ventilation, may help in the 
detection of lung injury early enough, but also in selecting 
the appropriate ventilator settings to avoid VILI.

The aim of this review is to explore the mechanical 
properties of the respiratory system in brain damaged 
patients along with the underlying mechanisms, and 
translate the evidence of animal and clinical studies 
into therapeutic implications regarding the mechanical 
ventilation of these critically ill patients.

RESEARCH
The information in this review is based on results 
of a Medline and OVID search. The key words used 
were related to brain damage (traumatic brain injury, 
hemorrhagic stroke, intracranial pressure, brain death), 
and to acute lung injury/ARDS and mechanical ventilation 
(pulmonary edema, acute respiratory distress syndrome, 
ventilator induced lug injury, inflammation, respiratory 
mechanics, mechanical ventilation, tidal volume, positive 
end-expiratory pressure, lung transplantation). We read 
relevant articles in full, searched their reference lists, 
and chose the most relevant on the basis of findings and 
clinical significance. Bibliographies of identified articles, 
guidelines and conference proceedings of professional 
societies were reviewed for additional references.

FROM THE BRAIN TO THE INJURY OF 
THE LUNGS
Several nonexclusive mechanisms have been implicated in 
the brain to lungs’ injury process. Pulmonary dysfunction 
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after brain damage has long been attributed to an 
increased sympathetic activity. Massive catecholamine 
release may lead to neurogenic pulmonary edema[18], that 
is the extravasation of fluid from the blood into the alveolar 
and interstitial space of the lungs in patients who have 
suffered an acute neurological event. Several theories 
have been proposed considering the pathophysiology 
of this entity. The mostly recognized is the “blast injury”
theory, suggesting that the sympathetic storm which 
follows a sudden increase in intra-cranial pressure 
induces a transient increase in intravascular pressure 
and the consequent disruption of the alveolo-capillary 
membrane[18]. The development of neurogenic pulmonary 
edema is attributed either to hydrostatic forces, as it is 
supported by a low pulmonary/plasma protein ratio[19], or 
to high permeability mechanisms supported by increased 
accumulation of pulmonary extravascular protein[20]. The 
association between massive sympathetic discharge 
and neurogenic pulmonary edema is further supported 
by a more recent experimental study showing that 
pretreatment of brain-damaged rats with alpha-adrenergic 
antagonists prevented the hypertensive response and 
attenuated the subsequent lung injury[21]. 

In addition to the “blast injury” theory, a systemic 
inflammatory response seems to play a critical role in 
the development of lung injury after brain damage. 
Clinical studies in acutely brain-damaged patients 
have suggested an increased intracranial production[22] 

and release[23] of pro-inflammatory mediators into 
the systemic circulation along with possible activation 
of inflammatory cascades. Intracranial production of 
inflammatory cytokines probably takes place in brain 
microglia and astrocytes[23], while through the altered 
blood-brain barrier these mediators can reach peripheral 
organs leading to multi-organ dysfunction[22,24,25]. Indeed, 
Fisher et al[26] detected an increased concentration of 
proinflammatory cytokines in the bronchoalveolar lavage 
fluid (BALF) of patients with fatal BD. The same group 
later reported that increased levels of BALF interleukin-8 
(IL-8) in brain dead lung donors correlated with severe 
early graft dysfunction and recipient mortality, pointing 
out to the key role of such a preclinical inflammatory 
process[27]. 

Several experimental studies have confirmed the 
existence of a systemic inflammatory process in BD. 
In animals with acute brain injury, Kalsotra et al[28] 
detected a significant migration of macrophages and 
neutrophils into the lungs at 24 h post injury, associated 
with enhanced pulmonary leukotriene B4 production. 
Skrabal et al[29] investigated the very early organ-specific 
inflammation responses after brain death in pigs and 
found an up-regulation of the pro-inflammatory cytokines 
tumor necrosis factor-alpha (TNF-α), IL-1β and IL-6 in 
the animal lungs. All these substances are mediators 
that may modulate the expression of adhesion molecules 
and consequent activity[30]. In fact, an up-regulation of 
the soluble intercellular adhesion molecule-1 (ICAM-1) 
was found in the lungs of BD animals[29]. Similarly, 

Cobelens et al[31] found that experimental subarachnoid 
hemorrhage was associated with neutrophil influx into 
the lungs as well as increased expression of pulmonary 
adhesion molecules and chemokines. Adhesion molecules 
through activation, firm adhesion, and the chemotactic 
migration of leukocytes[32] may contribute to lung injury. 
In this respect, a strong association between increased 
serum levels of ICAM-1 and poor neurological outcome 
has been found by McKeating et al[33] in a cohort of 
BD patients. Among other molecules that have been 
linked with the brain to lung injury process are S-100B, 
E-Selectin and caspase-1[10,34]. Moreover, altered activity 
of pulmonary capillary endothelial angiotensin converting 
enzyme is present in brain dead subjects denoting 
preclinical pulmonary endothelial dysfunction[35]. In a 
similar respect, the presence of preclinical pulmonary 
inflammation in mechanically ventilated BD patients 
was revealed by markers measured in exhaled breath 
condensate[36]. 

Very recently, Nicolls et al[37] demonstrated that acute 
lung injury that followed traumatic brain injury in animals 
was mediated by high-mobility group box-1 (HMGB1), 
a nuclear protein that serves as an early mediator of 
inflammation[8]. The authors additionally showed that 
HMGB1 activates inflammatory responses through 
binding to receptor for advanced glycation end products 
(RAGE). The fact that RAGE is highly expressed on lung 
epithelial cells could partially explain why the lung is so 
sensitive to damage after brain injury. 

Severe brain damage may induce lung injury through 
modulation of neurokinins since such substances are 
released in patients with BD[38,39]. Substance P and 
neurokinin A have been implicated in bronchoconstriction, 
mucosal edema, increased vascular permeability, 
pulmonary edema and leukocyte adhesion activation[39]. 
Chavolla-Calderón et al[40] demonstrated that the 
derangement of the substance P receptor protects 
against pulmonary inflammation.

Finally, it has been suggested that excessive lung 
inflammation may be the result of BD-induced impairment 
of the parasympathetic nervous system leading to loss 
of the protective cholinergic anti- inflammatory path­
way[41,42]. Kox et al[43] have suggested that BD-associated 
increased intracranial pressure (ICP) may alter the 
immunoregulatory function of the vagus nerve, which 
may operate as an additional means through which the 
brain exerts control over cytokine expression[41]. Indeed, 
it has been reported that vagus nerve stimulation was 
followed by inhibition of TNF-α, IL-1, IL-6, IL-8 and HMGB1 
release[44]. dos Santos et al[45] supported the protective 
role of the cholinergic ant-inflammatory pathway, 
demonstrating that vagus nerve stimulation attenuated 
lung injury while in contrast vagotomy exacerbated VILI. 

Regardless of the responsible mechanisms, an injuri­
ous ventilatory strategy in the presence of an established 
inflammatory process may act as an additional stimulus 
that can aggravate lung damage. A “double hit” model 
could explain the development of organ failure associated 
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hypertension[10].
Finally, atelectasis, associated with anesthesia and 

paralysis or with impaired production/function of 
pulmonary surfactant as a result of brain damage, as well 
as alterations in chest wall mechanics, may be additional 
potential explanations for the increased Est,rs in this 
setting[7,47,48,52,53].

Gas exchange
Although hypoxemia is present in a substantial percentage 
of BD patients[15,47,48,54] and has been recognized as 
a secondary insult associated with poor neurological 
outcome[55-57], data on gas exchange in such patients are 
scarce. A moderate to severe impairment of oxygenation 
has been noted in patients with isolated brain injury in 
the absence of abnormal chest X-rays[6,58,59]. Similarly, a 
ratio of partial pressure of arterial of oxygen to fraction of 
inspired oxygen (PaO2/FiO2) below the normal limit was 
detected on the first day of mechanical ventilation in BD 
patients without acute lung injury[48], while oxygenation 
further deteriorated after 5 d on mechanical ventilation. 

Weber et al[8] reported that in animals with BD the 
degree of inflammation, as expressed by serum levels 
of HMGB1 were correlated with PaO2/FiO2. Mascia 
et al[60] found that BD patients who subsequently 
developed ARDS had at baseline an abnormal PaO2/
FiO2 ratio (< 300 mmHg), and that hypoxemia was the 
strongest independent predictor of ARDS development. 
Ventilation/perfusion (V/Q) mismatch and shunt, the 
main pathophysiological mechanisms of hypoxemia[61] 
ensuing from airway closure and atelectasis due to lung 
surfactant depletion[7,53] and/or increased extravascular 
lung water[10,47] might explain oxygenation impairment.

Given that brain damage patients are usually hyper­
ventilated for neuroprotection, data on ventilation and 
PaCO2 disturbances are missing.

VENTILATORY STRATEGIES
Ventilatory management of brain-damaged patients 
presents a major challenge for physicians since the fragile 
lung-brain balance must be preserved. The ventilatory 
strategy on one hand aims at maintaining adequate 
oxygenation and avoiding hypercapnia in order to protect 
the intracranial pressure and cerebral blood flow, and 
thus prevent secondary brain injury; on the other hand 
though it should avoid VILI. In addition, it should be 
noted that injurious mechanical ventilation per se may 
cause brain activation[62] or damage to selected brain 
areas[63] and thus, the selection of appropriate ventilatory 
settings becomes of paramount importance.  

According to the guidelines for the management 
of severe traumatic brain injury intense hypocapnia 
should be avoided, because it may compromise cerebral 
blood flow and aggravate hypoperfusion[64]. However, 
traditional ventilatory management of BD patients 
involves high tidal volumes to maintain mild hypocapnia 
(PaCO2-30-35 mmHg) for the treatment of intracranial 

with acute brain injury[15]. “First hit” corresponds to the 
adrenergic boost and systemic production and release 
of inflammatory mediators that make the lungs more 
vulnerable to a subsequent “second hit”, such as the 
mechanical stress induced by mechanical ventilation 
or the ischemia/reperfusion that may be seen in lung 
transplants[15]. 

RESPIRATORY MECHANICS AND GAS 
EXCHANGE
Although, as already mentioned, pulmonary dysfunction 
is a well-recognized complication of brain damage, it is 
surprising that until now very few studies have assessed 
respiratory mechanics in this group of patients. Moreover, 
although these patients usually need prolonged 
mechanical ventilation due to coma, few studies have 
assessed the impact of ventilatory settings on respiratory 
mechanics.

Two decades ago, Tantucci et al[46] studied a group 
of BD patients and found increased respiratory system 
flow resistance (Rmin,rs). Increased respiratory system 
resistance was also detected by Gamberoni et al[47] in 
BD patients with and, importantly, without respiratory 
failure. It should be noted that increased Rmin,rs was 
also found on the first day of mechanical ventilation in 
BD patients without acute lung injury[48].

Increased Rmin,rs could be attributed to broncho­
constriction, as a result of hyperventilation and conse­
quent hypocapnia that are usually therapeutically applied 
in these patients. In anesthetized and paralyzed normal 
subjects (i.e., without apparent lung pathology), D’Angelo 
et al[49] have shown that decreased partial pressure of 
arterial carbon dioxide (PaCO2) was associated with 
a significant increase in Rmin,rs. However, additional 
factors inducing bronchoconstriction and airway mucosal 
edema, such as neuropeptides, cannot be excluded as 
potential mechanisms, since such substances appear to 
be released and circulate in patients with BD[38,39]. Finally, 
an altered control of airway caliber has been proposed as 
a likely explanation for the increased respiratory system 
resistance[47]. 

Increased respiratory system elastance (Est,rs) has 
been found in experimental[8,50] as well as in clinical BD 
without acute lung injury[47,48,51]. Interestingly, only one 
study[46] reported non increased Est,rs, but this may 
reflect the high tidal volumes used for ventilation in the 
past (15 mL/kg). 

Increased extravascular lung water, a manifestation 
of pulmonary edema resulting from the sympathetic 
hypereactivity elicited by the central nervous system 
injury, might partially explain the aforementioned 
increased Est,rs. In this regard, it should be noted that, 
despite relatively normal chest X-rays, increased lung 
densities have been detected in CT scans of patients with 
BD[47]. In a similar respect, increased extravascular lung 
water along with CT scan lung densities were detected 
in animals soon after the induction of intracranial 
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hypertension accompanied by low levels of positive end-
expiratory pressure (PEEP) to optimize oxygenation 
without impeding cerebral venous drainage[64]. 

Furthermore, it is well established that this ventilatory 
strategy can exacerbate the pulmonary and systemic 
inflammatory response in patients with ARDS[65]. Even in 
patients without ARDS, ventilation with high tidal volumes 
proved to have deleterious effects and to induce VILI[66]. 
Moreover, according to the “double hit” theory, once 
the lungs are primed from a severe brain injury, they 
may become more susceptible to the injurious effects 
of mechanical ventilation[15] making VILI development 
more probable. In this respect, it was demonstrated that 
apparently healthy lungs of animals subjected to massive 
brain-injury developed more alveolar damage under 
injurious mechanical ventilation[9].

In clinical settings, high tidal volume and low PEEP 
have been implicated in deterioration of respiratory 
mechanics and unfavorable outcome in BD patients. A 
recent clinical study reported that in patients with severe 
brain injury, high tidal volumes, high respiratory rates, 
and hypoxemia were the stronger independent predictors 
of ARDS development[60]. Similarly, in mechanically 
ventilated patients with intracerebral hemorrhage, Elmer 
et al[16] showed that high tidal volumes were among 
the factors associated with ARDS development. High 
mechanical stretch with consequent alveolar distention, 
alveolar epithelial and vascular endothelial disruption and 
inflammation[14] may have contributed to the exacerbation 
of lung injury and ARDS in the already primed lungs of 
these patients[16].

Furthermore, in BD patients without acute lung 
injury, application of moderate levels of PEEP for 5 d 
prevented lung damage, as assessed by the increased 
Est,rs, present in the group of patients ventilated on 
zero end-expiratory pressure (ZEEP)[48]. In a later study, 
BD patients with no apparent lung pathology ventilated 
with ZEEP exhibited early and sustained increases of 
circulating inflammatory indices as compared to patients 
on 8 cmH2O of PEEP[36]. Avoiding end-expiratory collapse 
and maintenance of recruited alveoli by applying PEEP, 
may protect against “low volume” injury, that is the lung 
damage attributable to airway closure or heterogeneous 
constriction[67-72]. Atelectasis in the dependent lung zones 
and peripheral airway closure usually develop during 
general anesthesia even in normal lungs[52]. In BD 
patients, abnormal surfactant production due to injury of 
pneumocytes Ⅱ[7] or release of inflammatory mediators 
could enhance peripheral airway closure and atelectasis 
formation. Under these disorders, opening and closing 
of peripheral airways during tidal breathing would be 
possible, leading to the development of shear stresses 
that can damage peripheral airways[67]. In the presence 
of airway closure there is heterogeneous lung filling and 
emptying, conditions which might contribute to lung 
injury[73-75].

Application of PEEP in mechanically ventilated brain-
injured patients has been considered controversial. 

Although PEEP can optimize oxygen delivery to the 
brain[54,76], it may result in raised mean intrathoracic 
pressure and therefore might increase ICP through 
reducing venous drainage. Additionally, the increased 
intrathoracic pressure could lead to a decrease in arterial 
pressure, which in turn may decrease cerebral blood 
flow in patients with impaired cerebral autoregulation[77]. 

Clinical studies addressing the effect of PEEP in BD 
patients have mainly focused on the ICP and cerebral 
perfusion pressure (CPP) showing conflicting results[78-80]. 
The Starling resistor model serves the most suitable 
interpretation of the PEEP effect on the ICP[81]. Luce et 
al[81] documented in an animal study that the consequences 
of PEEP on ICP were more evident whenever the applied 
PEEP was higher than ICP. Later, McGuire et al[82], in a 
clinical study, provided evidence that PEEP levels up to 15 
mH2O were not transmitted to central nervous system if 
baseline ICP values were higher than the applied PEEP. 

Unexpected findings have been reported by Huynch 
et al[83] who have shown that increases in PEEP up to 
15 cmH2O, in 5 cmH2O increments, correlated with 
reduction in ICP and augmented CPP. Nevertheless, no 
physiologic explanations have been provided for these 
findings.

Decrease in mean arterial pressure as a consequence 
of increased intrathoracic pressure has been implicated 
as a responsible mechanism of PEEP-induced decrease 
in CPP. An observational study involving patients with 
subarachnoid hemorrhage demonstrated that restoration 
of mean arterial pressure returned CPP to baseline, 
supporting a PEEP-dependent decrease of the former as 
the underlying mechanism of CPP reduction post PEEP 
application, rather than an increase in ICP[84]. In this 
regard, Doblar et al[85] showed that euvolemia, achieved 
with hypertonic volume expanders, averted an undesired 
reduction in arterial and cerebral perfusion pressure after 
application of various levels of PEEP. 

The elastic properties of the respiratory system 
and its components could have an impact on the PEEP 
effect on ICP. In cases of low chest wall compliance or 
normal lung compliance, PEEP may increase intrathoracic 
pressure. On the contrary, reduced lung compliance could 
exert a protective role by minimizing airway pressure 
transmission[86]. However, clinical studies investigating 
the influence of respiratory system mechanics on the 
transmission of PEEP to the intracranial compartment have 
reported conflicting results[78,87]. Caricato et al[51] found that 
PEEP application resulted in reduction of CPP only in patients 
with normal respiratory system compliance, but had no 
effect on ICP regardless of the latter. Recently, a clinical 
study in patients with hemorrhagic stroke and respiratory 
system compliance within normal range displayed that, 
although PEEP up to 14 cmH2O significantly increased ICP, 
arterial and cerebral perfusion pressures were not affected 
and thus the observed increases in ICP were not clinically 
meaningful[88].

Application of PEEP may affect cerebral circulation 
through CO2-mediated mechanisms[89]. An increase in 
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PaCO2 directly causes vasodilation of cerebral arteries and 
a consequent increase in cerebral blood volume, which 
might result in a rise in ICP if intracranial compliance is 
reduced. In patients with severe brain injury and acute 
lung injury, Mascia et al[60] studied the cerebro-pulmonary 
interactions during the application of low PEEP levels. 
In brain-damaged patients with “relatively normal” ICP, 
these investigators found that when the application of 
PEEP induced hyperinflation with consequent increase in 
PaCO2, the ICP increased; in contrast when PEEP resulted 
in alveolar recruitment there were no effects on ICP and 
cerebral perfusion. 

Despite the aforementioned clinical and experimental 
studies, the ideal ventilation strategy for patients with 
massive brain damage has not been clarified. The “open 
lung” approach which integrates the use of low tidal 
volumes with high PEEP, despite its beneficial effect on 
morbidity and/or mortality in ARDS patients, has not 
been extensively studied in brain-injured patients. Wolf 
et al[90] found that an “open lung” approach, consisting 
of low tidal volumes and elevated PEEP levels after 
performing recruiting maneuvers, improved respiratory 
function in neurosurgical patients with severe respiratory 
failure without generating negative effects on cerebral 
physiology. A recent animal study demonstrated that an 
“open lung” approach, consisting of low tidal volumes and 
PEEP set according to the minimal Est,rs, attenuated lung 
injury in rats with massive brain damage[90]; however 
neurological parameters and therefore the potential 
impact of the open lung strategy on brain damage were 
not evaluated in this study. 

At present, it seems that the use of low tidal volume 
to avoid overdistention, and of moderate levels of PEEP 
to improve oxygenation and to avoid “low volume” injury, 
may be appropriate in patients with brain damage; 
however mean arterial pressure should be preserved 
and close attention to ICP and CPP alterations should be 
given. 

CONCLUSION
Several clinical and experimental studies have confirmed 
that lung injury occurs shortly after brain injury. Brain-
damaged patients without acute lung injury exhibit 
alterations of respiratory system mechanics, mainly 
increased respiratory system elastance and airway 
resistance, and hypoxemia. Ventilatory management 
of such patients should aim at optimizing neurologic 
protection, but at the same time at preventing further 
deterioration of respiratory dysfunction. Modifiable ventilator 
parameters possibly associated with improved outcome 
include low tidal volumes and moderate levels of PEEP. 
Nevertheless, more studies are needed to elucidate the 
potential beneficial role of an “open lung”approach in brain-
damaged patients with respiratory compromise. 
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