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Abstract
Osmolyte transport is a pivotal part of bacterial life, 
particularly in high salt environments. Several low and 
high affinity osmolyte transport systems have been 
identified in various bacterial species. A lot of research 
has centered on characterizing the osmolyte transport 
systems of Gram-negative bacteria, but less has been 
done to characterize the same transport systems in 

Gram-positive bacteria. This review will focus on the 
previous work that has been done to understand the 
osmolyte transport systems in the species Staphy
lococcus aureus  and how these transporters may serve 
dual functions in allowing the bacteria to survive and 
grow in a variety of environments, including on the 
surface or within humans or other animals.
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Core tip: Staphylococcus aureus  (S. aureus ) is the 
number one cause of skin and soft tissue infections. In 
the United States, S. aureus  is usually the number one 
hospital-acquired pathogen. The skin and urinary tract 
organs are high osmotic stress environments. Osmolyte 
transport is essential for S. aureus  survival in different 
environmental niches, such as within human skin absce
sses or the human urinary tract.

Schwan WR, Wetzel KJ. Osmolyte transport in Staphylococcus 
aureus and the role in pathogenesis. World J Clin Infect Dis 
2016; 6(2): 22-27  Available from: URL: http://www.wjgnet.
com/2220-3176/full/v6/i2/22.htm  DOI: http://dx.doi.org/10.5495/
wjcid.v6.i2.22

INTRODUCTION
A well conserved, evolutionary strategy used by many 
organisms to adapt to high osmotic conditions is the 
transport of organic compounds, called compatible 
solutes[1]. These compatible solutes serve as cytoplasmic 
solutes that balance water relations, without interfering 
with normal cytoplasmic activities, within cells grown in 
high salt environments. Examination of the transport 
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systems in Staphylococcus aureus (S. aureus) may 
provide insight into how proline and glycine betaine 
may be transported into Gram-positive bacteria.

GENERAL OSMOLYTE TRANSPORT 
FEATURES IN S. AUREUS
Although osmolyte transport is best described in E. 
coli[1-3], there are also compatible solute transport 
systems in S. aureus to adapt to high salt environ
ments[4]. Studies have shown that S. aureus cells grown 
in very high salt environments had increased intracel
lular levels of proline and glycine betaine[5-11]. Other 
intracellular molecules that also increased in high NaCl 
environments were choline, proline betaine, taurine, 
and glutamic acid[6,7,12]. Of these accumulated solutes, 
proline and glycine betaine were the most effective 
osmoprotectants of S. aureus, since S. aureus growth 
was observed when these solutes were excluded from 
defined high osmotic media[6,8,12]. 

Identification of genes that encode transport pro
teins and their importance for the survival of S. aureus 
coincides with previous observations that S. aureus 
requires several amino acids as a source of carbon 
and nitrogen[4]. Of these essential amino acids, proline 
and other amino acids are not synthesized by S. 
aureus[4,13,14]. The accumulation of most of the proline in 
S. aureus occurs because of proline transport proteins.

Although prior research performed using other Gram-
positive bacteria may not have specifically addressed 
proline transport, it does help in uncovering commonly 
conserved mechanisms of compatible solute transport 
in S. aureus. Several studies that have examined com
patible solutes accumulation in S. aureus grown at high 
osmotic environments showed increased intracellular 
levels of proline, aminobutyric acid, glutamic acid, ch
oline, taurine, and glycine betaine[5-7,15,16]. Of these 
compatible solutes, only glutamic acid is synthesized by 
S. aureus, whereas the other compatible solutes have 
to be imported from the external environment[5,7,8,17-19]. 
To substantiate the osmoprotective importance of these 
transported compatible solutes, the growth rates of 
S. aureus grown in defined high osmotic media was 
observed to increase when supplemented with either 
proline or glycine betaine[8]. Although S. aureus normally 
possess relatively large concentrations of glycine betaine 
and potassium ions, compatible solute transport is 
believed to aid in creating high intracellular pressure that 
enables S. aureus to survive in high osmotic environ
ments[15]. 

SPECIFIC PROLINE TRANSPORT 
SYSTEMS IN S. AUREUS
Initial proline uptake research using whole cell assays on 
S. aureus has shown the presence of at least two proline 
transport systems[10,17,20]: Both a low- and high-affinity 
system. These systems may be similar to the OpuE 

and OpuD transport systems found in B. subtilis[21,22] 

and they share properties with the PutP and ProP 
systems of E. coli[1]. They are both sodium-dependent 
transporters, since gramicidin D and monensin, which 
collapse Na+ gradients, inhibit proline transport in both 
systems[10]. Proline transport in either system showed 
low susceptibility to inhibition by glycolysis and ATP form
ation by a combination of NaF and sodium iodoacetate 
or sodium arsenate, respectively. Lastly, alterations of 
pH from 5.5 to 8.5 had little effect on the transport rates 
of proline[10]. 

In S. aureus, proline transport kinetics is hard 
to interpret because of strain differences and the 
calculation setups used to determine the Km and Vmax 
values reported, one based on per mg protein and the 
other per mg dry weight. Reports have shown that the 
high-affinity proline transport system in S. aureus had 
a Km ranging from 1.7 to 7.0 mol/L, with a Vmax ranging 
from 1.1 nmol/min per milligram dry weight to 10 nmol/
min per milligram protein[10,17]. Though these numbers 
are not directly comparative, they do give us a relative 
range of activity for this system, which correlates to a 
previously observed Km value of 3.5 mol/L for proline 
uptake with vesicles prepared from S. aureus grown in 
a low-osmolarity medium[23] and Km values of the PutP 
system in E. coli[1,17,24-26]. Moreover, like the PutP system 
of E. coli[1], the high-affinity proline transport system 
in S. aureus is specific for the transport of proline 
and it’s activity increases when proline deprivation is 
encountered, suggesting that this system may also be 
involved in scavenging low concentrations of proline from 
the environment[10]. Further proof of the relatedness of 
these systems can be seen from the complementation 
of a genetic defect in proline transport within E. coli by 
the high-affinity proline transport system of S. aureus[27]. 
At the structural level, the PutP homolog of S. aureus 
shows a sodium-binding motif, the same ten conserved 
amino acids found in all other members of the sodium/
solute symporters[28], and the predicted PutP protein 
of S. aureus[29] shares considerable similarity with the 
PutP protein of E. coli[1]. Although many similarities exist 
between the high-affinity proline transport systems in 
S. aureus and E. coli, major differences between these 
systems include: The concentration of NaCl appears to 
have no effect on proline transport in S. aureus[8,17]; the 
S. aureus putP gene is activated by high concentrations 
of osmolytes in the environment[30], whereas the E. coli 
putP gene is not[1,25,29]; and the S. aureus putP gene is 
regulated by SigB[30], which is similar to the regulation 
shown for opuE in B. subtilis[21]. Although PutP has a 
sodium binding motif and has homology with sodium/
solute symporters, the concentration of NaCl does not 
affect proline transport[7,17], It is possible that when S. 
aureus is grown in an environment with a low sodium 
concentration that PutP behaves like other bacterial high 
affinity proline transporters that are driven by a sodium 
motive force. On the other hand, S. aureus grown in a 
high sodium environment may cause the PutP protein 
to use a proton motive force instead of a sodium motive 
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force to bring proline into the cell.
The low-affinity proline transport system of S. 

aureus also has similarities to the low-affinity proline 
transport system (ProP) of E. coli. For proline transport, 
the Km value of S. aureus ATCC 12600 (Km of 420 mol/L 
and Vmax of 110 nmol/min per milligram protein) is 
similar to the Km value of ProP in E. coli (approximately 
300 mol/L)[17]. For S. aureus (Km of 132 mol/L and Vmax 

of 22 nmol/min per milligram dry weight), a greater 
difference in the Km values for the low-affinity proline 
transport system can be seen between strains as 
compared to the difference in Km values for the high-
affinity system. Again, the Km and Vmax values from 
the ProP system of E. coli fit within the overall range 
found for S. aureus[1,31-33], but strain variation along with 
calculation setup differences may again be the cause 
of these divergent numbers. Excluding the differences 
of the Km and Vmax values between strains, the low-
affinity proline transport systems of different S. aureus 
strains possess identical characteristics[10,17]. Many of 
these characteristics are similar to the regulatory and 
functional properties of the ProP system of E. coli[34] 
(i.e., both of these systems transport proline and are 
stimulated by increasing osmolarity produced by either 
ionic or nonionic solutes)[17].

DIFFERENCES IN THE S. AUREUS 
OSMOLYTE TRANSPORT SYSTEMS 
COMPARED TO OTHER BACTERIA
Though these systems are similar, there are some major 
differences between the Gram-negative and Gram-
positive low-affinity proline transport systems. One 
major difference is that the low-affinity proline transport 
systems in S. aureus are optimally activated at NaCl 
concentrations ranging from 0.75 to 1.0 mol/L[17,35], 
whereas the low-affinity proline transport systems in E. 
coli are inhibited by NaCl concentrations greater than 0.2 
to 0.3 mol/L[29,36]. Other major differences include glycine 
betaine transport activity by the low-affinity proline 
transport system has not been conclusively established 

and there conflicting opinions and data presented for 
the glycine betaine transport activity for the low-affinity 
system[9,17,18,20,37]. In part, the previous lack of any low-
affinity system mutants in those studies complicated 
the examination of glycine betaine transport activities. 
Since glycine betaine accumulation has been linked to 
proline transporters in Gram-negative bacteria[1] and 
S. aureus has been shown to transport glycine betaine 
from the external environment[38], this suggests that an 
additional glycine betaine transporter that is osmotically 
stimulated may be present in S. aureus. Moreover, S. 
aureus cells shocked with 0.5 mol/L NaCl in the presence 
and absence of chloramphenicol (100 g/mL) showed 
identical levels of transported proline, suggesting that 
new protein synthesis is not necessary for rapid proline 
uptake and that osmotic shock activates a pre-existing 
proline transport system[10]. 

BIOINFORMATIC TOOLS TO IDENTIFY 
OSMOLYTE TRANSPORT SYSTEMS IN S. 
AUREUS
Sequencing of several S. aureus genomes has provided 
a wealth of information on the existence of several 
putative osmolyte transport systems in S. aureus[14,39,40]. 
All of the strains appear to have a conserved putP gene 
for high affinity transport of proline, although there 
appears to be homologs for both a proP gene[1] and 
opuD gene[21,35] (Table 1). Additional analyses have 
shown that the opuD gene (encoding a low affinity 
proline transporter) is activated under osmotic stress 
conditions and OpuD transports proline under low 
affinity growth conditions[35]. Furthermore, a mutation 
in the S. aureus proP gene also causes lower proline 
transport in media with high concentrations of proline 
(Schwan WR unpublished data). 

This is the first instance of both the ProP and 
OpuD low affinity proline/glycine betaine transport 
homologs being identified in one species and suggests 
the importance that proline transport must have in the 
survival of S. aureus cells in a variety of environments. 
Furthermore, the opuC system, which putatively tran
sports glycine betaine/carnitine/choline, has also been 
observed. Together, the bioinformatic comparisons have 
uncovered some very interesting genomic features in S. 
aureus centered on osmolyte transport. A summary of 
the four osmolyte transport systems in S. aureus tied 
to proline transport and other known solutes is noted in 
Figure 1. 

OSMOLYTE TRANSPORT TIED TO S. 
AUREUS SURVIVAL IN HUMANS AND 
MICE
The rationale of investigating proline and glycine be
taine transport in S. aureus is not purely academic. In 
planktonic S. aureus, the glycine betaine level is high, 
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S. aureus strains

Gene N315 MW2 COL Mu50
putP SA1718 MW1843 SACOL1963 SAV1902
putP SA0531 MW0528 SACOL0620 SAV0573
opuD SA1183 MW1236 Yes (2)2 SAV13494

opuD1 -1 -1 SACOL1384 ND3

opuD2 -1 -1 SACOL2176 ND3

opuCA SA2237 MW2372 ND3 SAV2448
opuCB SA2236 MW2371 ND3 SAV2447
opuCC SA2235 MW2370 ND3 SAV2446
opuCD SA2234 MW2369 ND3 SAV2445

Table 1  Distribution of proline and glycine betaine transport 
genes in some sequenced

1Does not possess; 2Multiple opuD genes in this species; 3Not determined; 
4The gene appears to be fragmented into two pieces.

Schwan WR et al . Staphylococcus aureus  osmolyte transport and pathogenesis
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affinity proline transport gene. 
Conversely, transcription of the low affinity proline 

transport gene opuD was shown to be the highest after 
4 h post-infection in murine bladders and 18 h post-
infection in murine thigh abscesses[35]. Within murine 
bladders and kidneys, high osmotic conditions prevail. 
Initial observations demonstrated that at least one of the 
low-affinity proline transport systems of S. aureus was 
activated under moderate to high osmotic conditions[17], 
which has been subsequently confirmed[35]. 

Our model is that PutP is important in the early 
stages of an infection when proline concentrations are 
low, but OpuD expression is not as important (Figure 2). 
As the infection proceeds, tissue damage occurs, which 
releases free proline. By 18 h post-infection, the level of 
free proline is higher and OpuD becomes important at 
this stage of the infection. 

These studies suggest that osmolyte transport 
systems may play essential roles in survival of S. aureus 
within humans or mice. Characterization of the proline 
and glycine betaine transport systems will provide us 
with experimental proof of the importance of these 
systems during growth in high osmotic conditions, how 
these systems are regulated, and will further our under
standing of the significance of the proline/glycine betaine 
transport to the survival of S. aureus in vivo.
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PutP
   Proline

PutP
   Proline
   Glycine betaine
   Proline betaine
   Choline
   Carnitine
   Ectonie

OpuC
   Proline
   Glycine betaine
   Carnitine
   Choline

OpuD
   Proline
   Glycine Betaine

Figure 1  The four prominent osmolyte transport systems in Staphylococcus 
aureus tied to proline transport as well as other solutes.

Proline

0 h
   Low proline level
   No tissue damage
   PutP ↑
   OpuD ↔

18 h
   Moderate proline level
   Tissue damage
   PutP ↓
   OpuD ↑

Proline

Proline

Proline

Figure 2  Model for the roles of proline transporters in Staphylococcus 
aureus pathogenesis within a murine abscess.
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