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Abstract
AIM: To explore the approaches exerted by mesenchymal 
stem cells (MSCs) to improve Parkinson’s disease (PD) 
pathophysiology.

METHODS: MSCs were harvested from bone marrow 
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of femoral bones of male rats, grown and propagated in 
culture. Twenty four ovariectomized animals were classified 
into 3 groups: Group (1) was control, Groups (2) and (3) 
were subcutaneously administered with rotenone for 14 d 
after one month of ovariectomy for induction of PD. Then, 
Group (2) was left untreated, while Group (3) was treated 
with single intravenous dose of bone marrow derived MSCs 
(BM-MSCs). SRY gene was assessed by PCR in brain tissue 
of the female rats. Serum transforming growth factor beta-1 
(TGF-β1), monocyte chemoattractant protein-1 (MCP-1) 
and brain derived neurotrophic factor (BDNF) levels were 
assayed by ELISA. Brain dopamine DA level was assayed 
fluorometrically, while brain tyrosine hydroxylase (TH) and 
nestin gene expression were detected by semi-quantitative 
real time PCR. Brain survivin expression was determined 
by immunohistochemical procedure. Histopathological 
investigation of brain tissues was also done. 

RESULTS: BM-MSCs were able to home at the injured 
brains and elicited significant decrease in serum TGF-β1 
(489.7 ± 13.0 vs  691.2 ± 8.0, P  < 0.05) and MCP-1 
(89.6 ± 2.0 vs  112.1 ± 1.9, P  < 0.05) levels associated 
with significant increase in serum BDNF (3663 ± 17.8 
vs  2905 ± 72.9, P  < 0.05) and brain DA (874 ± 15.0 vs  
599 ± 9.8, P  < 0.05) levels as well as brain TH (1.18 
± 0.004 vs  0.54 ± 0.009, P  < 0.05) and nestin (1.29 
± 0.005 vs  0.67 ± 0.006, P  < 0.05) genes expression 
levels. In addition to, producing insignificant increase 
in the number of positive cells for survivin (293.2 ± 
15.9 vs  271.5 ± 15.9, P  > 0.05) expression. Finally, the 
brain sections showed intact histological structure of 
the striatum as a result of treatment with BM-MSCs. 

CONCLUSION: The current study sheds light on the 
therapeutic potential of BM-MSCs against PD patho
physiology via multi-mechanistic actions.

Key words: Parkinson’s disease; Pathophysiology; Bone 
marrow derived mesenchymal stem cells; Rotenone; Anti-
inflammatory action; Ovariectomy; Anti-apoptotic effect; 
Neurogenic potential
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Core tip: The current study was planned to clarify the 
mode of action of mesenchymal stem cells (MSCs) in 
targeting multiple systems implicated in the pathophysiology 
of Parkinson’s disease (PD) in the rat model. For this 
purpose, the MSCs were isolated from bone marrow (BM) 
of rat femur bone and PD was induced in ovariectomized 
rats by rotenone administration for 14 d. Our results 
provided clear evidences for the therapeutic role of BM-
derived MSCs against PD pathophysiology through their 
immunomodulatory properties, anti-inflammatory and anti-
apoptotic effects as well as neurotrophic and neurogenic 
potentials.
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INTRODUCTION
Parkinson’s disease (PD) is one of the most common 
neurodegenerative diseases, associated with extrapyramidal 
motor dysfunction[1] due to the progressive and specific 
loss of dopaminergic neurons in the substantia nigra pars 
compacta and declining levels of dopamine (DA) in the 
striatum[2]. It affects approximately seven million people 
globally[3]. The commonness of PD raises with age, as 1% 
of people over 60 years of age, 3.4% of those over 70, 
and 4% of those over 80 were affected by the disease[1]. 
Epidemiological studies and pathological investigations 
exhibit a mean period of onset of 70 in sporadic PD, which 
represents about 95% of patients[4,5]; but familial forms of 
the disease linked to transformation in a limited number 
of genes account for 4% and these patients suffer from 
early-onset disease before the age of 50[6]. 

Growing body of evidences have demonstrated that 
environmental factors play a critical role in the etiology of 
PD[7]. For example, the environmental toxin 1-Methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) was identified 
as one the causative agents of Parkinsonism[8]. Also, 
herbicides or pesticides usage increase the risk of PD[9,10]. 
As, the pesticide rotenone and the herbicide paraquat 
reproduce the PD phenotype in animals[11]. Additionally, 
it has been suggested that exposure to organic solvents, 
carbon monoxide and carbon disulfide[12] play roles in the 
etiology of PD. Epidemiological studies have proposed a 
potential link between pesticide exposure and increased 
risk of PD. For example, agrarian laborers, particularly 
individuals who work with pesticides, are at increased 
risk for suffering from PD[13]. 

At present, there is no therapy clinically accessible 
to postpone neurodegeneration, thusly modulation of 
the disease course is an imperative unmet clinical need. 
Along these lines, understanding of the pathophysiology 
and etiology of the disease at cellular and molecular 
levels to find new targets against which neuroprotective/
disease-modifying therapy may be developed is the 
pivotal issue in the field of PD research[7].

Mesenchymal stem cells (MSCs) are a heterogeneous 
subset of stromal stem cells that have the capacity of 
self-renewal and differentiation into mesodermal lineage 
cells and other embryonic lineages, including adipocytes, 
osteocytes, chondrocytes, hepatocytes, neurons, muscle 
cells, epithelial cells, etc.[14]. Additionally, these cells 
have several advantages, such as easy availability as 
well as few ethical concerns and low immunogenicity. 
An expanding number of data has demonstrated that 
MSCs not only depend on their differentiation capacity 
to repair damaged tissue, but also rely on their ability to 
modify local environment, activate endogenous progenitor 
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cells, and secrete several factors[15]. The aforementioned 
properties make MSCs perfect candidate cell type for tissue 
engineering, regenerative medicine and autoimmune 
disease treatment[14].

The focus of our interest was to clarify the mode 
of action of bone marrow derived MSCs (BM-MSCs) 
in targeting multiple systems implicated in the patho
physiology of PD in the rat model.

MATERIALS AND METHODS
Preparation of BM-MSCs
BM was harvested by flushing the tibiae and femurs of 
6-wk-old male Sprague Dawley rats with Dulbecco’s 
modified Eagle’s medium (DMEM; GIBCO/BRL, Grand 
Island, New York, United States, Cat. #42430-082) supple
mented with 10% fetal bovine serum (FBS; GIBCO/
BRL, Cat. #16000-044). Nucleated cells were isolated 
with a density gradient [Ficoll/Paque (Pharmacia)] 
and resuspended in complete culture medium supple
mented with 1% penicillin–streptomycin (GIBCO/BRL, 
Cat. #10378-016). Cells were incubated at 37 ℃ in 
5% humidified CO2 for 12-14 d as primary culture or 
upon formation of large colonies. When large colonies 
developed (80%-90% confluence), cultures were washed 
twice with phosphate buffer saline (PBS; Gibco/BRL, 
Cat. #10010056) and the cells were trypsinized with 
0.025% trypsin and 0.01% ethylenediaminetetraacetic 
acid (EDTA) (Gibco/BRL, Cat. #R-001-100) for 5 min at 
37 ℃. After centrifugation, cells were resuspended with 
serum-supplemented medium and incubated in 50 mL 
falcon tube. The resulting cultures were referred to as first-
passage cultures. MSCs in cultures were characterized by 
their adhesiveness and fusiform shape[16].

Experimental set up
Twenty four adult female Sprague-Dawley rats weighing 
130-150 g were obtained from the Animal House 
Colony of the National Research Centre, Giza, Egypt and 
acclimated in a specific area where temperature (25 ℃ ± 
1 ℃) and humidity (55%). Rats were controlled constantly 
with a 12 h light/dark cycles at National Research Centre 
Animal Facility Breeding Colony. Rats were individually 
housed with ad libitum access to standard laboratory 
diet consisted of casein 10%, salt mixture 4%, vitamin 
mixture 1%, corn oil 10%, cellulose 5% and completed 
to 100 g with corn starch and tap water. Rats were cared 
for according to the guidelines for animal experiments 
which were approved by the Ethical Committee of Medical 
Research at National Research Centre, Giza, Egypt.

After the acclimatization period (2 wk), the female rats 
were ovariectomized surgically in Hormones Department, 
Medical Research Division at the National Research 
Centre. Then, after one month from ovariectomy the 
animals were classified into 3 different groups (8 rats/ 
group). The first group (Ovariectomized control group) 
was untreated ovariectomized control group. While, the 
second and third groups were subcutaneously injected 

with rotenone (Sigma, United States, Cat. #R8875) in a 
dose of 12 mg/kg b. wt.[17] daily for 14 d for induction of 
PD. Thereafter, the second group (PD untreated group) 
was left untreated for 4 mo while, the third group (PD + 
BM-MSCs group) was infused intravenously with a single 
dose (3 × 106 cells/rat) of BM-MSCs[18]. For MSCs infusion, 
the PD induced rats were deeply anaesthetized via diethyl 
ether and MSCs were suspended in 100 µL PBS before 
transplantation and then slowly injected into the tail vein 
in 5 min with a 27G needle. The needle was kept in the 
tail vein for another 5 min to avoid regurgitation and then 
withdrawn.

At the end of the experimental period (4 mo), all 
animals were fasted for 12 h and the blood samples 
were collected from retro-orbital venous plexus under 
diethyl ether anaesthesia. The blood samples were 
left to clot and the sera were separated by cooling 
centrifugation (4 ℃) at 1800 × g for 10 min and then 
stored immediately at -20 ℃ in clean plastic Eppendorf 
until analyzed. Moreover, the whole brain of each rat 
was rapidly and carefully dissected. Then, each brain 
was sagittally divided into two portions. The first portion 
was immediately frozen in liquid nitrogen and stored at 
-80 ℃ prior to extraction for molecular study and DA 
level determination. While, the second portion was fixed 
in formalin buffer (10%) for histological investigation 
and immunohistochemical study. 

Detection of male-derived MSCs in the brain of females
The genomic DNA was isolated from the brain tissues of 
female rats which were treated with BM-MSCs using phenol/
chloroform extraction and ethanol precipitation method 
according to Sambrook et al[19] with minor modifications. 
The presence or absence of the sex determination region 
on the Y chromosome male (SRY) gene in recipient female 
rats was assessed by PCR. Primer sequences for SRY gene 
(forward 5′-CATCGAAGGGTTAAA-GTGCCA-3′, reverse 
5′-ATAGTGTGTAGGTTGTTGTCC-3′, Invitrogen) were 
obtained from published sequences[20] and amplified to a 
product of 104 bp. The PCR conditions were as follows: 
Incubation at 94 ℃ for 4 min; 35 cycles of incubation at 
94 ℃ for 50 s, 60 ℃ for 30 s, and 72 ℃ for 1 min; with a 
final incubation at 72 ℃ for 10 min. PCR products were 
separated using 2% agarose gel electrophoresis and 
stained with ethidium bromide.

Biochemical analyses 
Serum transforming growth factor beta-1 (TGF-β1) level 
was assayed by enzyme linked immunosorbent assay 
(ELISA) using kit purchased from DRG Diagnostics Co., 
Germany (Cat. #EIA-1864), according to the method 
described by Kropf et al[21]. While, serum monocyte 
chemoattractant protein-1 (MCP-1) level was determined 
by ELISA method using kit purchased from Bender 
MedSystems GmbH, Europe (Cat. #BMS631INST), 
according to the method described by Baggiolini et al[22]. 
Moreover, serum brain derived neurotrophic factor (BDNF) 
level was evaluated by ELISA method using kit purchased 
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from Millipore Corporation, United States (Cat. #CYT306), 
according to the method described by Laske et al[23].  Finally, 
the quantitative determination of brain DA level was carried 
out according to the method described by Ciarlone[24] using 
a fluorometric method.

Detection of tyrosine hydroxylase and nestin genes 
expression level
Total RNA was isolated from brain tissues of female rats by 
the standard TRIzol® reagent extraction method (Invitrogen, 
Cat. #15596-026). Then, the complete Poly(A)+ RNA was 
reverse transcribed into cDNA in a total volume of 20 µL 
using RevertAid™ First Strand cDNA Synthesis Kit (MBI 
Fermentas, Germany, Cat. #K1631). An amount of total 
RNA (5 µg) was used with a reaction mixture, termed as 
master mix. The MM was consisted of 50 mmol/L MgCl2, 
5 × reverse transcription (RT) buffer (50 mmol/L KCl; 10 
mmol/L Tris-HCl; pH 8.3; 10 mmol/L of each dNTP, 50 
µmol/L oligo-deoxyribonucleotide primer, 20 U ribonuclease 
inhibitor (50 kDa recombinant enzyme to inhibit RNase 
activity) and 50 U M-MuLV reverse transcriptase. The RT 
reaction was carried out at 25 ℃ for 10 min, followed by 
1 h at 42 ℃, and the reaction was stopped by heating for 
5 min at 99 ℃. Afterwards the reaction tubes containing 
RT preparations were flash-cooled in an ice chamber 
until being used for DNA amplification through semi-
quantitative real time PCR (sqRT-PCR). An iQ5-BIO-RAD 
Cycler (Cepheid, United States) was used to determine 
the rat cDNA copy number. PCR reactions were set 
up in 25 µL reaction mixtures containing 12.5 µL 1 × 
SYBR® Premix Ex TaqTM (TaKaRa, Biotech. Co. Ltd., 
Germany, Cat. #RR820A), 0.5 µL 0.2 µmol/L forward 
primer, 0.5 µL 0.2 µmol/L reverse primer (Invitrogen), 
6.5 µL distilled water, and 5 µL of cDNA template. Primer 
sequences were F: 5’-ACTGTGGAATTCGGGCTATG-3’, 
R: 5’-GACCTCAGGCTCCTCTGACA-3’ for tyrosine 
hydroxylase (TH)[25]; F: 5’-TGGAGCGGGAGTTAG-
AGGCT-3’, R: 5’-ACCTCTAAGCGACACTCCCGA-3’ for 
nestin[26] and F: 5’-CTGTCTGGCGGCACCACCAT-3’, R: 
5’-GCAACTAAGTCATAGTCCGC-3’ for β-actin[27]. The 
reaction program was allocated to 3 steps. First step was 
at 95.0 ℃ for 3 min. Second step consisted of 40 cycles in 
which each cycle divided to 3 steps: (1) denaturation at 
95.0 ℃ for 15 s; (2) annealing at 58.0 ℃ for 30 s, 55.0 ℃ 
for 5 s and 60 ℃ for 30 s for TH, nestin and β-actin genes 
respectively; and (3) extension at 72.0 ℃ for 30 s. The 
third step consisted of 71 cycles started at 60.0 ℃ and then 
increased about 0.5 ℃ every 10 s up to 95.0 ℃ for melting 
curve analysis which was performed at the end of each 
sqRT-PCR to check the quality of the used primers. Each 
experiment included a distilled water control. 

Immunohistochemical examination of brain survivin 
expression
Samples were taken from brain of rats of the different 
groups and fixed in 10% formalin buffer for 24 h. Washing 
was done in tap water then ascending grade of ethyl 
alcohol (30%, 50%, 70%, 90% and absolute) was used 
for dehydration. Specimens were cleared in xylene and 

embedded in paraffin (melting point 58 ℃-60 ℃) for 24 
h. Sections were cut into 4 µ thick by sledge microtome 
then fixed on positive slides in a 65 ℃ oven for 1 h. Slides 
were placed in a coplin jar filled with 200 mL of triology 
working solution (Cell Marque, CA-United States, Cat. 
#920P-04) which combines the three pretreatment steps: 
Deparaffinization, rehydration and antigen unmasking. 
Then, the jar is securely positioned in the autoclave which 
was adjusted so that temperature reached 120 ℃ and 
maintained stable for 15 min after which pressure is 
released. Thereafter, the coplin jar is removed to allow 
slides to cool for 30 min. Sections were then washed 
and immersed in Tris-buffer saline to adjust the pH 
and these were repeated between each step of the 
immunohistochemical procedure. Quenching endogenous 
peroxidase activity was performed by immersing slides 
in 3% hydrogen peroxide for 10 min. Broad spectrum 
LAB-SA detection system (Invitrogen, Cat. #85-8943) 
was used to visualize any antigen-antibody reaction in 
the tissue. Background staining was blocked by putting 3 
drops of 10% goat non immune serum blocker on each 
slide and incubating them in a humidity chamber for 10 
min. Without washing, excess serum was drained and the 
working solution (1:100) of survivin mouse monoclonal 
(Thermo Scientific, United States, Cat. #RB-9245-P1) 
was prepared. Three drops of the working solution were 
applied and slides were incubated in the humidity chamber 
overnight at 4 ℃. Henceforward, biotinylated secondary 
antibody from ultravision detection system anti-polyvalent 
HRP/3,3’-diaminobenzidine (DAB) (Thermo Scientific, 
Cat. #TP-015-HD) was applied on each slide for 20 min 
followed by 20 min incubation with the streptavidin HRP 
enzyme conjugate (Thermo Scientific, Cat. #TP-015-HD). 
Then, DAB chromogen (Thermo Scientific, Cat. #TP-015-
HD) was prepared and 3 drops were applied on each slide 
for 2 min. DAB was rinsed, after which counterstaining with 
Mayer hematoxylin and cover slipping were performed 
as the final steps before slides were examined under the 
light microscope (Olympus Cx21 with attached digital 
camera)[28]. Image analysis was performed using the 
image J, 1.41a NIH, United States analyzer.

Histopathological investigation of brain tissue of rats
Samples were taken from brain of rats in different groups 
and fixed in 10% formalin buffer for 24 h. Washing 
was done in tap water then ascending grade of ethyl 
alcohol (30%, 50%, 70%, 90% and absolute) was 
used for dehydration. Specimens were cleared in xylene 
and embedded in paraffin (melting point 58 ℃-60 ℃) 
for 24 h. Paraffin wax tissue blocks were prepared for 
sectioning at 4 µ by sledge microtome. The obtained tissue 
sections were collected on glass slides, deparffinized and 
stained by hematoxylin and eosin (H and E) stain[29] for 
histopathological examination through the electric light 
microscope.

Statistical analysis
In the present study, all results were expressed as 
mean ± SE of the mean. Data were analyzed by one 
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way analysis of variance (ANOVA) using the Statistical 
Package for the Social Sciences (SPSS) program, version 
14 followed by least significant difference (LSD) to 
compare significance between groups. Difference was 
considered significant when P value was < 0.05.

Animal care and use statement
The animal protocol was designed to minimize pain 
or discomfort to the animals. The animals were 
acclimatized to laboratory conditions (25 ℃, 12 h/12 
h light/dark, 55% humidity, ad libitum access to food 
and water) for 2 wk prior to experimentation. The 
animals were deeply anaesthetized via diethyl ether for 
intravenous infusion of MSCs. Also, blood samples were 
collected from retro-orbital venous plexus under diethyl 
ether anaesthesia.

RESULTS
BM-MSCs homing 
To confirm that the intravenously transplanted MSCs 
derived from male bone marrow migrate and home to 
the female injured brain, DNA was isolated from the 
brain tissues of female rats and the presence or absence 
of the responsible region for sex determination on Y 
chromosome (SRY gene) was assessed by PCR. The 
agarose gel demonstrated that SRY gene was present in 
the brain tissues obtained from the group of rats treated 
with BM-MSCs. While, SRY gene was absent in the brain 
tissues obtained from the ovariectomized control rats 
(Figure 1). 

Effect of treatment with BM-MSCs on inflammatory 
markers 
Since, TGF-β1 has a pivotal role in the control of the 
transition between pro-inflammatory and anti-inflammatory 
response[30] and MCP-1 has a vital role in the migration of 
inflammatory cells across the blood-brain barrier as well 

as forms chemotactic gradients within the CNS to control 
the local inflammatory response[31]. Serum TGF-β1 and 
MCP-1 levels were determined by ELISA to evaluate the 
anti-inflammatory and immunomodulatory effects of the 
injected BM-MSCs in PD model. 

Our data revealed that rotenone administration causes 
significant (P < 0.05) elevation in serum TGF-β1 (43.6%) 
and MCP-1 (27.2%) levels vs the ovariectomized control 
group (Table 1). While, treatment with BM-MSCs elicits 
a significant (P < 0.05) reduction in both serum TGF-β1 
and MCP-1 levels by 29.2% and 20.1% respectively 
relative to the group of rats left untreated. 

Effect of treatment with BM-MSCs on neurotrophic and 
neurogenic markers
Brain derived neurotrophic factor plays an important 
role in supporting the survival of existing neurons and 
encouraging the growth as well as differentiation of new 
neurons and synapses[32]. Thusly, serum BDNF level 
was estimated by ELISA to evaluate the neurotrophic 
capacity of the injected BM-MSCs in PD model. In view 
of the data of the current work, rotenone administration 
experiences significant (P < 0.05) decline in serum 
BDNF level by 21.5% (Table 2) as compared to the 
ovariectomized control group. In contrast, treatment 
with BM-MSCs elevates serum BDNF level significantly (P 
< 0.05) by 26.1% (Table 2) relative to the group of rats 
left untreated. 

Brain DA level was determined by a fluorometric 
method, while brain TH and nestin genes expression level 
was detected by sqRT-PCR to evaluate the neurogenic 
potential of the injected BM-MSCs in PD model. It is well 
known that DA is a neurotransmitter released by nerve 
cells to play crucial role in motor control, motivation, 
arousal, cognition and reward[33]. Furthermore, TH enzyme 
catalyzes the conversion of L-tyrosine to L-3,4-dihydroxy-
phenylalanine[34]. While, nestin is one of the markers of 
neural precursors[35]. The data of our work revealed that 
rotenone administration leads to significant (P < 0.05) 
depletion of brain DA level (32.1%) and significant (P <  
0.05) down-regulation in the expression level of brain TH 
and nestin genes by 54.6% and 48.5% respectively (Table 
2) as compared to the ovariectomized control group. 

500 bp

400 bp

300 bp

200 bp

100 bp

M                    1                      2

Figure 1  An agarose gel electrophoresis of DNA fragments showed SRY 
gene in recipient female rats for bone marrow derived mesenchymal stem 
cells in Parkinson’s disease model. Lane (M) represents DNA ladder; Lane 
(1) represents ovariectomized control sample; Lane (2) represents sample from 
PD group treated with BM-MSCs. PD: Parkinson’s disease; BM-MSCs: Bone 
marrow derived mesenchymal stem cells.

Table 1  Effect of treatment with bone marrow derived mesenchymal 
stem cells on serum transforming growth factor beta-1 and monocyte 
chemoattractant protein-1 levels in Parkinson’s disease model

TGF-β1 (pg/mL) MCP-1 (pg/mL)

Ovariectomized control 481.5 ± 7.5  88.1 ± 0.9
PD untreated  691.2 ± 8.0a 112.1 ± 1.9a

PD + BM-MSCs    489.7 ± 13.0c   89.6 ± 2.0c

Data are represented as mean ± SE of 8 rats/group. aSignificant change at 
P < 0.05 in comparison with the ovariectomized control group; cSignificant 
change at P < 0.05 in comparison with the untreated PD group. PD: 
Parkinson’s disease; BM-MSCs: Bone marrow derived mesenchymal 
stem cells; TGF-β1: Transforming growth factor beta-1; MCP-1: Monocyte 
chemoattractant protein-1.
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However, treatment with BM-MSCs produces significant 
(P < 0.05) elevation in brain DA level by 45.9% and 
significant (P < 0.05) up-regulation in brain TH and nestin 
genes expression level by 122.2% and 92.5% respectively 
(Table 2) vs the group of rats left untreated.   

Effect of treatment with BM-MSCs on anti-apoptotic 
marker
The anti-apoptotic action of the single intravenous dose 
of BM-MSCs in PD model was evaluated through the 
detection of brain survivin expression using immuno
histochemical technique. As, survivin belongs to a family 
of endogenous cellular inhibitors of caspases that directly 
repress apoptotic cell death through interactions with 
pro-apoptotic caspases[36]. In view of the current data, 
rotenone administration causes insignificant (P > 0.05) 
decrease in the number of positive cells for survivin 
expression by 5.7% (Table 3 and Figure 2B) relative to 
the ovariectomized control group. While, treatment with 
BM-MSCs produces insignificant (P > 0.05) increase in the 
number of positive cells for survivin expression by 8.0% 
(Table 3 and Figure 2C) in comparison with the group of 
rats left untreated.

Effect of treatment with BM-MSCs on brain structure
The brain section photomicrograph of ovariectomized 
control rat shows congestion in the blood vessels in striatum 
area (Figure 3A). While, brain section photomicrographs of 
untreated rotenone administered rat show congestion in the 
blood vessels and capillaries (Figure 3B) in the striatum as 
well as hyalinization and plaques formation in the matrix of 
the striatum indicating the occurrence of neurodegeneration 
(Figure 3C). Finally, the brain section photomicrograph of 
rotenone administered rat treated with BM-MSCs shows 

intact histological structure of the striatum (Figure 3D).

DISCUSSION
MSCs have been considered as an effective tool for 
regenerative cell therapy. These cells could be isolated from 
both healthy and patient tissues and expanded in vitro 
on a therapeutic scale without posing significant ethical or 
procedural problems[37]. Furthermore, it has been proposed 
that stem cells may replace lost cells by differentiating into 
functional neural tissue; provide source of trophic support 
for the diseased nervous system or alter the immune 
system to prevent further neurodegeneration[38]. Therefore, 
the current study was planned to elucidate the mechanisms 
by which BM-MSCs could attenuate PD pathophysiology in 
the experimental model.

In consistent with Yoon et al[39] who found that 
intravenously transplanted BM-MSCs could migrate and 
home into the brain, the data presented in this work 
demonstrated that the intravenously transplanted MSCs 
were able to migrate to the site of injury (brain). The 
homing property afforded by MSCs was likely attributable 
to their broader expression of homing molecules[40]. 
Furthermore, it has been reported that, chemokines 
released from tissue or endothelial cells may contribute 
to the activation of adhesion ligands, transendothelial 
migration, chemotaxis, and/or subsequent retention in 
surrounding tissue[41]. 

In view of the data of the current work, rotenone 
administration for 14 d in ovariectomized rats elevated 
the level of serum TGF-β1 and MCP-1 significantly. This 
finding is greatly supported by those of Rota et al[42] and 
Reale et al[43] who stated that both TGF-β1 and MCP-1 
levels are increased in several chronic neurodegenerative 
pathologies such as PD. It has been reported that 
the inflammatory response due to Parkinsonism is 
characterized by activation of microglia in the brain. 
The proposed explanation in regards to the reason of 
degeneration in dopaminergic neurons is that PD is caused 
by activation of microglial cells as a result of increased 
levels of cytokines[44]. Activated microglia release a wide 
array of pro-inflammatory and cytotoxic factors as well 
as eicosanoids and nitric oxide[45], which work in concert 
to develop neurodegeneration[46]. Moreover, Gao et 
al[47] reported that the dopaminergic neurodegeneration 
enhanced by rotenone might be attributed primarily to 

Table 2  Effect of treatment with bone marrow derived mesenchymal stem cells on serum brain derived neurotrophic factor and brain 
dopamine levels as well as brain tyrosine hydroxylase and nestin genes expression level in Parkinson’s disease model

BDNF (pg/mL) DA (µg/g tissue) Relative expression of TH gene 
(TH/β-actin)

Relative expression of nestin gene 
(nestin/β-actin)

Ovariectomized control 3700 ± 26.4  882 ± 20.3 1.19 ± 0.004 1.30 ± 0.004
PD untreated  2905 ± 72.9a 599 ± 9.8a  0.54 ± 0.009a  0.67 ± 0.006a

PD + BM-MSCs  3663 ± 17.8c   874 ± 15.0c  1.18 ± 0.004c  1.29 ± 0.005c

Data are represented as mean ± SE of 8 rats/group. aSignificant change at P < 0.05 in comparison with the ovariectomized control group; cSignificant change 
at P < 0.05 in comparison with the untreated PD group. PD: Parkinson’s disease; BM-MSCs: Bone marrow derived mesenchymal stem cells; BDNF: Brain 
derived neurotrophic factor; DA: Dopamine; TH: Tyrosine hydroxylase.

Table 3  Effect of treatment with bone marrow derived 
mesenchymal stem cells on brain survivin expression in Parkinson’s 
disease model

Survivin (cell number)

Ovariectomized control    288 ± 16.5
PD untreated       271.5 ± 13.9
PD + BM-MSCs 293.2 ± 15.9

Data are represented as mean ± SE of 8 rats/group. PD: Parkinson’s 
disease; BM-MSCs: Bone marrow derived mesenchymal stem cells.
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the activation of microglia and consequently their release of superoxide free radicals that play an important role in 

A B

Figure 2  Immunohistochemical examination of survivin expression in Parkinson’s disease model groups. A: Ovariectomized control; B: PD untreated; C: PD 
+ BM-MSCs. PD: Parkinson’s disease; BM-MSCs: Bone marrow derived mesenchymal stem cells.

C

Figure 3  Photomicrograph of brain section of: A: Ovariectomized control group shows congestion in blood vessels of striatum (v) (H and E × 80); B: untreated 
Parkinson’s disease (PD) group shows congestion in blood vessels and capillaries of striatum (v) (H and E × 80); C: Untreated PD: Parkinson’s disease group 
shows hyalinization with plaques formation in the matrix of striatum (H and E × 160); and D: PD group treated with bone marrow derived mesenchymal 
stem cells shows intact histological structure of the striatum (H and E × 80). 
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the inflammation mediated oxidative damage to neurons. 
This effect might be ascribed to the known susceptibility 
of dopaminergic neurons to oxidative stress as a result 
of reduced antioxidant capacity, high content of iron and 
DA, and possible defect in mitochondrial function[48]. The 
release of cytokines from the brain into the peripheral 
blood supply through the blood brain barrier[49] could 
explain the observed increase in serum TGF-β1 and MCP-1 
levels.

The results of the current study manifested that 
treatment with BM-MSCs lessen the level of serum TGF-β1 
and MCP-1 significantly. This finding is in great accordance 
with our previous work on adipose tissue derived MSC[50] 

that proved its anti-inflammatory and immunomodulatory 
activities which are implicated in mitigating neuroinfla
mmation characterizing PD. Accordingly, the observed 
role of BM-MSCs in depleting serum TGF-β1 and MCP-1 
levels could be allied to the ability of BM-MSCs to modulate 
microglia/macrophage activation including inflammatory 
responses as documented by Németh et al[51] and Choi et 
al[52]. 

Growing body of evidence indicates that there is a link 
between pro-inflammatory cytokines and neurotrophic 
factors in the CNS[53]. It has been postulated that there 
is a balance between cytokine and neurotrophin in the 
brain and disruption of this balance cause injurious 
changes in the CNS[54]. Moreover, Borchelt[55] observed 
that astrocytes stimulated by mediators released from 
microglia down-regulate neurotrophic factors expression 
and release additional inflammatory mediators that in 
turn activate microglia. Parallel to these evidences, our 
results indicated that rotenone administration elicited 
significant decrease in serum BDNF level. This finding 
could be allied to the diminished level of brain BDNF due 
to inflammation. As, Klein et al[56] reported that BDNF 
level in the blood correlates with alteration in the level of 
BDNF in the brain.

In view of the current data, treatment with BM-MSCs 
experienced significant increase in serum BDNF level. 
This preferable effect could be related to the ability of 
MSCs to secrete BDNF as observed by Lattanzi et al[57] 
and Han et al[58]. Blandini et al[59] documented that MSCs 
have the ability to differentiate into glial cells that release 
diverse neurotrophic factors to provide protection against 
neurotoxin after their grafting into Parkinsonian rat brains. 
Additionally, there is an evidence that MSCs may modulate 
the expression of neurotrophic factors according to the 
environment in which they exist[60,61].

The data presented in this work revealed that 
rotenone administration led to significant down-regulation 
in brain TH gene expression level in concomitant with 
significant decline in brain DA level. This observation could 
be ascribed to the dopaminergic degeneration[62] due to 
elevated sensitivity of dopaminergic neurons to oxidative 
damage[47] as well as inhibition of complex Ⅰ activity and 
decrement of the mitochondrial membrane potential as a 
result of  rotenone administration[47,63]. 

Our previous findings indicated the neurotrophic and 
neuroprotective potentials of adipose tissue derived MSC 

against neurodegenerative insult of PD[50]. Similarly, the 
data of the present work demonstrated that treatment 
with BM-MSCs elicited significant increase in brain DA 
level as well as brain TH gene expression level. This 
finding comes in line with the study of Shetty et al[64] who 
demonstrated that BM-MSCs can be transdifferentiated 
efficiently into functional dopaminergic neurons capable 
of secreting DA and alleviating behavioral deficiencies. 
Moreover, the results of Bouchez et al[25] study showed 
that grafting of BM-MSCs caused an increase in the 
immunostaining of TH in striatum associated with elev
ation in the number of TH+ neurons in the substantia 
nigra pars compacta. Also, Blondheim et al[65] and Offen et 
al[66] stated that the transplantation of BM-MSCs into the 
animal model induced with 6-hydroxydopamine resulting 
in an increase in the level of TH in the striatal region 
thus improving motor behavior in a mouse model of PD. 
Since, TH is the rate-limiting enzyme in DA synthesis, the 
increase in the level of TH would increase the production of 
DA. Additionally, the observed increase in brain DA content 
and TH expression level as a result of treatment with BM-
MSCs could be explained by the ability of MSCs to secrete 
a wide array of cytokines and growth factors, including 
BDNF[57] which exert neurotrophic and neuroprotective 
effects on DA neurons[67]. Furthermore, Trzaska et al[68] 
reported that BDNF has a crucial role in the functional 
maturation of MSC-derived DA progenitors.

In line with previous studies reported by Höglinger 
et al[69] and Abdipranoto et al[70], the current study 
manifested that rotenone administration caused significant 
down-regulation in brain nestin gene expression level. 
This finding could be imputed to the depletion in DA 
level due to degeneration of dopaminergic neurons as 
documented by Crews et al[71]. In contrast, treatment with 
BM-MSCs induced significant up-regulation in nestin gene 
expression level. Bouchez et al[25] found that rat MSCs 
express neuronal proteins such as nestin at the RNA and 
protein levels. Moreover, the study of Ye et al[72] indicated 
the presence of nestin positive cells in brain tissue of PD 
rat after transplantation of undifferentiated BM-MSCs. 
The suggested mechanism by which BM-MSCs treat PD 
rat model could be related to that transplanted BM-MSCs 
might become nestin-positive stem cells that differentiate 
into astrocytes or other non-dopaminergic neurons and 
participate in the reconstruction of dopaminergic neurons 
circuits[72]. 

The data of this work revealed that rotenone admini
stration produced slight decrease in the number of positive 
cells for survivin expression. This finding harmonizes with 
that of Zhang et al[73] who reported that degenerating 
neurons lacked survivin expression. Jiang et al[74] results 
showed that survivin is critically required for the survival 
of developing CNS neurons. Moreover, Zhang et al[75] 
suggested that there is a connection between the expression 
of survivin and adult neurogenesis. Thus, the observed 
decrement in survivin expression might be attributed to the 
decreased neurogenesis due to DA depletion[71]. Another 
possible mechanism by which rotenone could decrease 
survivin expression might be related to its effect on p53 
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which was shown to be over expressed by rotenone[76]. 
Under normal conditions, p53 protein levels are low and 
regulated by IκB kinase (IKK) and prominently by mouse 
double minute 2 (Mdm2), an ubiquitin ligase responsible 
for p53 degradation. Cellular stress reduces the interaction 
between p53 and Mdm2 leading to accumulation of the 
former[77]. Wu et al[76] reported that the degeneration of 
dopaminergic neurons by rotenone was accompanied by 
an increase in p53 protein level which in turn induces p21 
expression. Then, the increased level of p21 suppresses 
the expression of cycline dependent kinases leading to 
accumulation of hypophosphorylated retinoblastoma that 
interact with E2F (a transcriptional activator) to repress 
survivin expression[78]. 

In the light of our results, treatment with BM-MSCs 
caused insignificant increase in the number of positive cells 
for survivin expression. This increment is in agreement 
with Okazaki et al[79] and it could be imputed to the ability 
of MSCs to enhance neurogenesis and inhibit apoptosis 
through their secreted BDNF as documented by Ye et 
al[72]. Moreover, Kim et al[80] reported that grafted MSCs 
attenuate dopaminergic neuronal loss through their anti-
apoptotic effects. Also, the increase in survivin expression 
by MSCs treatment might be related to their inhibitory 
action on P53 through the inactivation of ERK1/2[81]. 

In view of the histopathological investigations of 
brain tissues section of the current work, rotenone 
administration resulted in congestion in the blood vessels 
and capillaries of striatum. Also, there were hyalinization 
and plaques formation in the matrix of striatum indicating 
the occurrence of neurodegeneration. Sai et al[82] demon
strated that rotenone causes dopaminergic neurons 
degeneration in vivo and substantia nigra pars compacta 
and striatum are the main targets of rotenone in the 
rat brain. These findings could be allied to the inhibition 
of neuronal mitochondrial complex Ⅰ activity[47] and 
consequently oxidative damage[83] as a result of rotenone 
administration.

Brain tissue sections examination indicated that single 
infusion with BM-MSCs resulted in intact histological 
structure of the striatum. This finding coincides with 
Dezawa et al[84] who reported that nerve system recovery 
after BM-MSCs transplantation could be related to their 
secretion of neurotrophic factors that restore the function 
of nervous system, promotion of local angiogenesis 
and vascular reconstruction and neuronal regeneration 
through promotion of autologous neuronal regeneration 
and differentiation of transplanted cells into neural cells. 

In conclusion, the current study provided experimental 
evidences for the ability of BM-MSCs to mitigate PD 
pathophysiology through multi-mechanistic approaches 
(immunomodulatory, anti-inflammatory and anti-apoptotic 
effects as well as neurotrophic and neurogenic potentials). 
These promising results pave the way for the clinical trial 
application of MSCs in the treatment of neurodegenerative 
diseases particularly PD.

COMMENTS
Background
Parkinson’s disease (PD) is one of the neurodegenerative diseases, 

accompanied by extrapyramidal motor dysfunction due to the progressive 
and selective loss of dopaminergic neurons in the substantia nigra pars 
compacta and declining levels of dopamine in the striatum. So, it is very 
important to stop or halt neurodegeneration. However, to date, there is no 
therapy clinically available that delays the neurodegenerative process itself, 
therefore modification of the disease course is an important unmet clinical 
need. Transplantation of mesenchymal stem cells (MSCs) for treating 
neurodegenerative disorders has received growing attention recently because 
these cells are readily available, easily expanded in culture, and when 
transplanted survive for relatively long periods of time.

Research frontiers
MSCs are a heterogeneous subset of stromal stem cells that have the ability 
of self-renewal and multipotency. In the area of neurodegenerative disorders 
treatment, the current research hotspot is how to modify the disease course by 
specifically target the pathophysiologic cascade, hoping to delay the onset of 
the disease and slow its progression.

Innovations and breakthroughs
Modern research has focused on discovering effective disease-modifying 
therapies, which specifically target the pathophysiologic cascade, hoping to 
delay the onset of the disease and slow its progression. The study provided 
a non invasive approach for mitigating PD pathophysiology via bone marrow 
derived MSCs (BM-MSCs) transplantation which has immunomodulatory, anti-
inflammatory and anti-apoptotic effects as well as neurotrophic and neurogenic 
potentials.  

Applications 
The study results shed light on the therapeutic potential of BM-MSCs against 
PD pathophysiology via multi-mechanistic actions.

Terminology
PD is the second most common neurodegenerative disease, accompanied 
by extrapyramidal motor dysfunction which resulting from the progressive and 
selective loss of dopaminergic neurons in the substantia nigra pars compacta and 
declining levels of dopamine in the striatum. MSCs are a heterogeneous subset 
of stromal stem cells that have the ability of self-renewal and multipotency, which 
could differentiate into cells of the mesodermal lineages and other embryonic 
lineages, including adipocytes, osteocytes, chondrocytes, hepatocytes, neurons, 
muscle cells, epithelial cells, etc.

Peer-review
This article is well written, clearly demonstrating the therapeutic effect of BM-
MSCs for the treatment of PD. Authors also presented the molecular basis for 
the amelioration of PD pathology by showing decrements and increments in 
inflammatory mediators and neurotrophic factors in the serum, respectively. The 
overall data presented in this manuscript are sound.
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