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Abstract
Nowadays metabolic syndrome represents a real 
outbreak affecting society. Paradoxically, pediatricians 
must feel involved in fighting this condition because 
of the latest evidences of developmental origins of 

adult diseases. Fetal programming occurs when the 
normal fetal development is disrupted by an abnormal 
insult applied to a critical point in intrauterine life. 
Placenta assumes a pivotal role in programming the 
fetal experience in utero  due to the adaptive changes 
in structure and function. Pregnancy complications 
such as diabetes, intrauterine growth restriction, pre-
eclampsia, and hypoxia are associated with placental 
dysfunction and programming. Many experimental 
studies have been conducted to explain the phenotypic 
consequences of fetal-placental perturbations that 
predispose to the genesis of metabolic syndrome, 
obesity, diabetes, hyperinsulinemia, hypertension, and 
cardiovascular disease in adulthood. In recent years, 
elucidating the mechanisms involved in such kind of 
process has become the challenge of scientific research. 
Oxidative stress may be the general underlying 
mechanism that links altered placental function to fetal 
programming. Maternal diabetes, prenatal hypoxic/
ischaemic events, inflammatory/infective insults are 
specific triggers for an acute increase in free radicals 
generation. Early identification of fetuses and newborns 
at high risk of oxidative damage may be crucial to 
decrease infant and adult morbidity.
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Core tip: The adverse outcomes on the offspring 
born from altered gestation are already known. The 
consequences of these perturbations have been 
demonstrated even after many decades from birth. 
In this review we summarize gestational conditions 
associated to fetal programming and elucidate the 
mechanisms involved in such kind of occurrence. We 
also describe to what extent oxidative stress (OS) is 
involved in a very wide spectrum of genetic, metabolic, 
and cellular responses, through the gene expression 
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regulation, and cell growth modulation. By virtue of 
these properties, OS has been nominated as the lowest 
common denominator of adult disease programming.

Perrone S, Santacroce A, Picardi A, Buonocore G. Fetal 
programming and early identification of newborns at high risk of 
free radical-mediated diseases. World J Clin Pediatr 2016; 5(2): 
172-181  Available from: URL: http://www.wjgnet.com/2219-2808/
full/v5/i2/172.htm  DOI: http://dx.doi.org/10.5409/wjcp.v5.i2.172

INTRODUCTION
The last century witnessed the rise in chronic cardio-
metabolic diseases in which metabolic-syndrome (MetS) 
represents a major health problem regarding morbidity 
and mortality[1]. MetS is characterized by a number 
of related disorders, such as visceral obesity, glucose 
intolerance, disturbed plasma lipids concentration, 
high blood pressure, and increased risk of develo
ping cardiovascular diseases and type 2 diabetes[2]. 
Smoking, high-fat diets, abdominal obesity[3-5], insulin 
resistance[6,7], physical inactivity[4,8], aging[9], and 
hormonal imbalance[10] have been identified as the 
main risk factors for several years.

Pediatricians have serious concerns with MetS 
because adult lifestyle is not the only determinant. In 
the last decades, a worldwide series of epidemiological 
studies have provided evidence for the association 
between perturbation of fetal environment and major 
risk factors for cardiovascular disease, diabetes, and 
MetS in adult life[11-15]. This has been called “fetal/early 
origins of adult disease” by David Barker. The hypothe
sis predicts that environmental factors, particularly 
nutrition, act in early life to program the risks for ad
verse health outcomes later in life[16]. Refinements of 
this idea of “fetal programming” focus on the processes 
of developmental plasticity, which in normal situations 
provide the settings for homeostatic mechanisms to 
ensure an adequate amount of nutrients to the most 
vital organs at the expenses of other less vital organs 
(the thrifty phenotype hypothesis)[17]. These changes in 
phenotype can become permanent and can generate 
a mismatch with adult environment that would lead to 
the development of metabolic diseases in adulthood[18]. 
The latter phenomenon gave rise to the new concepts 
of “metabolic memory”[19], “fetal primed”[20], and 
“developmental plasticity”[21].

The aim of this paper is to review all the gestational 
conditions associated to fetal programming and 
elucidate mechanisms involved in such kind of process. 
Identifying a lowest common denominator could be 
essential to contrive prevention strategies, treatment, 
and appropriate follow-up to high-risk newborns.

FETAL PROGRAMMING
Fetal programming occurs when the normal pattern of 

fetal development is disrupted by an abnormal stimulus 
or insult applied to a critical point in intrauterine 
life. Pregnancies complicated by diabetes, small for 
gestational age (SGA) or large for gestational age 
(LGA) offspring, pre-eclampsia and conditions such as 
hypoxia, oxidative and nitrosative stress are associated 
with programming. Placenta plays a key role in de
velopmental plasticity. Vasculature and trophoblast 
are both involved in overall placental transport[22,23]. 
Changing developmental signals or the amount of 
substrate of the fetus produces an alteration of fetal 
development which ultimately leads to cardiovascular 
or metabolic diseases later in adult life[24]. Alterations 
in placental vasculogenesis[25], trophoblast expression 
of transporters[26], trophoblast enzyme activity, and 
hormone production[27] occur in pregnancies complicated 
by IUGR, pre-eclampsia or diabetes.

Mothers with insulin-dependent diabetes are prone 
to hyperglycemia in the first trimester of gestation that 
generates an up-regulation of Glut1 and System A (a 
sodium-dependent transporter of neutral amino acid) 
in the trophoblast leading to accelerated fetal growth 
in late gestation[28]. The activity of System A is redu
ced in placentas with intrauterine growth restriction 
(IUGR)[29,30]; moreover, inhibition of System A in rats 
causes growth restriction[31]. Glut transporters function 
and expression are also influenced by glucocorticoids, 
which are produced by trophoblast and regulated by 
the activity of 11-β-hydroxysteroid dehydrogenase 
(11βHSD). Exposure of the rat fetus to excess ma
ternal or exogenous glucocorticoids causes growth 
restriction, hypertension and hyperglycaemia[32,33]. 
The trophoblast expresses 11βHSD-2 that converts 
cortisol to inactive cortisone and this may protect the 
fetus against high levels of maternal cortisol[34]. In 
humans, mutations in the 11βHSD-2 gene have been 
reported in association with low birth weight. Reduced 
11βHSD-2 activity and increased fetal cortisol levels 
have been reported in association with IUGR[35].

Hypoxic conditions in pregnancy are strongly involved 
in fetal programming. Oxygen regulates development 
of the villous vascular tree and villous trophoblast 
proliferation due to hypoxic regulation of angiogenic 
mediators as vascular endothelial growth factor (VEGF) 
and placental growth factor (PLGF). Hypoxia acts via 
the transcription of hypoxia-inducible factor-1α (HIF-1α) 
that activates gene transcription in response to varying 
oxygen concentration. For example, at 10-12 wk of 
gestation, the trophoblast is exposed to a hyperoxic 
challenge during the transition from histiotrophic 
nutrition to intervillous blood flow vascularization[36]. 
Low oxygen tension inhibits trophoblast differentiation 
to the invasive extravillous trophoblast pathway, hence 
the switch in oxygenation activates trophoblast invasion 
and subjects the cell to oxidative and nitrosative stress. 
A pathological increase of oxidative stress (OS) is 
found in pregnancy complicated by pre-eclampsia or 
diabetes[37].

On the basis of the latter consideration, in order to 
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confirm the hypothesis of in utero programming process 
and analyze the mechanisms involved, many authors 
have conducted experimental studies throughout 
various animal models of fetal programming based on 
fetal insult induced by placental insufficiency, hypoxia, 
maternal undernutrition, and maternal exposure to 
stress and increased plasma glucocorticoids levels[38-44].

PROGRAMMING OF INSULIN 
RESISTANCE, OBESITY, AND TYPE Ⅱ 
DIABETES
Insulin resistance may come from fetal adaptation 
to an adverse intrauterine environment during a 
critical period, thus leading to programming of fetal 
gene expression[45,46]. Insulin plays a central role in 
fetal growth. During the first two years of life SGA 
newborns are usually able to catch-up growth by 
increasing their growth velocity and recovering the 
weight of AGA counterparts[47]. The dynamic changes 
that occur during this period suggest a critical role 
of adipose tissue in the development of metabolic 
complications. Ibáñez et al[48] stated that this early 
growth, in SGA newborns, was associated with 
development of central adiposity and insulin resistance 
between 2 to 4 years of age. The same correlation 
was found in early adulthood by Leunissen et al[49]. 
Following these epidemiological data, MetS was 
renamed as “the small baby syndrome”[50]. This fitted 
well with Hertfordshire’s findings according to which the 
highest risk of cardio-metabolic diseases was in men 
and women who had evidence of early-life deprivation 
(considering weight at birth or in early childhood) 
and who had become overweight as adults (“small 
becoming big”)[51]. However, we currently known that 
not only those subjects born with low birth weight, but 
also poor maternal nutrition increase maternal weight 
gain[52,53] and that large-for-gestational age newborns 
have increased metabolic risks[54].

Not only are diabetic mothers hyperglycaemic but 
they also have elevated circulating lipids and amino-
acid. The fetal pancreas and liver are stimulated to 
secrete increased insulin and insulin-like growth factors 
that are growth-promoting hormones in the fetus. 
This results in the well-described diabetic mother’s 
macrosomic infant. Low-grade inflammation has been 
reported to be a link between insulin resistance, obesity, 
and type 2 diabetes[55]. Adipokines and cytokines affect 
insulin sensitivity through their ability to interfere with 
insulin signaling[56]; these molecules also modulate 
inflammation[57]. Adiponectin, which is produced by the 
enhanced adipose tissue, acts as insulin-sensitizing, 
antiatherogenic, and anti-inflammatory hormone[58]. 
Some scholar have shown that women with gestational 
diabetes mellitus (GDM) express a decreased con
centration of adiponectin and an increased level of 
TNF-α and IL-6[57,59]. Lihn et al[60] suggest that this 
happens due to TNF-α and IL-6 downregulation of 

adiponectin expression. Leptin, which is a hormone 
produced by placenta and by adipocytes principally[61], 
is involved in weight gain regulation by interacting 
with neuropeptide-Y in the hypothalamus[62]. Beyond 
its properties as appetite-suppressant agent, Leptin 
is also capable of regulating lipid metabolism. Atègbo 
et al[57] have shown high leptin level in mothers with 
GDM and, in contrast, a reduced level of leptin in their 
macrosomic children. Leptin, as pro-inflammatory 
factor, may contribute to the inflammatory state dur
ing gestational diabetes. Conversely, low leptin level 
in macrosomic babies may contribute to weight gain 
since leptin-deficient rodents[62] and human[63] have 
been shown to develop obesity. According to the 
hypothesis of “Metabolic Memory”, these alterations 
may permanently increase the risk of trend in high 
food taking, overweight, obesity, and diabetogenic 
status in offspring during adult life[19]. An example of 
metabolic memory is revealed by Franke et al[64] who 
have shown that diabetic pregnancy in rats alters the 
differentiation of the newborns’ hypothalamic neurons. 
The impairment of these neurons may be avoided by 
normalizing glycemia among diabetic pregnant rats[64]. 
This metabolic imprinting could generate an inter-
generational effect in which children risk becoming 
overweight or obese post-natally. Furthermore, if the 
child is female, she risks becoming diabetic during 
pregnancy, thus exposing the fetus to another route of 
later metabolic risk[19].

PROGRAMMING OF HYPERTENSION AND 
CARDIO VASCULAR DISEASE
Experimental models of fetal programming induced by 
gestational protein restriction[65,66], maternal stress[67], 
hypoxia[68] or placental insufficiency[69] demonstrate 
that vascular dysfunction and hypertension are re
lated to a marked increase in glucocorticoid (GC) 
expression and/or marked decrease in the expression 
of 11β-HSD2. In these studies, the exposure to 
exogenous GCs generates a reduction in nephron 
number[70], vascular dysfunction[71], alterations in 
the renin-angiotensin system (RAS)[72], disruption in 
hypothalamic-pituitary-adrenal (HPA) axis[73-76], and 
hypertension[77,78] in the litter. Reduction in nephron 
number may affect the renal excretory function, thus 
contributing to the fetal programming of hypertension. 
However, some models demonstrate that a decrease 
in nephron number is sensitive to the timing of the 
insult[77,79] and the early-mid nephrogenesis phase is 
the most critical window to promote the modification 
in fetal kidney[80]. This change in phenotype may alter 
the mechanisms of adaptation to renal damage in 
adult life[81,82]. Otherwise other systems, which are 
critical to the long-term control of blood pressure, 
may contribute to program hypertension. As is 
clearly known, vascular dysfunction is implicated in 
the pathophysiology of hypertension[83] and plays 
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acceptor and completely reduced to water through 
the acquisition of four electrons. Once this process is 
completed through subsequent steps, radical formation 
becomes possible. NO can be also a FR source because 
it contains an unpaired electron in the outer orbital.

Nitric oxide synthase (NOS) catalyzes the formation 
of NO. It reacts relatively slowly with O2 thus producing 
the orange-brown gas nitrogen dioxide (.NO2), a highly 
reactive FR[103]. Hypoxia-ischemia sets in motion 
several pathways involving intracellular calcium release 
and activation of nitric oxide synthetase leading to 
increased FR generation[104].

Other potential endogenous sources of FRs include 
inflammatory cell activation (through Nicotinamide 
Adenine Dinucleotide Phosphate Reduced oxidase of 
phagocytes and some endothelial cells), monoxygenase 
system, nitric oxide synthase, and several other 
enzymes involved in the inflammatory process[105]. The 
burden of FR can be further amplified by the presence 
of “free” metals such as iron, copper, and manganese 
that are released from metalloprotein complexes[106]. 
Iron, can damage tissues by catalyzing the conversion 
of superoxide and hydrogen peroxide to FR species 

through the Haber-Weiss and Fenton reactions when it 
is unbound to plasma proteins[107]. 

Additional endogenous sources of cellular FR are 
activated neutrophils, eosinophils, and macrophages[108]. 
Notwithstanding the source of FRs, they are really 
dangerous because of their toxic effects that are able 
to damage all cell components, including proteins, 
lipids and DNA. OS may operate directly through the 
modulation of gene expression or indirectly through 
the adverse effects of oxidized molecules at critical 
developmental windows.

Therefore, OS causes a very wide spectrum of 
genetic, metabolic, and cellular responses and many 
oxidative conditions are able to modulate gene ex
pression, stimulate cell growth or cause a protective 
temporary growth-arrest[109]. Necrosis is the most 
extreme outcome and involves direct cell destruction.

Recently, Leal et al[110] have shown that there is 
a change in the prooxidant and antioxidant defences 
strictly related to pregnancy process. During pregnancy, 
OS plays a major role in maternal-fetal interface insofar 
as it is essential for embryo and tissue development. 
Maternal diabetes, prenatal hypoxic/ischaemic events, 
inflammatory/infective insults are specific triggers 
for an acute increase in FRs, thus generating an 
adverse intrauterine environment with impaired fetal 
development[111,112]. Pro-OS is also a common feature 
for adverse (poor or excessive) fetal growth, preterm 
birth, smoking, malnutrition, overnutrition, infection and 
inflammation[113-116]. Consequently, OS may be the key 
link underlying the programming associations between 
adverse fetal growth/preterm birth and elevated risks of 
chronic diseases.

The role of OS in the pathogenesis of insulin de
pendent diabetes mellitus has been implicated in several 

a critical role in the development of cardio-vascular 
(CV) disease[84]. Many clinical studies have observed 
an impaired vascular function in healthy children with 
low birth weight[85,86], thus suggesting that vascular 
consequences of fetal programming may precede 
the development of adult CV disease. Vascular en
dothelial cell play a pivotal role in CV system by 
producing a collection of vasoactive agents whose 
functions include vasodilatation, vasoconstriction, 
and vascular growth[86]. This axiom is confirmed by 
animal models in which fetal insult, which is induced 
by nutritional restriction, placental insufficiency or 
hypoxia, leads to vascular dysfunction due to the 
impairment of endothelium-dependent nitric oxide 
(NO) availability[87-89]. During hypoxia, an imbalance 
in potent vasoactive factors is generated and an 
increase in total peripheral resistance is programmed, 
thus contributing to the development of hypertension. 
The RAS is another system strongly involved in blood 
pressure regulation and CV disease programming[90]. 
In the rat, RAS blockage during the nephrogenic period 
leads to a marked reduction in nephron number[91,92]. 
Although suppression of the RAS is observed at birth, 
hypertension is established by inappropriate activation 
of the RAS later in life[93-95]. According to the thrifty 
phenotype hypothesis, blood flow redistribution to 
critical organs such as the brain and heart occurs at 
the expense of other organs such as the liver, kidney, 
muscles and skin, thus resulting in exposure to 
hypoxia, with modifications in the hypoxia inducible 
factor (HIF) pathway[21]. HIF regulates several path
ways, including the sympathetic nervous system, 
via stimulation of tyrosine hydroxylase[96]. Numerous 
models of fetal programming confirmed an increased 
amount of circulating catecholamines during placental 
insufficiency and gestational protein restriction[97-99]. 
The data are supported by the evidence that renal 
denervation delays the development of hypertension 
in prepubertal offspring[100] and abolishes hypertension 
in adult male IUGR offspring[101]. All these alterations 
in phenotype appear to contribute to hypertension 
in response to certain fetal insults, thus highlighting 
the complexity of the pathways involved in the fetal 
programming of hypertension and CV disease.

OS FETAL PROGRAMMING HYPOTHESIS
OS occurs when the production of free radicals (FRs) 
exceeds the capacity of antioxidant defenses[102]. It 
represents an imbalance between the production of 
reactive species and the capacity of biological system 
to readily detoxify the reactive intermediates or repair 
the resulting damage.

FRs can be produced through many processes. 
FR are generated primarily within the mitochondrial 
respiratory chain, which is fundamental for ATP 
production in mammalian cells. During the respira
tory process, oxygen (O2) is utilized as an electron 
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studies[117,118] and there is evidence that both free-radical 
production and antioxidant defences are disturbed 
in Diabetes[119]. Hyperglycemia leads to an increased 
production of FRs through different metabolic pathways. 
In short, hyperglycemia increases formation of ad
vanced glycation end product (AGE) and activates the 
hexosamine biosynthetic pathway, thus leading to the 
formation of glucosamine-6-phosphate that competes 
with glucose-6-phosphase dehydrogenase and limits the 
synthesis of nicotinamide adenine dinucleotide (NAD). 
As is clearly known, NAD is necessary for reduced 
glutathione (GSH) rebuilding. Moreover, activation of 
the polyol and protein kinase C pathways, together 
with oxidases activation, may also be responsible for 
increased FRs production[120]. Hence, end products of 
abnormal glucose metabolism lead to an increased 
formation of FRs. When FRs production overcomes fetal 
and placental antioxidant capacity, transcription factors 
(TFs) such as nuclear factor-kB, activator protein-1, 
and HIF-1 are activated and lead to insulin resistance 
due to the phosphorylation (inactivation) of insulin 
receptor substrate-1 (IRS-1). Inhibition of IRS-1 leads 
to reduced membrane translocation of glucose transport 
protein as glucose transporter-4 (GLUT-4), thus 
generating a reduction of glucose insulin-dependent up-
take. Moreover, FRs are able to down-regulates GLUT-4 
transcription directly[120]. Consequently, extracellular 
hyperglycemia occurs. However, glucose can enter all 
cells virtually through insulin-independent GLUTs such 
as GLUT-1 and GLUT-3. This raises intracellular glucose 
concentration and enhances FRs generation, which, 
again, impairs insulin and signals the establishment 
of a vicious circle. TFs may also directly induce the 
expression of pro-inflammatory cytokines such as 
interleukin-6, tumor necrosis factor-α or monocyte 
chemoattractant protein-1 that will cause insulin 
resistance. Recent studies in animal models have 
observed that manipulating anti/pro- oxidant balance 
in pregnancy could alter blood pressure and vascular 
reactivity in rat offspring[121,122]. Such emerging 
evidence confirms that both the insulin functional axis 
and blood pressure could be sensitive targets to OS 
programming.

OS has been demonstrated in pregnancies with 
fetal growth restriction[123]. Fetal growth restriction 
is often complicated by intrauterine hypoxia and 
impaired blood flow to the fetus. Intrauterine hypoxia 
may induce FRs generation and fetal OS. It has 
been demonstrated that increased isoprostanes 
concentrations, which are reliable markers of lipid 
peroxidation in amniotic fluid, indicate fetal growth 
restriction and also induce damage to amniotic 
epithelium and chorioamniotic collagen. This aspect 
is clarified by recent data demonstrating that F2-
isoprostanes concentrations are significantly higher in 
pregnancies with premature rupture of membranes 
than in normal ones[123]. FRs may disrupt amino acid 
binding in proteins and polyunsaturated fatty acids 
of the membrane lipid bilayers, thus causing cell 

dysfunction, modification of chorioamniotic biology and 
predisposition to premature rupture of membranes.

By favouring intracellular release of NPBI into 
plasma, asphyxia and acidosis supply redox-cycling 
iron, thus predisposing to OS[124-127]. NPBI leads to 
the catalysis of superoxide anion (O2-.), hydrogen 
peroxide (H2O2), and the generation of the damaging 
hydroxyl radical (.OH). In presence of free iron, huge 
increases in FRs generation are possible and likely to 
cause tissue damage. Plasma NPBI may leak into the 
brain through a damaged barrier and is particularly 
damaging insofar as it is taken up by cells directly. 
When NPBI gains access to the extracellular space, its 
uptake by cells is enhanced by intracellular calcium and 
paradoxically also by increased levels of intracellular 
iron. Differentiating oligodendrocytes are particularly 
vulnerable to FRs damage because they are rich in 
iron, which is required for differentiation[128].

A recent in vivo and ex vivo rat model of IUGR 
underlines that delays in oligodendrocyte differen
tiation and myelination are probably due to bone 
morphogenetic protein 4 (BMP4) up-regulation indu
ced by OS. When BMP4 expression in oligodendrocyte 
increases, impaired differentiation occurs. A normal 
myelination has been observed abrogating BMP 
signaling[129].

Down syndrome comes from an exceeding chro
mosome 21 in cellular karyotype. Superoxide dis
mutase (SOD) gene is localized on chromosome 21. 
This enzyme has the capacity to detoxify cells from 
superoxide anion in vivo with the participation of 
catalase and glutathione peroxidase. Consequently 
increased SOD production leads to high H2O2 gene
ration, which can itself be toxic and also interfere with 
SOD activity[130]. An increased level of 8-iso-PGF2a 
isoprostane, was found in amniotic fluid of pregnancies 
with a Down syndrome foetus[131]. The immature oligo
dendroglial cells are glutathion peroxidase and catalase 
deficient so overexpression of SOD can be dangerous, 
instead of being protective. The early occurrence of OS 
in pregnancies with trisomy 21 and their subsequent 
oxidative damage as major contributing factor in brain 
aging and cognitive function decline are probably due 
to the overexpression of SOD, which comes from the 
supernumerary chromosome. SOD is also overexpressed 
in the immature brain, especially under stressful 
conditions (such as hypoxia)[132].

CONCLUSION
During early life, many gestational conditions may 
represent an important determinant of future heal
th. Whereas the dominant focus of experimental 
studies to date has been on defining the phenotypic 
consequences of fetal-placental perturbations, the 
emphasis has now shifted to determining those ini
tiating mechanisms underlying the programming 
process. The size and scope of this field has grown 
to include OS as the lowest common denominator. 
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During normal pregnancies, oxidants have many 
physiological functions, which promote and control 
cellular fate and which play a crucial role in normal 
development through cellular signalling. In absence 
of a parallel increase in antioxidative activity, OS will 
result. Overproduction of reactive oxygen species can 
lead to massive cellular damage by acting on proteins, 
lipids, and DNA. This unbalance may change the 
course of pregnancy and generate a cascade effect 
that leads to the genesis of in utero programming of 
adult diseases. It is clear that placenta is not simply a 
passive participant in pregnancy supplying maternal 
substrates to the fetus. It adapts to the maternal 
environment and changes both its structure and 
function. Placenta thus assumes an active role in 
programming the fetal experience in utero that leads 
to disease in adult life. Since placenta serves as barrier 
against oxidative insult to maintain the homeostasis 
of fetal intrauterine environment, it is plausibly that 
placenta adaptation occurred in response to such 
altered maternal environment may be the general 
underlying mechanism that links altered placental 
function to fetal programming. It can also been 
hypothesized that programming process is extended 
in early postnatal life for premature infants. Premature 
neonates experience a hyperoxic challenge as they 
have to grow up in an oxygen-rich environment post
natally. Moreover, these biological systems are prone 
to oxidative insults because of their resilience and 
maturity stage at the time of insult. There could be a 
different timing of insult, plausibly prenatal and early 
postnatal periods are the most critical ‘‘windows’’ to 
OS programming insults.

The challenge for the future is to develop new 
effective antioxidant therapies and to demonstrate their 
benefits in treatments. However, whether antioxidant 
supplementation, or a diet rich in antioxidants, can 
avoid consequences of OS programming in the off
spring or not is yet to be elucidated. Longitudinal 
studies evaluating the panel of OS biomarkers and 
elucidating the molecular mechanisms that engender 
OS in perinatal period are needed before antioxidant 
therapies are accepted in clinical practice.
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