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Abstract
The recent development of stem cell research and the 
possibility of generating cells that can be stably and 
permanently modified in their genome open a broad 
horizon in the world of in vitro  modeling. The malaria 
field is gaining new opportunities from this important 

breakthrough and novel tools were adapted and opened 
new frontiers for malaria research. In addition to the new 
in vitro systems, in recent years there were also significant 
advances in the development of new animal models that 
allows studying the entire cell cycle of human malaria. In 
this paper, we review the different protocols available to 
study human Plasmodium species either by using stem 
cell or alternative animal models.
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Core tip: To better understand Plasmodium biology, 
researchers can whether proceed to in vitro  studies 
or use in vivo  models. Thanks to recent progresses, 
stem cells have been extensively employed to study 
Plasmodium liver and blood cycle in vitro . In parallel, the 
development of animal models opened new opportunities 
to study parasite biology in vivo . In this review, I go 
through and discuss the different available protocols 
using stem cells for modeling malaria in vitro  as well 
as available animal models. This review has for goal to 
decipher which system would be the more suitable to 
study the parasite biology.
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INTRODUCTION
Despite many years of eradication efforts, Malaria 
remains a major threat to humans living in endemic 
area, particularly in sub-Saharan Africa (WHO report 
2014). In the last two decades, the knowledge on many 
aspects of Plasmodium biology advanced significantly 
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including mechanisms of motility and cell invasion[1], 
modification of the host cell such as cytoadherence[2], 
immune evasion[3] establishment of liver infections[4] and 
hypnozoites dormancy[5]. These achievements would not 
be possible unless Trager et al[6] were able to establish 
Plasmodium culturing in vitro. The ability to successfully 
freeze Plasmodium isolates[7,8] and routinely culture 
laboratory-adapted strains (i.e., DD2, 3D7, W2) was 
one of the most important steps that allowed more 
researchers to study malaria outside endemic areas. 

In recent years, breakthroughs in stem cell research 
provided additional opportunities to study new aspects 
of the parasite biology, primarily of stages in the cell 
cycle in which culturing had been thus far challenging 
or impossible. In addition, the development of novel 
animal models completes the study of the entire cell 
cycle of human Plasmodium spp. and represents an 
appealing alternative to study host-parasite interactions 
with no need of human infection.

In this current paper we review and discuss the 
recent advances of novel procedures used to study 
human Plasmodium infection in vitro and in vivo.

STEM CELL DERIVED CELLS
Stem cell derived-erythrocytes
The lack of blood supply in blood banks that rely on 
constant blood donations, lead many researchers to 
look for alternative solutions to produce erythrocytes for 
transfusion[9]. The first report of the production of human 
erythrocytes from hematopoietic stem cells using a liquid 
system was described by Fibach et al[10]. These authors 
isolated mononuclear cells (MNC) from peripheral blood of 
a patient with -thalassemia, in which a defect in the chain 
of hemoglobin, cause an erythropoiesis increase. Using a 
two-step protocol, they could observe erythroid cells when 
cultured in the presence of erythropoietin (EPO). However, 
ethical concerns of using blood from a b-thalassemia 
patient presenting a defect in hemoglobin still remain 
(Figure 1).

Following this study, many protocols have been 
developed in order to generate erythrocytes from HSC 
(reviewed by Migliaccio et al[11]). In 2005, Giarratana et 
al[12] published what could be considered as the reference 
protocol to generate erythrocytes from HSC. Briefly, after 
isolation of HSC from diverse origins (peripheral blood, 
umbilical cord blood, bone marrow and leukaferesis 
product) through a magnetic assorted cell sorting (MACS) 
selection based on the CD34+ expression, cells were co-
cultured with mouse stromal cells (MS5). The cells were 
cultured in the presence of a cocktail of specific growth 
factors to allow a correct differentiation toward erythroid 
commitment: interleukin 3 (IL-3), hydrocortisone (HDS), 
stem cells factor (SCF) and EPO. After 20 d in culture, 
pure population of erythrocytes could be isolated from 
the supernatant. Nonetheless, production of erythrocytes 
from HSC faced some difficulties that limited the 
amount of cells which are produced as well as the 
ability to produce mature red blood cells (RBCs) (as the 

hemoglobin isoforms remain at fetal state).
The stem cell-derived erythrocytes have recently 

been intensively used in the malaria field to try to 
solve the challenging in vitro culture of Plasmodium 
vivax (P. vivax)[13]. Unlike P. falciparum that can invade 
erythrocytes of all ages, P. vivax shows a preference for 
invading immature erythrocytes (named reticulocytes)[14]. 
This preference for reticulocyte invasion makes use of 
peripheral blood as a source of cells to culture parasites in 
vitro nearly impossible as reticulocyte are only 0.5%-1% 
of erythrocytes in the blood stream and their lifespan prior 
to maturation is only 24 h. Thus a reticulocyte-enriched 
source of blood is needed in order to grow P. vivax in vitro. 
Early studies used several methodologies to concentrate 
reticulocytes from blood by ultracentrifugation[15], 
centrifugation on Percoll layer[8,16] or lysis buffer[17]. 
However, more recent studies demonstrated the 
preference of P. vivax for CD71high cells (reticulocytes)[18-20] 
revealing the possibility of using stem cell-derived 
reticulocytes. The first report attempting to establish 
an in vitro culture of P. vivax using HSPC-derived 
reticulocytes showed that parasites could be maintained 
in culture for more than 50 d using stem cell-derived 
reticulocytes[21]. This important study confirmed that 
stem cells could be used as a source of reticulocytes for P. 
vivax in vitro culture. However conditions still needed to 
be optimized as reticulocyte production were only 0.5% 
(after 14 d) and the parasitemia reached very low levels 
(below 0.0013%). In a more recent study, Noulin et al[22] 
were able to generate, after 14 d of culture, up to 18% of 
reticulocytes which were permissive to P. vivax invasion. 
They were also able to successfully cryopreserve 
reticulocytes in order to create a stock of cells to provide 
to P. vivax at each schizogony cycle. Nevertheless, the 
amount of reticulocytes generated remained extremely 
low and the parasite could still not multiply in vitro. 

Before HSPC-derived reticulocytes can be used for 
successful P. vivax in vitro culture, the problems of 
low reticulocyte yield and the lack of intra-erythrocyte 
development of the parasite must be addressed. Very 
recently, Roobsoong et al[23] proposed optimized P. 
vivax culture conditions in order to better maintain 
the parasite in vitro. As a source of reticulocytes, they 
differentiated CD34+ cells into reticulocytes using the 
previously described protocol and interestingly purified 
the reticulocyte population passing the cells through 
leukocyte reduction filters to get rid of nucleated cells. 
Alternatively, they also concentrated reticulocytes from 
peripheral blood (PB) and umbilical cord blood (UCB) 
on a 19% Nycodenz layer. They also tested different 
culture media (McCoy’s 5A, RPMI or Waymouth) supple
mented with different serum concentrations. The authors 
claimed they could maintain the parasite in vitro for 26 
mo, though the parasite density dramatically dropped 
from the first day to an almost undetectable level 
after the second day. We could conclude from these 
observations that P. vivax did not grow in vitro and thus 
more improvements are needed to reach a viable in vitro 
system.
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The parasite’s ability to invade and replicate within 
reticulocytes generated from HSPC is a precondition for 
the establishment of in vitro culture that relies on stem 
cells as a source. 

Tamez et al[24] were interested in identifying the 
earliest erythroid stage, which is permissive to P. falci­
parum invasion. They differentiated HSPC according to 
a previously published protocol[25]. Briefly, after CD34+ 
isolation, HSPCs were cultured for 8 d in the presence of 
IL-3, EPO and SCF with medium refreshment at day 3 
and 6 without IL-3 and decreased SCF concentrations. A 
selection was done after 7 d by FACS sorting based on 
CD71+ expression and the cells were cultured with only 
EPO supplementation for an additional 10 d. They found 
that the polychromatic erythroblasts were poorly invaded 
while ortho-erythroblasts could be invaded and allowed 
for parasite intra-cellular maturation, indicating the 
permissiveness of erythroid progenitors to P. falciparum.

Fernandez-Becerra et al[26] generated reticulocytes 
starting from HSPC isolated from adult PB, umbilical cord 
blood UCB and bone marrow (BM). Notably, they used 
3T3 cells instead of the more-commonly used MS5 cells 
as a layer for differentiating erythroid progenitors. They 
could reach a significant yield of reticulocytes (up to 
83.5%) and observed the presence of adult hemoglobin 
in reticulocytes derived from PB and BM. However, no 
information was given about the level of parasitemia 
post-invasion. A year later, Noulin et al[20] investigated 
different sources of HSPC. Remarkably, after CD34+ 
isolation and before differentiation, they applied an 
expansion step to increase their HSPC population. They 
could dramatically increase the HSPC population up to 10 
fold for UCB source, 3 fold for BM source and 1 fold for 
PB source. They also observed better enucleation in PB 
source (32%) vs BM (20.5%) and UCB (18%). All three 
sources tested had similar permissiveness and better 
invasion rates compared to reticulocyte-enriched blood 
leading to the hypothesis that P. vivax prefers immature 
reticulocytes. 

Recently, Egan et al[27] used a reverse genetics 
approach to investigate the role of RBC receptors that are 
involved in P. falciparum invasion. Using lentiviral shRNA 
delivery, they performed gene knockdown (kd) of different 
genes encoding for potential receptors in erythroid cells 
(starting from PB/HSPC isolated from Granulocyte-
colony stimulating factor-stimulated patient or BM). 
They differentiated those that were genetically modified 
erythroid progenitors on stromal cell layer to obtain 
enucleated cells used further for P. vivax invasion assays. 
The authors observed a dramatic invasion decrease in 
CD55kd as well as in CD44kd RBCs. This work was the first 
to highlight the possibility of using genetically modified 
erythrocytes to study Plasmodium biology. Nevertheless, 
since it is impossible to maintain HSPC as stem cells it is 
essential to repeat the kd procedure every time, which 
causes some variability between kd experiments.

Significant blood hemolysis was reported during 
malaria infection[28] and thus, HSPC are also of particular 
interest to study erythropoiesis impairment that leads 
to anemia during malaria episodes[29]. Several studies 
tried to investigate the mechanism by which Plasmodium 
infection causes erythropoiesis impairment. In this 
scope Hemozoin (Hz) attracted particular interest. Hz is 
produced by the parasite when it metabolizes heme in its 
food vacuole[30]. Casals-Pascual et al[31] and Skorokhod 
et al[32] investigated the influence of Hz on erythroid 
development. They isolated CD34+ cells by MACS followed 
by a well-established differentiation protocol[12] and 
noticed a marked decrease in erythroid production in 
presence of Hz. 

The influence of Hz on erythropoiesis was investigated 
by Malleret et al[19] using a different protocol. Starting 
from UCB, they differentiated CD34+ cells based on a 
3-step process[20]: 7 d in presence of Fms-like tyrosine 
kinase 3 (FLT-3) and thrombopoietin (TPO), 7 d with 
an addition of insulin growth factor-1 (IGF-1), SCF and 
EPO, and finally 2 to 7 d without SCF. They found that 
the main reasons for hemolysis are soluble mediators 

Stem cell-derived cells Plasmodium

P. falciparum

HSPC-derived erythrocytes
Study reticulocyte permissiveness[18-20,26]

iPSCs/ESCs-derived 
hepatocyte-like cells

Antimalarial drugs test[55]P. falciparum

P. vivax

Studies

Study erythrocytes receptors[27]

Study erythroid permissiveness[24]

Study erythropoiesis impairment[30-32]

Study influence on erythroid transcriptomic[33]

Establishment in vitro  culture[21,22]

Study erythropoiesis impairment[34]

Figure 1  Chart of the different stem cells used for Plasmodium in vitro modeling and their applications. Scheme of the different sources of stem cells used for 
liver and blood cycles of Plasmodium falciparum in vitro studies. The main aims of each study are indicated on the right.

Noulin F. Stem cells and malaria modeling



91 March 26, 2016|Volume 8|Issue 3|WJSC|www.wjgnet.com

from Hz-stimulated PBMC rather than erythropoiesis 
impairment due to Hz itself.

It appears that P. falciparum infection significantly 
influences transcription in erythroid progenitors as shown 
by Tamez et al[33]. Following the erythroid development 
protocol they previously developed[24], they observed an 
up-regulation of 35 genes in polychromatophilic erythroblasts 
and 609 regulated genes in ortho-erythroblasts. These 
results may indicate a negative effect (direct or indirect) of 
P. falciparum on erythropoiesis.

P. vivax infection has a similar effect on erythroid 
development[34]. Using a modified protocol previously 
developed by Giarratana et al[12] (without stromal feeder 
cells) the authors co-culture erythroid cells with P. 
vivax-infected reticulocytes (intact or lysed), uninfected 
erythrocytes, in presence of tumor necrosis factor alpha 
(TNF-α) or interferon gamma (IFN-g). They observed a 
decrease of the erythroid multiplication and development 
in the presence of infected reticulocytes lending support 
to the idea that that P. vivax might have a negative effect 
on erythropoiesis.

The recent important development of stem cell 
research contributed to the production of stem cell-
derived erythrocytes, and enabled testing the use of 
human embryonic stem cells (hESCs) or human induced 
pluripotent stem cells (hiPSC). Indeed, recent findings 
have demonstrated that those pluripotent cells can be 
maintained and expanded in vitro prior to differentiation 
into specific lineage[35,36]. To date, several protocols have 
been developed to generate mature erythrocytes from 
hESC or hiPSCs with partial success. Lu et al[37] developed 
a protocol to produce enucleated red blood cells from ESC. 
The differentiation was initiated by dispensing hESC as 
erythroid bodies (EBs) in presence of bone morphogenetic 
protein 4 (BMP4), vascular endothelial growth factor 165 
(VEGF165), beta fibroblast growth factor (b-FGF), TPO, 
FLT-3 and SCF to induce mesodermal commitment. The 
second step, which is the erythropoiesis leading to the 
last stages of the blood production, was performed in co-
culture with OP9 cells or human mesenchymal stem cells 
(huMSC) in presence of IL-3, HDS, EPO and SCF. Using 
this technique, they could get up to 40% of enucleated 
cells. In 2010 Lapillonne et al[38] reported that by starting 
from hESC and hiPSCs they could get up to 66% of 
enucleated erythrocytes. To achieve this amount, they 
used a two-step protocol where the cells were initially 
cultivated as EBs in the presence of 5% human plasma 
with BMP-4, VEGF165, TPO, FLT3, SCF, IL-3, EPO and IL-6 
for 20 d. After dissociation into single cells with collagenase 
B, cells were cultured in feeder-free condition with 10% 
human serum together with growth factor cocktail as 
previously described[12] for 25 d.

Although discussed in many papers, to the best of our 
knowledge, there is no record for the application of ESCs/
iPSCs in malaria research thus far. The development of 
such techniques and the possibility to permanently edit the 
genome of erythroid cells will make a great contribution 
for a deeper study of intra-erythrocyte parasite biology.

Stem cell derived-hepatocytes
Studying the liver stage of Plasmodium parasites is of great 
importance for understanding the establishment of infection, 
and for immunogenic and therapeutic purposes[39,40]. In 
addition, P. vivax can produce dormant forms known 
as hypnozoites in the liver[41]. These hypnozoites are 
responsible for its ability to maintain long term infections 
and relapsing episodes that contribute to the difficulties of 
eradicating P. vivax[42].

An immortalized HepG2 cell line[43] has been extensively 
used as starting material to investigate the exo-erythrocytic 
(E.E) cycle of P. berghei[44], P. vivax[45], P. falciparum[46] 
and P. gallinaceum[47]. However, even though they were 
able to infect liver cells with P. falciparum sporozoites, it is 
still difficult to get these parasites to successfully complete 
the cycle and infect RBCs. This difficulty was overcome 
by Sattabongkot et al[48] that generated a hepatocyte cell 
line (HC04) that enabled the full development of both 
P. vivax and P. falciparum. Briefly, hepatocytes isolated 
from a hepatoma patient were cultivated with insulin, 
epidermal growth factor, thyrotropin releasing factor, HDS, 
glucagon, nicotinamide, linoleic acid, L-glutamine, pyruvic 
acid and MEM essential amino acids at 37 ℃ and 5% CO2. 
Interestingly, the levels of enzyme activities and protein 
secretions were higher than the ones observed in HepG2 
cell line. These cells were infected with P. falciparum and 
P. vivax sporozoites and when RBCs were added to the 
culture, blood stage parasites were observed after 7 and 10 
d for P. falciparum and P. vivax, respectively.

One of the drawbacks of using immortalized cell lines 
is that the metabolism of those cells might differ from the 
in vivo ones. To solve this problem Mazier et al[49] used 
primary rodent hepatocytes to try and mimic the in vivo 
conditions. They found that P. vivax parasites were able 
to develop and after 10 d, rings could be observed in 
reticulocytes added in co-culture. Recently, using human 
and primate primary hepatocytes, Dembélé et al[50] 
successfully cultured in vitro E.E stages of P. falciparum 
as well as P. cynomolgi, for which they able to get the 
hypnozoite forms.

Using primary cells for parasite cultures requires 
that fresh cells be constantly available. To bypass this 
obstacle, March et al[51] were able to culture previously 
frozen primary hepatocytes that remained permissive to 
Plasmodium sporozoites, in a microsystem surrounded 
by fibroblast stromal cells.

Primary simian hepatocytes were used to evaluate the 
effect of a drug (KAI407) on P. cynomolgi liver stage[52]. 
Primary hepatocytes isolated from rhesus macaques were 
infected with P. cynomolgi sporozoites in the presence or 
absence of the KAI407 compound. The development of E.E 
stage was well established in vitro, but the incubation with 
KAI470 was shown to inhibit formation of liver schizonts 
as well as hypnozoites. Similarly, P. berghei liver stages 
could develop within murine primary hepatocytes in vitro 
but their ability to infect RBCs remain unexplored in this 
study[53]. 

Immortalized murine hepatocytes (Hepa1-6) were 
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used to test malaria vaccine candidates on P. berghei 
E.E stage[54]. It appears that the TRAP-based vaccine 
in the presence of CD8+ enriched splenocytes inhibits 
the parasite development in the liver. This method was 
proposed as an in vitro system to screen possible vaccine 
candidates but its suitability to human Plasmodium 
vaccines needs further investigation.

Surprisingly, stem cell-derived hepatocytes have not 
been used widely used for malaria research. Nonetheless, 
Ng et al[55] generated hepatocyte-like cells (HLCs) from 
ESC or iPSCs originating from human foreskin fibroblasts, 
which were permissive to different Plasmodium species 
including P. falciparum, P. vivax, P. berghei and P. yoelii. 
The hepatocyte differentiation protocol was adapted from 
the one previously described[56], in which the ESCs/ iPSCs 
were cultivated for the first 5 d in presence of activin A (100 
ng/L) to induce endodermal commitment. The following 
10 d led to hepatoblast formation through hypoxia culture 
condition and was divided into two steps; the first 5 d in 
presence of BMP-4 and FGF-2 and the last 5 d in presence 
of hepatocyte growth factor (HGF). During the last 5 d, 
the cells were maintained with oncostatin to generate 
mature hepatocyte-like cells. Their HLCs allowed them 
to test different antimalarial drugs such as Atovaquon or 
Primaquine on liver stages. However, iPSC-derived HLCs 
have low levels of enzymes that metabolize drugs as they 
remain immature hepatocytes and thus are not optimal 
for antimalarial drug screen.

Many protocols to generate HLCs from ESCs/iPSCs 
(reviewed in Schwartz et al[57]) or adult stem cells 
(reviewed in Zhang et al[58]) are available. However, 
one should note that different protocols seem to create 
a variety of HLCs with different characteristics. A 
general scheme can be drawn with a 4-steps protocol: 
Mesodermal differentiation (in presence of activin A), 
hepatic specification, hepatoblast expansion and hepatic 
maturation. For each of these 4 steps, growth factor 
concentrations as well as the time of exposure remain 
variable between different studies. 

Optimizing the generation of stem cell-derived 
hepatocytes, which are more similar to the adult hepa
tocyte, would have great impact on understanding the 
biology of Plasmodium E.E stages and lead to improved 
testing of potential antimalarial drugs and vaccine 
candidates.

ANIMAL MODELS
Murine models
Besides the use of in vitro modeling to study Plasmodium 
biology, there are several in vivo models that aim to mimic 
human infections. Several animal models are available 
for diverse Plasmodium species. Among those, the most 
common one remains the mouse model, which is less 
costly, more available and much more convenient to 
maintain than primates or other large models. P. berghei 
and P. yoelii (both rodent Plasmodia) are commonly 
used for in vivo studies as these species share important 
similarities with primate and human parasites[59]. P. yoelii 

shares common features with P. vivax [i.e., P. yoelii 
virulence genes (yir genes) homolog of P. vivax vir genes] 
that make this parasite ideal for in vivo studies[60]. P. 
berghei seems to be a better model for P. falciparum in 
vivo studies, especially concerning blood stage vaccine 
studies[61] (Figure 2).

Nevertheless, even in murine Plasmodium species 
that share some features with human Plasmodium, the 
ability to interpret and draw conclusion from phenotypic 
observations from murine to human species remains 
questionable. 

Recent developments has partially resolved this 
problem, through the use of humanized mice (reviewed 
in Kaushansky et al[62]) .This system represented 
an important breakthrough in the field of laboratory 
modeling[63] and the application of this model through 
infections of humanized mice with P. falciparum begins to 
make an impact the malaria field. Infection of humanized 
mice with P. falciparum infected RBCs was done by 
directly injecting human red blood cells (huRBCs) into 
the mouse blood stream via the intra-peritoneal route[64] 
or intravenous route[65]. The main problem using intra-
peritoneal injections is the difference in migration of 
the injected huRBCs into the blood stream between 
experiments and the lack of reproducibility from one 
mouse to another. Intravenous delivery as proposed 
by Arnold et al[65] allows a more stable and long-lasting 
presence of huRBCs within mouse host. Notably, they also 
injected parasitized huRBCs and could reach significant 
parasitemia (up to 10%) by adding new huRBCs 
intravenously every 2-3 d. 

An alternative method that is now more commonly 
used is the engraftment of HSPCs into immune-deficient 
mice[66]. This method allows for continuous production 
of human RBC in the mouse blood stream. The main 
obstacles of this methodology are the short lifespan of 
those cells within mouse bone marrow and the variability 
in the engraftment success[67]. Technically speaking, 
many protocols have been investigated with different 
combination of mice and HSC sources. Generally, CD34+ 
cells mainly isolated from umbilical cord blood were 
isolated via MACS selection and injected intrahepatic 
or intravenously within immune-depressed mice. Inter
estingly, TPO was shown to increase engraftment of 
CD34+ cells in mouse host[68]. 

Recently, Amalados et al[69] were able to generate 
huRBC permissive to different P. falciparum strains by 
transfecting the HSC with a plasmid that expresses IL-3 
and EPO. Using this procedure they were able to produce 
only low amounts of huRBC (1.5%-2.8%) and parasite 
density was decreasing constantly and thus will require 
further optimization. Unfortunately, to the best of our 
knowledge there is no report on using similar systems 
of humanized mice to study the P. vivax asexual cycle in 
vivo. 

To date, the major contribution of using humanized 
mice was to study liver stage parasites which remain 
the main target for vaccine development[70]. 

To engraft human hepatocytes (huHep) within immune-
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depressed mice, it is essential to initially generate damage 
in order to activate the liver cell repopulation to allow 
integration of delivered human cells. Several options 
are available to manipulate mouse hepatocytes: (1) use 
urokinase plasminogen activator (uPA) toxin[71]; (2) use 
fumarylacetoacetate hydrolase knockout mice, dependent 
of the protection of the 2-(2-nitro-4-trifluomethylbenzoyl)-
1,3-cyclohexanedione (NTBC) drug[72]; (3) use herpes 
simplex virus type 1 thymidine kinase transgene depen
dent of ganciclovir (GGV) activation[73]; (4) use caspase 8 
oligomerization activated with AP20187 drug[74]; and (5) 
use diphtheria toxin receptor transgenic mice[75]. According 
to the different reports the success rate of colonization of 
the mouse liver by human hepatocytes range between 
nearly 50%[76] to 60%[75]. A higher ratio of 90% remains 
so far untenable as murine hepatocytes are needed for 
metabolic functions.

P. falciparum was shown to be able to invade and 
develop within hepatocytes of several humanized mice 
models. The first successful attempt was reported by 
Morozan et al[77]. Using uPA mice, they were able to engraft 
human hepatocytes (up to 26%) and after 3 mo, injected 
them with P. falciparum sporozoites. This methodology 
allowed them to complete the EE development of 
the parasite to the final schizogony stage. One of the 
applications of humanized mice is the investigation of 
potential hepatocyte receptor for Plasmodium sporozoites 

invasion. Foquet et al[78] investigated the possibility that 
CD81 receptor and scavenger receptor type B class Ⅰ (SR-
BI) are the entry gates for P. falciparum into the liver. They 
showed that in presence of anti-CD81, the hepatocyte 
invasion was prevented while anti-SR-B1 did not alter the 
infection process. The humanized mice used for this study 
were uPA mice but no indication on the level of human 
hepatocytes engrafted was indicated. Drug tests can be 
performed as well in humanized mice as demonstrated by 
Douglass et al[79]. They monitored the clearance of GFP-luc 
transgenic P. falciparum from the liver after treatment with 
different antimalarial drugs and could observe a complete 
clearance of the parasite using Atovaquone (inhibitor 
of mitochondrial electron transport chain), Serdemetan 
(p-53 activator) and Obatoclax (BCL-2 family inhibitor). 
This work shed light on the use of humanized mice to test 
potential antimalarial drug effect in the human hepatocyte 
niche.

Recently, humanized mice have been described as 
a perfect environment to genetically cross Plasmodium 
strains in order to study genetic determinants[80]. 
Sporozoites of two different Plasmodium strains were 
injected intravenously into FRG NOD HuHep mice and 
the EE stage monitored by bioluminescence. The injected 
sporozoites could maturate and invade huRBC injected 
within the same mice. Unfortunately, the mice were 
rapidly euthanized and thus no information on the parasite 

Host
Human 
plasmodium

Humanized system 
generation

Parasite infection

Intravenous injection of pRBC[65]

Sporozoites injection

Intraperitoneal injection of pRBC[90]

Intravenous injection of pRBC[91,93]

Sporozoites injection[89,102]

Intravenous injection of pRBC[104,105]

Intravenous injection of pRBC[109]

Sporozoites injection[106-108]

huRBC injection

P. falciparum

P. falciparum

P. vivax

P. knowlesi

P. falciparum

P. vivax

huHep engraftment[77-79]

huHep + huRBC[80,82]

huHep + HSC[81]

Figure 2  Chart of the different combinations animal model/human Plasmodia for in vivo studies. Scheme of the different animal models coupled with human 
Plasmodium studies. The different cell types injected within humanized mice are indicated in the column “Humanized system generation” and the Plasmodium 
injection mode under the column “Parasite infection”.
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development in the huRBC could be documented.
Combining human liver and blood stages to get a 

whole vertebrate cycle within humanized mice remains 
the ultimate goal of those models. Wijayalath et al[81] 
reported this full cycle in a humanized mouse. To create 
the mouse model, they injected CD34+ cells that can 
be the origin of many cell types (i.e., cardiomyocytes, 
endothelial cells or hepatocytes) in order to be able to 
recreate a whole human system suitable for the parasite. 
They could observe an engraftment of 0.023% of huHep, 
11% of human Kupffer cells and only 0.2%-1% of 
huRBC due to poor erythroid differentiation. Sporozoites 
were injected intravenously, developed within the liver 
(as shown by immunohistochemistry) and then reached 
the blood circulation with a very low parasite density of 
2-5 parasite/L (parasite density 0.0001%). The asexual 
stages were then cultivated in vitro to obtain gametocytes 
that could develop into oocytes and sporozoites within 
mosquitoes. The possibility of getting the whole P. 
falciparum cycle in humanized mice would be a great 
achievement. Nevertheless, in this study, the low levels 
of engraftments of human cells, the low parasite density 
as well as the obligation to generate gametocytes in vitro 
indicate that this system needs further optimization for 
studying the complete cycle of Plasmodium parasites. 
More recently, Soulard et al[82] achieved the complete P. 
falciparum cycle in humanized mice, from liver stages to 
sexual forms in the blood. They got up to 80% of huHep 
and above 80% of huRBC that can be maintained for 5 
wk in mice with daily injections. P. falciparum sporozoites 
could migrate into huHEP in the mice liver and schizonts 
were observed 7 d post-infection. The parasite asexual 
stages could be detected in the blood from 8 d post-
infection and sexual stages after 21 d. The parasitemia 
reached up to 1.52%. In addition, they could infect 
hepatocytes with P. ovale sporozoites and observe the 
formation of several hypnozoites, but there was no 
indication for P. ovale asexual stages in the blood. 

These mice open new frontiers for studying human 
Plasmodium in vivo. Nevertheless, the variations between 
mice and experiments should be taken into account 
when designing experiments and analyzing the results. It 
would be extremely beneficial to expand the use of these 
mice and apply it to get a mouse model for P. vivax (using 
reticulocyte-enriched huRBC). 

While the use of humanized mice obviously offers a 
wide range of new possibilities to study the biology of 
human Plasmodium spp. in vivo, the need to work with 
immune-depressed mice makes them unsuitable for 
vaccine development.

Primate models
Beside the use of mice as animal model, primates 
appear to be a very suitable model to study malaria as 
they are evolutionary close to humans[83] and they are 
natural hosts of human Plasmodium spp.[84,85]. Studies 
on host-parasite interactions benefit from of this in vivo 
system that allows collecting samples and data regularly. 

A complete overview of the use of primates for malaria 
modeling has already been reviewed by Beignon et al[86].

Nowadays, the uses of non-human primates (NHP) 
are preferred for in vivo research despite ethical reasons 
that restrict experimenting on primates. Therefore, NHP 
allows larger sample size and more reagents are available 
for these models[87]. 

To increase parasite density and maintain long-term 
Plasmodium infections within the host, primates need to 
be splenectomized[88]. Parasite infection is done either 
by injecting Plasmodium sporozoites[89] or by direct 
injection of parasitized RBC (pRBC)[90,91].

The use of these primate models for P. falciparum 
studies has been restricted mainly to Aotus monkeys[92] 
that could be infected with several P. falciparum strains. 
The first report of Aotus infection with P. falciparum 
was described by Geiman et al[90]. They injected intra
peritoneally pRBC from a P. falciparum infected woman 
into a splenectomized Aotus monkey. They were able 
to detect asexual forms of the parasite in the primate 
blood 54 d post-injection. These primate models were 
used to test potential blood stage antigens for vaccine 
development, i.e., MSP-1[93] or PfEBA-175[91]. Briefly, Aotus 
primates pre-treated with potential vaccine-candidates 
were challenged by the injection of pRBC and the parasite 
density was monitored in order to analyze the protection 
provided by the initial challenge of the potential vaccines.

Many P. vivax isolates have been adapted to several 
NHP models, among those: The Chesson strain, Salvador 
I strain and others, which allowed getting an important 
source of study material. In 1966, Young et al[94] were 
able to infect Aotus primate with pRBC isolated from a 
P. vivax infected patient. Interestingly, they also infected 
two human volunteers as well as one primate through 
infected mosquito bites and after 11 d they could only 
identify P. vivax infection in the human volunteers while 
parasitemia in the monkeys could be observed only after 
41 d followed by his death 5 d later. 

Primate models have been intensively used to study 
P. vivax liver stages[87]. The development of an in vivo 
system to study the ability of P. vivax to generate dormant 
forms (hypnozoites) in the liver, which cause relapses 
of the infective forms[41] would aid in understanding the 
dynamics of this process. Collins et al[89] tested different 
primate species infected with the P. vivax Salvador I strain 
and identified Saimiri boliviensis as the most suitable 
primate species to study P. vivax liver stages.

As an alternative to human Plasmodium studies in 
monkeys, researchers recently focused on close simian 
Plasmodium spp in NHP: P. knowlesi as a model for P. 
falciparum and P. vivax[95,96] and P. cynomolgi for P. 
vivax[97]. Indeed, these simian Plasmodium spp share 
important features with their human orthologues and 
can be used to better understand parasite biology 
or test potential vaccines[98]. The primate infection 
remains identical to the process used for P. falciparum 
and P. vivax. Krotoski et al[99] were the first to identify 
the P. cynomolgi hypnozoite stage after inoculation of 

Noulin F. Stem cells and malaria modeling



95 March 26, 2016|Volume 8|Issue 3|WJSC|www.wjgnet.com

sporozoites into rhesus monkeys. Akinyi et al[100] were 
able to create a P. cynomolgi transgenic line expressing 
a red fluorescent protein, which was used to track the 
parasite in vivo.

P. knowlesi can also infect humans can be used as 
model for both P. falciparum and P. vivax infections 
and also to study its own infection traits in human[101]. 
Irradiated P. knowlesi sporozoites injected into rhesus 
monkeys achieved a relative protection against further 
P. knowlesi infections, demonstrating the use of P. 
knowlesi as a model for vaccine development[102]. 

P. knowlesi can also be applied as a model to 
study severe malaria usually caused by P. falciparum. 
Barnwell et al[103] could observe a link between the 
expression of schizont-infected cell agglutination and 
the severity of the infection in rhesus monkeys, linking 
between pathogenicity and antigenic variation caused 
by variant surface antigens in P. knowlesi and P. 
falciparum.

One of the major drawbacks of using primate as 
a model to investigate Plasmodium in vivo remains 
their availability and the significant cost of the colony 
maintenance that limits the development of this research 
line.

Human model
Perhaps the most relevant model to study malaria, in 
such cases that allows experimenting, is the human host 
itself. Naturally, potential candidate vaccine candidates 
have to be tested in humans during clinical trial. For 
example, to test the RTS/S vaccine, healthy volunteers 
that were prime-boosted immunized with candidate 
vaccines were infected with P. falciparum sporozoites 
to test the efficacy of these vaccine candidates[104,105]. 
We can also cite the control human malaria infection  
program that allows inoculating parasites in human 
volunteers in order to test potential vaccines or anti-
malarial drugs[106,107]. 

Interestingly, the lack of an in vitro model for P. 
vivax[13] pushed researchers to infect human volunteers 
with P. vivax sporozoites in order to develop a model for P. 
vivax drug screening and vaccine development. Herrera 
et al[108] let P. vivax- infected Anopheles mosquitoes 
feed on different groups of volunteers, each exposed 
to increasing number of mosquito bites. They observed 
that malaria symptoms appeared after 9 d and a total 
clearance of the parasites was observed 48 h post 
treatment at the latest. No record of P. vivax relapsing 
after the end of the study was reported and thus, the 
system is claimed to be safe to test antimalarial drugs in 
vivo.

More recently, McCarthy et al[109] infected human 
volunteers via intra-venous injection of pRBC isolated 
from a P. vivax positive woman. The first symptoms 
appeared 11 d post-inoculation and disappeared 24 
h post-antimalarial drug treatment. The advantage 
of using pRBC instead of sporozoites is to avoid the 
formation of hypnozoites and thus re-infection. Their 

goal was to establish a P. vivax in vivo system similar to 
the work described earlier by Herrera et al[108] and only 
the inoculation method (sporozoites vs pRBC) and the 
number of volunteers (18 vs 2) was different. Although 
biologically, humans are the most relevant models, 
there are important ethical issues that prevent wide 
use of human volunteers in in vivo experiments out of 
phase Ⅱ clinical trials.

CONCLUDING REMARKS
Establishing good experimental models for malaria 
research has great importance in understanding fund
amental aspects of the parasites’ biology, the course of 
infection and disease establishment and progression. It is 
an important tool for laboratories located in non-endemic 
areas that have more facilities to perform state of the art 
research to help fighting malaria. 

The development of stem cell research has opened 
many new options to study parasite interactions with 
human host. Combining these novel in vitro systems 
with animal models offered a wide range of new avenues 
to study aspect of the parasite biology, which were not 
possible before. 

Each technique has its advantages and weakness 
depending on the parasite species and the stage in the 
cell cycle being investigated.

Thus far, despite their great potential, the use of 
stem cells for malaria in vitro studies is limited. The 
establishment of good in vitro culture of P. vivax in 
reticulocytes originated from HSC has not been successful 
even though there is a great interest in such a model. 
On the other hand, the use of HSC to study erythroid 
impairment during malaria episodes was shown to be 
a great tool, which is expected to have a significant 
contribution to the field in coming years. Very surprisingly, 
although understanding the biology of Plasmodium 
liver stages is of major importance for drug and vaccine 
development, the use of hepatocyte-derived stem cells is 
poorly developed and there is a great need for a better cell 
line that differentiates into mature hepatocytes.

Animal model have been intensively developed to gain 
an understanding that will be able to be rapidly translated 
to the clinic. Monkeys appear to be the most suitable 
models, especially for P. vivax, but the cost of colony 
maintenance limits the use of this model. Nevertheless, 
P. vivax primate model are used successfully and 
are currently the best option for research since an in 
vitro culture of this parasite remains challenging. The 
development of in vitro stem cell techniques would offer 
an important tool to study P. vivax biology, especially for 
the intra-erythrocytic cycle. Recent protocol improvements 
give great hope that with additional optimization these 
systems will be available in coming years.

The use of humanized mice to study Plasmodium 
biology through an in vivo system offers new opportunities, 
however, the short-term life span of engraftment and the 
low levels of chimeric systems eventually obtained have to 
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be taken into account in the process of data analyses. 
The use of simian Plasmodium species that could 

infect humans to overcome the difficulties in maintaining 
cultures seems like an attractive option, however, the 
use of the human Plasmodium spp. will yield the most 
relevant observations that could be directly translated 
to human malaria.

Additional tools such as mathematical and bio-infor
matics modeling could also become valuable as recently 
shown by MacDonald et al[110] that used computational 
methods to investigate potential antimalarial drugs.

The combination of stem cell research and animal 
modeling such as humanized mice could be the key to 
move a step forward in the study of Plasmodium biology. 
Optimization of those techniques and generation of 
new animal/human stem cell combinations could bring 
malaria modeling to the next level.
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