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Abstract
Traumatic brain injury (TBI) is a major cause of death and 
disability in children. Severe TBI is a leading cause of death 
and often leads to life changing disabilities in survivors. The 
modern management of severe TBI in children on intensive 

care unit focuses on preventing secondary brain injury to 
improve outcome. Standard neuroprotective measures are 
based on management of intracranial pressure (ICP) and 
cerebral perfusion pressure (CPP) to optimize the cerebral 
blood flow and oxygenation, with the intention to avoid 
and minimise secondary brain injury. In this article, we 
review the current trends in management of severe TBI 
in children, detailing the general and specific measures 
followed to achieve the desired ICP and CPP goals. We 
discuss the often limited evidence for these therapeutic 
interventions in children, extrapolation of data from adults, 
and current recommendation from paediatric guidelines. 
We also review the recent advances in understanding 
the intracranial physiology and neuroprotective therapies, 
the current research focus on advanced and multi-modal 
neuromonitoring, and potential new therapeutic and 
prognostic targets. 
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Core tip: Paediatric traumatic brain injury (TBI) causes 
significant morbidity and mortality. The modern 
management of severe TBI in children focuses on 
preventing secondary brain injury to improve outcome. 
In this article, we review the current management 
of severe TBI in children. We also review the recent 
advances in understanding intracranial physiology and 
neuroprotective therapies, advanced and multi-modal 
neuromonitoring, and potential new therapeutic and 
prognostic targets. 
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INTRODUCTION 
Traumatic brain injury (TBI) is a major cause of death 
and disability in children and young adults worldwide. 
It is considered a “silent epidemic” because the general 
public is mostly unaware of the scale of the problem[1]. 
In the United States, it is estimated that around 1.7 
million people sustain TBI each year, and in Europe 235 
per 100000 people are admitted to hospital following a 
TBI[2,3]. Data from many parts of the world consistently 
show peak incidence rates in children, young adults and 
elderly people.

TBI occurs when head suffers the influence of an 
external mechanical force. This force can displace 
brain inside the skull and induce injury against the 
meningeal membrane or the cranium. Acceleration and 
deceleration forces can also disrupt nervous tissue and 
blood vessels of the brain. All grades of injury can occur, 
ranging from mild to severe TBI with cerebral oedema 
or large collections of blood. Severe TBI, defined as a 
post resuscitation Glasgow coma scale (GCS) of less 
than 9[4], is associated with highest rates of mortality 
and significant morbidity in survivors often causing life 
changing disability and cognitive function loss[5]. 

The mechanism of injury in TBI comprises of primary 
and secondary injuries. The primary injury is the direct 
consequence of the initial physical insult. It comprises 
irreversible cell damage that is the main determinant of 
clinical outcome. In the secondary injury, inflammatory 
and neurotoxic responses triggered by the primary 
injury induce oedema, hypoperfusion, hypoxia and 
ischaemia[6-8]. These changes often lead to raised 
intracranial pressure (ICP), temperature dysregulation, 
loss of autoregulation and seizures[9]. Much of these 
secondary injuries may be amenable to intervention, 
and left untreated can significantly increase morbidity 
and mortality associated with TBI[6]. 

Raised ICP plays a key role in secondary brain 
injury[9]. Skull is a rigid fixed volume compartment; the 
three elements within it namely, the brain parenchyma, 
blood and cerebro-spinal fluid (CSF) are relatively incom
pressible and changes in the volume of one leads 
to compression of the other[10]. Beyond the limits of 
compensation, the pressure rises sharply, this can 
severely impact the cerebral blood flow (CBF). The 
secondary insults can also arise from systemic factors, 
hypoxia and hypotension post head injury being the key 
determinants for outcome[7,11]. 

Early stabilisation post TBI includes rapid assessment 
for life threatening injuries followed by secondary survey 
according to ATLS/APLS guidelines[12,13]. After the initial 
resuscitation to ensure adequate airway, ventilation and 
haemodynamic stability, early neuro-imaging is required 
to look for intra-cranial pathologies requiring surgical 
intervention and neuroprotection[14]. There is evidence 
to support multi-disciplinary input and protocolized 
management for improved outcomes from head injury[15]. 
All children with moderate to severe traumatic brain injury 
should ideally be managed in centres with expertise and 

experience in managing such patients. The contemporary 
post-injury resuscitation and management focuses on 
prevention and mitigation of secondary insults[7,14]. This 
review will focus on the neuroprotective measures to 
decrease the damage caused by secondary brain injury in 
children with TBI requiring intensive care treatment.

GENERAL INTENSIVE CARE MEASURES
Airway control and ventilation 
All children with severe TBI and those with deteriorating 
GCS need definitive airway management with endotracheal 
intubation. As paediatric definitive airway needs specialist 
skills and experience, pre-hospital intubation at the scene 
for children with TBI is controversial[16]. However, early 
airway control is recommended to avoid hypoxemia, 
hypercarbia and aspiration[17]. The adequacy of oxygenation 
and ventilation should be measured continuously with pulse 
oximetry and end-tidal carbon dioxide (CO2) monitoring 
respectively and serial blood gas measurements. In children 
with TBI requiring ventilation, arterial PaO2 should be 
maintained above 11 kPa (saturations > 90%) and PaCO2 
between 4.5-5 kPa. Although there are no randomised 
controlled trials (RCT) to determine the exact values for 
PaO2 in TBI, the damaging effects of hypoxia[17,18] and to 
a lesser extent hyperoxia[19] are well known. Similarly, the 
effect of CO2 on cerebrovascular reactivity has been widely 
studied[19-21]. Hypercapnea causes vasodilatation leading to 
cerebral hyperaemia and hypocapnea causes ischemia by 
cerebral vasoconstriction[9,21,22]. 

Circulatory support 
Hypotension (defined as systolic blood pressure below 
the fifth percentile for age) or shock any time after injury 
can have major implications for clinical outcome and 
should be actively prevented and aggressively treated 
with fluid boluses and vasoactive agents[16]. Isotonic 
saline is recommended for fluid resuscitation and 
maintenance. In the presence of hypotension, patient 
also needs careful evaluation for extracranial injuries as 
the potential source of blood loss[23,24]. It is important to 
consider adrenocorticotropic hormone (ACTH) deficiency 
in patients with refractory hypotension; TBI induced 
pituitary dysfunction has been reported in nearly one 
quarter of children with TBI in the acute phase[25,26]. As 
the primary injury often impairs cerebral autoregulation, 
the cerebral perfusion may become directly dependent 
on the mean arterial pressure. Management of blood 
pressure in the intensive care is one of the cornerstones 
of the management of severe TBI[14]. While hypotension 
can potentially cause brain ischemia, hypertension 
can exacerbate vasogenic oedema in the cerebral 
parenchyma[27] and requires careful titration of blood 
pressure based on various parameters studied (discussed 
in details under specific interventions). 

Sedation, analgesia and neuromuscular blockade 
Although there are no RCTs studying the effect of sedation 
on outcome, it’s well known that any noxious stimulus 
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increases ICP[28] and cerebral metabolic demand for 
oxygen[29]. Appropriate sedation and analgesia reduces 
anxiety and pain, facilitates ventilation and general 
intensive care management, and helps reduce the 
cerebral oxygen demand, thereby reducing the risk of 
secondary brain injury[30]. In children, a combination of 
benzodiazepines and opioids is most often used. This 
combination can cause hypotension, so careful titration 
to the desired effect with continuous monitoring and 
management of blood pressure is essential to minimize 
risks of cerebral ischemia. Propofol, often used in adults, 
has restricted licence status in children, therefore, is only 
used in exceptional circumstances. 

Neuromuscular paralysis can help reduce airway 
and intrathoracic pressure which improves the cerebral 
venous return. It can prevent shivering and posturing, 
and the lack of skeletal muscle movement also helps 
to reduce cerebral metabolic demand[30]. The main 
disadvantage of neuromuscular blockade is masking of 
clinical seizures which should then ideally be monitored 
by continuous electroencephalograph (EEG). Its 
continuous use can also induce myopathy, increase 
length of ventilation, and cause nosocomial pneumonia 
and cardiovascular side effects[31]. However, judicious 
neuromuscular blockage use in children with severe TBI 
can minimize complications[32]. Therefore, neuromuscular 
blockade is recommended as part of the first tier 
management of children with severe TBI[14]. 

Fluids and nutrition
There is no single best fluid for children with traumatic 
brain injury, but isotonic crystalloids are widely used 
and have good scientific basis. Normal saline or lactated 
ringer’s solution should be the standard resuscitation 
fluid until further studies show a clear benefit from other 
therapies. Use of colloids is not routinely recommended 
and evidence suggests that use of albumin may have 
deleterious effects[33]. Fluid restriction is no longer 
recommended. 

Nutritional support is required for tissue repair, 
wound healing and optimal organ function. Due to lack 
of evidence, there is no specific recommendation for the 
nutrition regimen. Adult data supports early introduction 
of feeds after haemodynamic stability aiming for full 
feeds, either enteral or parenteral, by the end of first 
week[34,35]. Hyperglycaemia frequently occurs associated 
with the stress response to injury; therefore glucose is 
not routinely added to maintenance fluids in early phase 
of recovery regardless of the child’s age. Hyperglycaemia 
has been linked to poor neurological outcome in TBI[36-38] 
but the optimal glucose target has not been defined. Use 
of insulin to achieve tight glycaemic control may result 
in a net reduction in CSF microdialysis glucose and an 
increase in microdialysis glutamate and lactate pyruvate 
ratio (LPR) without conveying a functional outcome 
advantage[39]. Tight glycaemic control has also been 
associated with reduced cerebral extracellular glucose 
availability and increased prevalence of brain energy 
crisis, which in turn correlates with increased mortality[40]. 

Currently we recommend prevention of severe hypergly
caemia, keeping blood glucose levels below 180 mg/dL 
(10 mmol/L).

General care 
Children should be nursed in neutral head position and 
head-end elevation by 15o-30o to improve cerebral 
venous drainage[41,42]. Good nursing care, with regular 
turning, eye care and physiotherapy are important. 
Stress ulcer prophylaxis and laxatives are used as per the 
child’s requirements. Although evidence shows higher 
incidence of deep vein thrombosis (DVT) with increasing 
severity of trauma and increasing age in children[43], 
there are no universal recommendations for regular 
thromboprophylaxis in this age group. One study supports 
thromboprophylaxis to prevent DVT in paediatric trauma 
patients[44]. In our setting, compression stockings are 
routinely used in fully sedated and paralysed children with 
severe TBI, but the chemical prophylaxis is restricted to 
older children and is discussed on case by case basis. 

SPECIFIC INTERVENTIONS
Intracranial pressure monitoring 
The ICP can rise after TBI from either mass effect 
(haematoma) or cerebral oedema secondary to the 
injury. There is a direct association between raised 
ICP and poor clinical outcomes, and sustained raised 
ICP is an independent predictor of poor outcome 
following TBI[45-47]. While majority of evidence supports 
aggressive management of raised ICP[47-49], recent adult 
RCT failed to identify any benefit associated with ICP 
monitoring[50]. The results of this study[50] however need 
to be interpreted in the context of population studied 
and may not be generalizable to all TBI victims[51]. The 
lack of controlled trials for ICP monitoring has limited 
the recommendation (level Ⅲ) in the most up-to-date 
guidelines[14,52] although ICP monitoring remains the 
integral part in the management of patients with severe 
TBI in most centres. 

There are various different methods for ICP mo
nitoring using either fluid filled catheters or pressure 
microtransducers. Interventricular catheters are considered 
to be the gold standard for measuring ICP and also allow 
CSF drainage if ICP is high. However, there are practical 
limitations to their use including infection and technical 
difficulty in insertion in children with small ventricles[53,54]. 
Pressure microtransducers can reliably measure pressure 
from brain parenchyma (intraparenchymal) as well as 
epidural or subarachnoid spaces. Intraparenchymal 
probes are often preferred because they are easy to insert 
and have very low infection risk. However, they may not 
reflect the true ICP if there are pressure gradients within 
the cranium, and although the zero drift is minimal, they 
cannot be recalibrated once inserted[53]. 

The threshold for treating ICP in children has been 
extrapolated from adult guidelines[52]. There is some 
suggestion that the treatment thresholds for younger 
children and infants need to be different as the normal 
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rises in ICP. Various osmotic agents have been studied 
in the treatment of TBI, but mannitol and hypertonic 
saline are the most widely used. 

Mannitol has been used to reduce raised ICP for close 
to a century. It reduces ICP by reducing blood viscosity 
(rapid response) and by an osmotic effect (delayed 
response)[58]. These effects are more pronounced when 
the blood brain barrier is intact and autoregulation is 
preserved. In TBI, these mechanisms may be disrupted, 
so the response can be variable[59]. Mannitol can also 
reduce intravascular volume by causing osmotic diuresis 
(which could have a negative impact on CPP) and has 
the potential to induce reverse osmotic gradient by 
accumulating in the brain parenchyma (which could 
cause an increase in ICP) especially with prolonged 
use[60]. 

Hypertonic saline has been studied extensively in the 
last few decades as treatment for raised ICP. It shares 
the same rheologic and osmolar properties with mannitol 
that lower the ICP. It can also act as a volume expander, 
enhance cardiac output, improve CBF and inhibit 
inflammation[61-63]. Current guidelines support the use of 
hypertonic saline, but make no specific recommendation 
on the concentration[14]. Different studies and institutions 
use various concentrations from 1.7% to 29.2%[64,65]; 
in our institute, we use 5% saline (Figure 1). Delivery 
through a central access is recommended (but not 
essential) due to high osmolality. We use 2-4 mL/kg 
boluses of 5% saline (Figure 1).

Serum osmolarity plays an important role in 
determining fluid shifts in injured brain. Low serum 
osmolarity can increase vasogenic brain oedema, so 
hyperosmolar agents are used to normalise or increase 
serum osmolarity. Different upper limits of osmolarity are 
recommended for treatment with mannitol (320 mOsm) 
and hypertonic saline (360 mOsm), respectively. If 
using hypertonic saline, serum sodium levels need to be 
monitored as well and kept < 160 mmol/L. Due to lack of 
evidence for mannitol use in children with TBI, hypertonic 
saline has been recommended as the preferred osmotic 
agent in management of paediatric TBI[65,66].

Children with TBI are also susceptible to develop 
disorders of salt and water, like central diabetes insipidus, 
cerebral salt wasting and syndrome of inappropriate anti-
diuretic hormone. A detailed description of these is beyond 
the scope of this article, but a careful understanding and 
monitoring of serum and urine electrolytes and osmolarity 
is required[67]. 

Temperature control 
Hyperthermia can cause significant secondary brain injury 
by increasing cerebral metabolic demand, promoting 
inflammation and decreasing the seizure threshold, so 
needs to be avoided aggressively to protect brain[68]. 
Temperature control to avoid hyperthermia has become 
an integral part of neuroprotection in children with TBI[14]. 
Inducing hypothermia to reduce cerebral metabolic 
demand, inflammation and seizures, is more contentious. 

values of mean ABP and hence Cerebral perfusion 
pressure (CPP) are lower in children[55]. Keeping the ICP 
< 20 mmHg is the standard part of management of 
severe TBI on PICU[14]. 

Our current local protocol uses an age related 
threshold for ICP in children (Figure 1). If the ICP 
stays above the target, we first optimise sedation 
and the ventilation targets. If it still stays up, we use 
hyperosmolar therapy and consider repeat neuroimaging. 
If the scan doesn’t show any surgically correctible lesion 
(haematoma evacuation, ventricular drain), we move 
to tier 2 treatment (hypothermia, anticonvulsants). 
Decompressive craniectomy and thiopentone coma 
are used only in exceptional circumstances after multi-
disciplinary input. 

CPP 
CPP is defined as the difference between mean arterial 
pressure (MAP) and ICP, and is considered the driving 
pressure for cerebral blood flow and perfusion. In 
the normal brain, cerebral autoregulation maintains 
CPP within a specific range to couple oxygen delivery 
with cerebral metabolic rate. However, TBI impairs 
the cerebral autoregulatory capacity making brain 
vulnerable to both systemic hypotension and raised 
ICP. In adults, keeping CPP above a recommended 
threshold (60 or 70 mmHg) is associated with improved 
clinical outcomes[52,55]; some paediatric evidence also 
supports targeting higher CPP in children[56,57]. However, 
there are age related differences in MAP, CBF, and 
cerebral metabolic rate and there are no studies to 
demonstrate active management of CPP above a target 
threshold reducing mortality or morbidity[14]. Therefore, 
defining an ideal CPP for children is challenging and 
the current guidelines support maintaining a minimum 
CPP of 40 mmHg and a threshold of 40-50 mmHg[14]. 
Targeting very high CPP with use of vasopressors 
and fluids is associated with serious systemic toxicity 
and does not give better outcomes[52]. Also, in the 
absence of autoregulation, very high CPP can increase 
cerebral blood volume leading to an increasing ICP 
and also increase vasogenic oedema by increasing the 
hydrostatic pressure across the capillary bed[27]. 

Our management targets are described in Figure 
1, we achieve target CPP by maintaining systemic 
blood pressure towards the upper limit of normal 
blood pressure for age with the use of fluids to achieve 
normovolemia and inotropic support (most commonly 
noradrenaline infusion). However, if the ICP is very high, 
we do not increase MBP beyond the age related MBP 
limits and instead, focus on improving CPP by reduction 
in ICP. 

Hyperosmolar therapy 
Hyperosmolar therapy has been the hallmark of ICP 
management for decades. Hyperosmolar agents create 
osmotic gradient across the cerebral vascular bed, 
thereby decreasing oedema. They work best for acute 
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The theoretical benefits of induced hypothermia have not 
been confirmed in multi-centric trials despite a consistent 
decrease in ICP in the hypothermic patients. Rebound 
rise in ICP during rewarming and the delay to achieve 
target temperature have been suggested as the limiting 
factors that lead to no difference in neurological outcome 
of children receiving hypothermia[69,70]. Despite the lack 
of evidence, induced moderate hypothermia (32 ℃-33 ℃) 
is used as a second tier strategy to control ICP if the first 
tier strategies (sedation, analgesia, paralysis, osmolar 
therapy) have failed. The specific recommendation is to 
induce hypothermia early (within 8 h) for 48 h followed 
by very gradual rewarming (≤ 0.5 ℃/h)[14]. 

We use cooling blankets to keep patients normo
thermic (36 ℃-37 ℃) and only use hypothermia (35 ℃) 

for uncontrolled ICP after optimising other therapies and 
ruling out surgically correctible pathologies (Figure 1). 

Hyperventilation
CO2 is a potent determinant of cerebral vessel diameter. 
Lowering CO2 reduces ICP by causing vasoconstriction, 
but it also causes cerebral ischemia with a reduction in 
cerebral blood flow[21,22,71]. For this reason, hyperventilation 
cannot be recommended for treatment of ICP unless the 
patient has advanced neuromonitoring in place[14]. Despite 
the lack of evidence to support this strategy, evidence 
suggests it remains the most commonly used strategy 
to lower ICP[22,72]. We do not hyperventilate children with 
severe TBI and actively manage PaCO2 levels between 
4.5-5 kPa (Figure 1).

Agrawal S et al . Neuroprotection in paediatric traumatic brain injury

General measures - Stage A

    Nurse 30° head up
    Ensure no venous obstruction to neck
    Sedation: 
             Midazolam: 50-300 µg/kg per hour
             Morphine: 20-80 µg/kg per hour
    Paralysis: 
             Atracurium: 300-600 µg/kg per hour or Vecuronium: 50-100 µg/kg per hour
    Anticonvulsants: Phenytoin 15 mg/kg (depressed #, seizures)
    Antibiotics: none for CNS reasons unless discussed with neurosurgeons
    Ventilation: TV 6-8 mL/kg and rate to keep PCO2 in target range, no hyperventilation
    Consider multimodal brain monitoring

ICP/CPP targets not met: Consider repeat CT scan/recalibrating the probe, move to Stage B

    5% saline 2-4 mL/kg (can be repeated but plasma osmolarity < 360 mOsm) 
     or Mannitol 20% 2 mL/kg
    Ventilation PCO2 approximately 4.5 kPa
    Hypothermia: temperature 35 ℃
    External ventricular drain if feasible
    Consider anticonvulsants if not already given

ICP/CPP targets not met: Consider repeat CT scan/recalibrating the probe, move to Stage C

    Discuss with PICU consultant/ neurosurgery team and decide either
    Thiopentone 2 mg/kg per hour to achieve burst suppression (cfm/continuous EEG) or
    Consider decompressive craniectomy

Patient details
Cervical spine

Consider unstable until cleared by 
the neurosurgeons. Use sandbags/

tape/collar to immobilise.

ICP 
Target:………………………………mmHg
Signature: ……………………………….
Date:……………………………………..
CPP 
Target: ………………………………mmHg
Signature: ……………………………….
Date:……………………………………..

Targets
    SpO2 > 97%, PaO2 > 9 kPa, PCO2 4.5-5 kPa
    Temperature < 37 ℃, Glucose < 10 mmol/L (avoid hypoglycemia)
    Serum sodium > 140 mmol/L

ICP/CPP
Age (yr)                     ICP (mmHg)                   CPP (mmHg)
   < 3                               5-15                              40
  4-7                               15-20                            40-50
   8                                 < 20                             50-60

Figure 1  Protocol for managing severe traumatic brain injury in children. ICP: Intracranial pressure; CPP: Cerebral perfusion; CT: Computed tomography; PICU: 
Pediatric intensive care unit; EEG: Electroencephalograph.



41 February 4, 2016|Volume 5|Issue 1|WJCCM|www.wjgnet.com

Barbiturate coma
Barbiturates lower ICP through suppression of cerebral 
metabolic demand and alteration of vascular tone[73,74]. 
It improves coupling of regional blood flow to metabolic 
demands resulting in improved brain oxygenation at 
lower cerebral blood flow and decreased ICP. Although 
barbiturates are effective in lowering ICP, some studies 
suggest it does not improve clinical outcome in adults[75] 
and the literature in children is very scarce. Barbiturates 
have very significant systemic side effects, most notably 
severe haemodynamic compromise and increased 
intrapulmonary shunt. These side effects significantly limit 
the use of barbiturates in PICU and may be responsible for 
a number of complications observed in patients receiving 
this therapy. Also, the agent half-life is very long, making 
neurological assessment difficult. Barbiturates currently 
cannot be recommended for routine use in care of patients 
with raised ICP[76], but may be used as a rescue therapy in 
raised ICP unresponsive to first line treatment. Continuous 
EEG monitoring is recommended in children with TBI 
using barbiturates, and the agent should be titrated to 
achieve burst suppression[14]. 

Anti-seizures medication
Seizures are common post head injury and are often 
missed as patients are sedated and paralysed, but not 
always receive continuous EEG monitoring[77]. Although 
there is limited evidence to support the use of prophylactic 
anti-convulsants in severe TBI patients, the current 
guidelines still make a level Ⅲ recommendation for their 
use to reduce early post traumatic seizures[14].

Surgical treatment
Surgical management is a crucial part of management in 
TBI. If there is space-occupying haematoma post head-
injury, its evacuation is the most effective mechanism of 
reducing ICP and avoiding secondary brain insult. Neuro-
imaging is the cornerstone for diagnosing these and 
should be repeated for any persistent ICP rise. Space 
occupying lesions are often time-sensitive injuries and 
surgical evacuation should be performed as soon as 
possible, without delays.

Other surgical options for controlling ICP are CSF 
diversion (ventricular/lumbar drain) and decompressive 
craniectomy. CSF diversion can reduce CSF volume 
and ICP, and is recommended for eligible patients[14]. 
External ventricular drain (EVD) is a common method 
for CSF diversion and can also be used for monitoring 
ICP. Insertion of an EVD can be technically challenging 
in injured brain and may not offer any benefit if there 
is significant cerebral oedema causing collapsed 
ventricles[78]. Lumbar drain is only advised in conjunction 
with the EVD when there is no mass effect and cisterns 
are open[79]. 

Decompressive craniectomy can reduce ICP by 
allowing oedematous brain to expand by raising a bone 
flap and opening the dura. Although the technique lowers 
ICP, its benefits for outcome are not proven[80]. The 

current guidelines only make a level Ⅲ recommendation 
for its use in refractory intracranial hypertension which 
is resistant to other treatment strategies[14]. A recent 
randomized controlled trial in adults suggested that 
decompressive craniectomy increase the number of 
unfavourable outcomes despite lowering ICP and shortening 
length of ICU stay[80]. 

ADVANCED NEUROMONITORING
The pathophysiology of secondary brain injury is complex. 
It involves interactions between cerebral metabolic 
demand and supply with a complex relationship of cerebral 
blood flow, oxygenation, autoregulatory mechanisms 
and physiological derangements within an injured brain. 
Monitoring and maintaining ICP and CPP may be too 
simplistic to prevent secondary insults and there is growing 
evidence to support that factors other than ICP and CPP 
independently relate to the outcome. Some of these 
factors can be monitored with additional therapeutic targets 
with a potential to improve patient outcome. Although 
limited in paediatric TBI, some of these modalities are 
being increasingly studied and hold promise. The most 
common targets are CBF, cerebral autoregulation, cerebral 
oxygenation and metabolism. Also continuous monitoring 
of various physiological parameters in modern intensive 
care environment, such as oxygen saturations, respiratory 
rate, heart rate, ECG, CO2, temperature, blood pressure 
and intracranial pressure allow for the development of 
multi-modal monitoring in neurocritical care. Multi-modal 
monitoring can interpret the relationship of these different 
parameters with each other and give unique information 
over and above the individual numbers that could be used 
to optimise clinical management[81].

CBF and autoregulation
CBF is the single most important parameter in defining 
the outcome after TBI. The normal brain is able to 
maintain near constant CBF over a range of systemic 
blood pressure fluctuations from about 50 to 150 mmHg 
by cerebrovascular pressure reactivity and autoregulation 
mechanisms[82]. Impaired cerebral autoregulation is 
common post TBI and influences the patient outcome[83-86].

Pressure reactivity index
Pressure reactivity index (PRx), which is a correlation 
coefficient between ABP and ICP, relating the ABP 
changes with slow fluctuations in ICP, has been studied 
extensively[87,88]. In intact autoregulation state, fluctuations 
in ABP are compensated by reactive changes in vasomotor 
tone. For example, a drop in ABP induces vasodilatation 
which increases cerebral blood volume and ICP, giving a 
negative correlation between ABP and ICP, and a negative 
PRx. Impaired autoregulation on the other hand, would 
lead to passive transmission of ABP fluctuations to ICP 
and hence a positive PRx[87]. By continuously studying 
cerebrovascular reactivity through PRx and plotting it 
against CPP, the CPP at which the vasculature is most 
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reactive can be calculated and the optimum CPP (CPPopt) 
can be estimated[89,90]. This is particularly important in 
young children in whom CPP data is scarce and CPPopt 
gives an ideal therapeutic target. It is important to 
remember that autoregulation is dynamic and changes 
both between individuals and at different times within 
an individual patient depending on type of injury and 
time since injury[91,92]. Therefore, PRx and CPPopt also 
provide dynamic values in real time that can be used to 
individualise therapeutic targets for a given patient and 
changing targets over time depending on the state of 
cerebral autoregulation[93,94]. The time CPP stays above 
or below CPPopt has been shown to be associated with 
outcome[89]; whether an active management of PRx and 
CPPopt would affect the outcome remains to be proven in 
randomised controlled trial. 

Transcranial Doppler ultrasonography
Transcranial Doppler ultrasonography (TCD) is a non-
invasive method that measures the flow velocity in 
middle cerebral artery[95]. It gives non quantitative 
estimate of CBF and state of cerebral autoregulation 
based on the assumption that the diameter of the 
vessels insonated is relatively constantly maintained 
despite changes in BP and PaCO2, so the changes in flow 
velocity would estimate the changes in CBF. It is easy to 
use and can be repeated bedside, however, it is difficult 
to get a continuous assessment and it is liable to inter-
observer variability. Various indices have been developed 
to interpret state of CBF and autoregulation, CPP and ICP 
and CO2 reactivity by using TCD. One such index called 
pulsatility index (PI) is based on analysing the waveform 
of diastolic and systolic flows in the middle cerebral 
artery. PI has been used to assess brain compliance 
and CPP, and has been shown to have an association 
with ICP[96,97]. Cerebrovascular resistance is estimated 
by a ratio of MAP to changes in flow velocity measured 
by TCD which is then used to calculate autoregulation 
index which reflects the state of autoregulation[86,98]. 

Alternatively, manipulation of systemic blood pressure 
can also be used to study the effect of ABP changes in 
the TCD parameters to assess autoregulation[85,86]. TCD 
is being increasingly used in children[85,86]; further studies 
are required to validate the preliminary results.

Brain tissue oxygenation
Adequate oxygen delivery to brain tissue is important 
to prevent secondary brain injury. The relationship 
between oxygen demand (cerebral metabolic rate, 
CMRO2) and supply (CBF) is complex post head injury 
due to unknown changes in metabolic demands at the 
cellular level, hence optimal management of ICP and 
CPP (surrogates for CBF) does not always prevent brain 
hypoxia[99]. 

Direct brain tissue oxygenation monitoring
Direct brain tissue oxygenation monitoring (PbtO2) has 
been used for over two decades and there is significant 

evidence to support its use in paediatric TBI[56,100]. The 
latest guidelines make a level Ⅲ recommendation to 
keep PbtO2 above 10 mmHg in paediatric TBI[14]. The 
commonest method used to monitor PbtO2 is by insertion 
of a polarographic electrode in the brain parenchyma 
with the ICP bolt and the value measured is the oxygen 
accumulated in the brain parenchyma at the tip of the 
transducer, which is influenced by oxygen supply, demand 
and utilization. The probe placement is crucial. In focal 
injury, it should be placed in the pericontusional area 
while in diffuse injuries; it is usually placed in the non-
dominant hemisphere. Although the normal values of 
PbtO2 are not clearly understood, animal studies suggest 
20-30 mmHg as the normal values for normal uninjured 
brain[101]. A threshold of 10 mmHg has been accepted as 
the ischemic threshold and PbtO2 levels below 10 mmHg 
have been associated with poor outcome. PbtO2 values 
can be improved by increasing inspired oxygen/ventilation, 
haemoglobin levels and MBP[57,102].

Continuous jugular venous saturation monitoring
Continuous jugular venous saturation monitoring (SjvO2) 
is another method used to understand the relationship 
between CBF and brain metabolism and gives the 
difference between cerebral oxygen supply and demand. 
A retrograde catheter inserted in the jugular venous 
bulb measures continuous SjvO2. There is no consensus 
for normal levels of SjvO2 in children but in adults 
50%-75% is considered normal. Values outside this 
range are considered abnormal and have been shown to 
be associated with poor outcome[52,103]. Due to technical 
difficulties, paediatric experience with the use of SjvO2 is 
limited. It is also not a good indicator of regional changes 
in the injured brain. 

Thermal diffusion probes 
Regional cerebral blood flow can be measured directly 
by thermal diffusion probes (TDP) inserted in brain 
parenchyma. The technique has been validated with 
good agreement between TDP and xenon-CT for regional 
CBF measurements. In combination with PbtO2, TDP 
can be potentially useful in optimizing management of 
CPP[104]. 

Brain metabolism and chemistry
It is possible to study the concentration of chemicals found 
in the brain parenchyma by using microdialysis and is now 
frequently used in monitoring and managing adult TBI. It is 
possible to measure markers of brain metabolism (glucose, 
lactate and pyruvate), neurotransmitters (glutamate) 
and tissue damage (glycerol) at select intervals on small 
amounts of interstitial fluid collected by the microdialysis 
catheter inserted into the brain parenchyma alongside the 
ICP monitor and PbtO2 probe and there are established 
normal values for adults for some of these chemicals[105]. 
LPR is of particular interest as it signifies the balance 
between aerobic and anaerobic metabolism; LPR can also 
be elevated in states of hyperglycolysis or mitochondrial 
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dysfunction[105,106]. Sustained elevations of LPR have been 
identified in pericontusional tissue[107] and have been 
shown to be associated with poor outcome[108]. Similarly, 
brain glucose levels can be used to guide optimal threshold 
for blood glucose levels[40]. At present, microdialysis is 
predominantly used for research purposes, but holds 
promise for future. Similar to PbtO2 probe, the position of 
the catheter is crucial and influences the results.

CONCLUSION
Paediatric TBI is a complex disease and requires multi-
disciplinary input. Advancements in the field of paediatric 
neurocritical care and improved understanding of TBI 
pathophysiology are being translated to bedside therapies 
but clinical benefit from most of these therapies is yet to 
be proved in clinical trials. Despite this, implementations 
of guideline-based management protocols have impacted 
significantly on the outcome of TBI in recent years. New 
monitoring techniques have improved our ability to 
recognise adverse events and mechanisms of secondary 
brain injury. The role of these new techniques of 
individualized management need to be further evaluated. 
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