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Abstract
The male factor is responsible for about 40% of couple 
infertility cases and such percentage is expected to 

increase in the future because of several likely factors 
including the presence of endocrine disruptors in the 
environment, changes in lifestyle habits and advanced 
couple aging. How such factors affect male fertility 
status, however, should be clarified. Most studies on 
male fertility status have focused on parameters analyzed 
using a spermiogram test, the primary diagnostic tool 
in the routine assessment of male infertility, which is, 
however, poorly predictive of both natural and medically 
assisted conception. For these reasons it is mandatory 
for the scientific community to identify new molecular 
markers to incorporate into the existing diagnostic tests 
of male fertility. Ideally, such markers would be detected 
in mature spermatozoa to avoid invasive procedures 
for the patient. This review summarizes the recent 
advancements in benchside approaches that appear 
most promising for the development of new diagnostic 
sperm fertility tests, or identification of therapeutic 
targets, and, illustrates their advantages and limits. 
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Core tip: This review focuses on genetic, epigenetic, 
proteomic, and post-translational protein modification 
and ion channel studies present thus far in the literature 
to identify possible sperm markers that could be helpful 
for new diagnostic tests or represent possible thera
peutic targets for male infertility.
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INTRODUCTION
Infertility is a worldwide health problem affecting 
about 15% of couples[1]. Although the World Health 
Organization (WHO, 5th edition[2]) defines it as a disease 
of the reproductive system, infertility also influences 
emotional, social and psychological spheres. The male 
factor is involved in about 40% of couple infertility 
cases, with the highest incidence rates in Eastern 
Europe and Africa[1]. Male infertility, affecting presently 
7% of the worldwide population, is expected to double 
over the coming years. Some possible explanations 
reside in the rise in hectic lifestyles, in the increase of 
pollution and in socio-economic changes that delay 
couples in starting a new family. Currently, how all these 
factors affect male fertility status is not clear. 

The increase in reproductive age is becoming an 
important social problem, which can be particularly noted 
in industrialized countries. The role of advanced maternal 
age in the lower success of natural and medically 
assisted reproduction has been well established[3]. A 
recent trend among young women is to freeze their 
oocytes for social reasons, such as desire to have a 
career, delaying the age of the first conception. Not 
surprisingly, some multinational American corporations 
offer to pay for an oocyte preservation procedure for 
their female employees to allow for career advancement. 
In contrast with the maternal age, whether paternal 
age affects fertility is still highly debated. Despite some 
authors not finding correlations between paternal age 
and infertility[4,5], others have shown that a forward shift 
in male age represents a further risk factor for the failure 
to conceive[6,7], for the success of assisted reproductive 
techniques (ART) and for the health of offspring[8]. 
Advanced age may lead to changes in hormonal profile[9] 

and germinal epithelium disorders with the consequent 
alterations in seminal parameters[10,11]. Decreased sperm 
quality may be due to alterations in the expression of 
some proteins[11,12], as well as an increase in sperm 
DNA fragmentation (sDF)[13,14] or of other types of DNA 
damage[11]. In addition, it has been demonstrated 
that the higher number of de novo mutations found 
in offspring of increasingly older fathers can mostly be 
attributed to paternal transmission[15-17]. 

As mentioned above, besides male aging, there 
are several other factors contributing to the decrease 
in male fertility potential with similar pathogenic me
chanisms, such as the ever increasing presence of 
endocrine disrupting chemicals in the environment[18] 

and the changes in lifestyle with an increased prevalence 
of obesity and metabolic syndrome[19]. 

Pharmacological treatment of the male partner can 
only be successfully applied to non-idiopathic causes 
(such as hypogonadropic hypogonadism), whereas for 
idiopathic infertility, despite many attempts, virtually 

no effective treatment is currently available[1]. A recent 
meta-analysis has concluded that gonadotropin therapy 
is a possible choice to improve fertility, especially in 
case of post-pubertal onset hypogonadotropic hypo
gonadism[20]. Efforts to treat idiopathic male infertility, for 
instance using gonadotropins, or anti-aromatase, anti-
estrogen and anti-oxidant drugs, have not demonstrated 
a conclusive, beneficial effect of said therapies[21]. Until 
robust results are obtained, ARTs remain, for idiopathic 
male infertility, the option with the highest chance of 
achieving pregnancy.

Although ARTs have expanded globally over the 
last few decades, these procedures remain inaccessible 
in many parts of the world and are quite expensive. 
Moreover, despite ARTs’ success rate having approved 
greatly over the past few years, the current live birth 
outcome remains low, averaging just 34%[22], with 
important economic and psychological consequences 
for couples. For these reasons it is mandatory, for the 
scientific community, to identify the causes of infertility 
in order to find effective treatments and new sperm 
markers to improve the accuracy of diagnosis. 

The primary diagnostic tool in the routine assess
ment of male infertility is semen analysis (spermiogram), 
which consists in the evaluation of the macroscopic 
(volume, pH, liquefaction) and microscopic (number, 
motility and morphology) characteristics of seminal 
fluid. Despite the fact that WHO issued detailed labo
ratory guidelines to standardize the methods and has 
established normal reference values[2], spermiogram 
has a high operator variability, high intra-individual 
variation[23] and is not highly predictive of the fertility 
status[24,25]. The diagnosis of infertility results as being 
accurate only in the case of azoospermia and severe 
oligozoospermia. Semen analysis does not provide 
information about the molecular status of spermatozoon 
and the functions necessary for oocyte fertilization. 
For this reason, identification of new semen or sperm 
molecular markers able to discriminate between fertile 
and infertile men is one of the main goals of current 
research. Markers that single out spermatozoa with a 
higher fertilizing ability could lead also, in the future, to 
a better sperm selection for ARTs. Indeed, although new 
advanced tools for sperm selection have been developed 
based on sperm surface charge, apoptotic or maturity 
sperm markers and sperm ultramorphology, more 
studies are needed before introducing advanced sperm 
selection methods in ART[26]. Based on current published 
data, sperm selection using real-time motile sperm 
organelle morphology examination at high magnification 
coupled with intracytoplasmic morphologically selected 
sperm injection seems to be a promising method with 
benefits for late ART outcomes (pregnancy, live birth and 
abortion rates)[27]. 

This review will focus on the recent advancements of 
benchside approaches that appear most promising for 
the identification of new sperm/germ cells as molecular 
markers of infertility. 
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GENETIC AND EPIGENETIC STUDIES ON 
TESTICULAR GERM CELLS AND MATURE 
SPERMATOZOA
At least 15% of male infertility cases are due to genetic 
alterations[28], including Y chromosome microdeletions, 
present in about 20% of cases of azoospermia or severe 
oligozoospermia[29]. Innovative approaches implying 
whole-genome analysis, such as the evaluation of single 
nucleotide polymorphisms and copy number variations, 
could be helpful in the search for new gene candidates 
having a role in male infertility[30-32]. For instance, a 
recent study by Yatsenko et al[33] identified hemizygous 
mutations in the TEX11 gene as one of the causes 
of meiotic arrest and azoospermia in infertile men. A 
microarray study found a different expression of genes 
linked to spermatogenesis in testis RNA from non-
obstructive azoospermic (NOA) men when compared to 
commercial RNA from normal testicular tissue[34,35]. We 
expect that other genes responsible for azoospermic/
severe oligozoospermic phenotypes will be discovered 
in the future. 

Whereas genetic studies are of great help in iden
tifying the genes involved in testicular disorders that 
lead to severe alterations in sperm number, the search 
for genetic modifications leading to sperm dysfunctions 
in idiopathic infertility appears to be a sort of “fishing 
expedition”. Conversely, the use of genetic, epigenetic 
and proteomic approaches on ejaculated spermatozoa 
could allow researchers to characterize the complete 
spectrum of sperm phenotypes present in infertile 
subjects better and, accordingly, to understand the 
leading causes of infertility in depth. 

Epigenetic alterations derived from environmental 
pollution, toxicants and nutritional habits could impair 
both sperm quality and embryo development[36,37], 
increasing the risk in offspring of developing chronic 
diseases, such as type 2 diabetes, obesity, cardiovascular 
disease and cancer[38,39]. Evidence in animal models 
suggests that some epigenetic markers can be inherited 
by the offspring through parents’ gametes[39]. Rodent 
studies have demonstrated that paternal diet affects 
pregnancy achievement and offspring metabolism[40,41]. 
In two recent studies evaluating genome wide sperm 
DNA methylation, such an epigenetic pattern was 
found to differ significantly between in-vitro fertilization 
(IVF) patients and normozoospermic fertile men[42] and 
between men achieving pregnancy within two months 
and men who did not obtain pregnancy within twelve 
months, despite similar semen quality[43]. These studies 
identified candidate methylation loci to be explored 
in future studies in order to consolidate the results. 
Epigenetic inheritance related to spermatozoa includes 
not only DNA methylation but also other epigenetic 
factors such as histone retention or non-coding RNA 
(ncRNA). In view of the recent observation that histone 
retention in specific loci is important for subsequent 
embryo development[44,45], new sperm diagnostic tests 

based on histone enrichment in specific genes could 
be developed in the future. Alterations in ncRNAs may 
also impair embryo development and transgenerational 
inheritance. Among ncRNA, the occurrence of miRNA 
in sperm, seminal fluid and testicular tissue has been 
reported recently[46]. The fundamental role of miRNA 
during spermatogenesis is demonstrated by the 
fact that the knockout of the Dicer enzyme, which is 
responsible for the cleavage from immature to mature 
forms of miRNA, leads to infertility[47]. What remains 
to be determined is whether miRNAs are required also 
for human spermatogenesis. Recently, an alteration 
of five miRNAs in subfertile and NOA subjects has 
been shown[48]. Similarly, employing next generation 
sequencing, Jodar et al[49] found a set of sperm RNA 
elements required to achieve live births in couples with 
idiopathic infertility undergoing non-invasive fertility 
treatments, such as timed intercourse or intrauterine 
insemination (IUI). However, the absence of such RNA 
elements does not appear to be critical when ARTs are 
employed.

Whereas the above described potentially new tools 
for male infertility diagnosis are still a long way off from 
use in clinical practice, sDF tests are utilized at present 
in many ART laboratories in support of traditional semen 
analysis. Many studies, summarized in the meta-analysis 
by Zini[13], have evaluated the effect of high sDF levels 
on the outcomes of both natural conception and ART. 
The meta-analysis concluded that pregnancy rate is 
negatively associated with sDF in natural insemination, 
IUI and IVF but not in intra-cytoplasmatic sperm injection 
(ICSI). These results were confirmed in a later meta-
analysis[50]. Even more disturbing, the risk of miscarriage 
resulted as being strongly related to sDF levels in couples 
undergoing both IVF and ICSI[13]. Also these results were 
confirmed in recent meta-analyses[51,52]. Interestingly, the 
review by Robinson et al[51], pointed out the importance 
of the methodology used to evaluate sDF, as a subgroup 
analysis demonstrated that the association with mis
carriage is strongest for studies employing the Terminal 
deoxynucleotidyl transferase dUTP nick end labeling 
(TUNEL) assay. 

The methodology used in sDF studies represents 
an important issue. Among the various techniques 
employed to detect sDF[53], Sperm Chromatin Dis
persion assay is the only standardized one and the 
only one for which there is enough agreement on the 
reference values across studies. Conversely, for the 
other methods, such as the widely employed TUNEL 
or COMET assays, standardization is lacking and 
established cut-off levels for fertility differ in the various 
studies. Recently, our group has set up a new refined 
flow cytometric method, TUNEL/propidium iodide, which 
allows a more accurate measure of sDF[54,55], eliminating 
all semen confounders[56]. Employing such a method, 
we have established a cut-off level for fertile subjects 
and demonstrated that sDF is able to discriminate 
between fertile men and patients regardless of age 
and semen quality[57]. sDF analysis in live sperm[58,59] 
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the isolation of spermatozoa from the complex semen 
matrix, then proteins are separated by various methods 
(Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electro
phoresis, two dimensional-gel electrophoresis, two 
dimensional fluorescence difference gel electrophoresis), 
analyzed by liquid chromatography-mass spectroscopy 
and identified by a database. Isolation of spermatozoa 
from semen matrix is a tricky step, representing a 
major limitation of these studies, as density gradient 
centrifugation or swim up (i.e., the collection of a frac
tion of motile spermatozoa moving from semen to an 
upper medium) procedures, although they eliminate 
most immature germ cells and leukocytes, may lead 
to selection of a sperm population which is not repre
sentative of the entire sperm population present in 
the ejaculate. Another stumbling block in performing 
proteomic analysis is the poor amount of available sperm 
material in cases of oligozoospermia, thus leaving out 
a considerable portion of infertile subjects, as in many 
cases oligozoospermia is accompanied by other sperm 
defects, such as low motility and abnormal morphology. 

In initial studies, few sperm proteins were detected, 
but the optimization of proteomic technologies has 
allowed, in recent years, to characterize more than 6000 
proteins[74], even though proteins whose concentration 
is under the dynamic range of instruments remain 
undetected. 

To investigate the roles of sperm proteins in male 
infertility, studies comparing proteomic profiles of 
different sperm samples have been performed. They 
compared infertile vs fertile subjects[75-78], astheno
zoospermic vs normozoospermic men[79-83], male par
tners of couples undergoing successful ART vs those who 
failed[84-86], subjects with high sDF vs low sDF[87,88], men 
displaying elevated vs low ROS levels[89,90], and patients 
with metabolic disorders vs healthy men[91-93]. Overall, 
these studies led to the identification of a variable 
number of proteins, likely implicated in male infertility, 
that are down- or up-regulated in specific sperm defects. 
Results are, however, often inconsistent among the 
various studies, probably because of a high intra- and 
inter-variability of proteomic sperm profiles[94,95], the 
frequent use of pooled samples and problems related to 
sperm isolation (see above). 

A further progression of proteomic studies is the 
isolation of proteins from specific sperm compartments 
leading to the association of the identified protein with 
its cellular localization and thus with its specific function. 
Using these approaches, several proteins have been 
assigned to the main compartments, including histone 
variants, transcription factors and zinc finger proteins 
in the nucleus[96,97], several receptors (progesterone 
receptor, metabotropic glutamate receptor, transforming 
beta growth factor receptor, Neurotensin receptor 3) 
to the sperm head[98] and proteins related to energetic 
metabolism, structure, and motility to the tail[82]. In 
the latter compartment, also proteins involved in lipid 
metabolism, mitochondrial oxidation and ADP/ATP 
carriers[99,100] have been found. Further studies are 

is an advancement of the TUNEL technique allowing 
clinicians to detect the damage in the sperm population 
which participates in the fertilization process. Another 
advancement is the possibility of assessing, in the 
same COMET slides, sDF and the presence of oxidative 
damage[60]. 

Despite the presence, in the literature, of many 
studies evaluating the impact of sDF on reproduction, 
a position report from the European Society of Human 
Reproduction and Embryology[61] and the guidelines 
for male infertility drafted by the American Society for 
Reproductive Medicine Practice Committee[62] claim that 
evaluation of sDF cannot be considered as a diagnostic 
test until “randomized, well-designed, adequately 
powered studies comparing infertile couples to a 
population of men with demonstrated recent fertility, and 
excluding cases with female infertility” are conducted 
in great number. However, as has recently been, intro
ducing sDF among the diagnostic tests of male infertility 
could improve IVF success rate[63]. 

Finding the causes responsible for the generation 
of sperm DNA breaks could be the basis for the 
development of new therapeutic strategies to prevent 
the onset of sDF in infertile men. As oxidative stress 
is considered the main insult generating DNA damage 
in spermatozoa[64] and infertile men have lower levels 
of antioxidants and higher reacting oxygen species 
(ROS) amount in their semen compared to fertile 
men[65-67], many studies have investigated the effect of 
antioxidant administration on sDF. A recent Cochrane 
review[68] concluded that the current body of evidence 
does not allow for the deducing of clear conclusions 
regarding the role of antioxidants in the treatment of 
idiopathic infertility. Further well-designed randomized 
controlled trials are necessary in order, on one hand, to 
demonstrate the real efficacy of antioxidants and, on 
the other hand, to evaluate any eventual adverse events 
and their side effects[69]. Interestingly, we have recently 
demonstrated that sDF is mostly established in the testis 
as a result of an apoptotic process, whereas oxidative 
DNA damage occurs mostly during transit in the male 
genital tracts[70]. Accordingly, testis apoptosis should 
be the primarily target of therapies aimed to reduce 
sDF. Among these, treatment with follicle-stimulating 
hormone appears promising[71-73]. However, the complex 
role of apoptosis in human health makes it difficult to 
develop anti-apoptotic treatments for male infertility, 
whereas antioxidants remain an interesting object of 
study. 
 
PROTEOMIC STUDIES ON MATURE 
SPERMATOZOA
In recent years, proteomic studies have been conducted 
in order to define sperm protein profiles and to charac
terize the role of different proteins in sperm functions. 
Over the years multiple strategies have been set up 
to study sperm proteome. In general, the first step is 
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needed to understand if these proteins are differentially 
expressed or mislocalized in spermatozoa from men 
with defects in motility or morphology. 
 
POST-TRANSLATIONAL PROTEIN 
MODIFICATIONS IN MATURE 
SPERMATOZOA
Another point that increases the complexity of pro
teomic analysis is post-translational protein modi
fications (PTMs) that carry out an important role in 
the regulation of functions of mature spermatozoa 
which, being transcriptionally and translationally silent, 
mostly rely on PTMs to accomplish important and 
complex processes necessary for oocyte fertilization, 
such as capacitation, development of hyperactivated 
motility and acrosome reaction[101]. For this reason, 
expression levels per se could not have biological 
relevance for those proteins undergoing PTMs for their 
functionality. Phosphorylation is a well described PTM 
in spermatozoa and human phosphoproteomic studies 
found numerous differently regulated phosphoproteins 
involved in sperm capacitation[102] and motility[80]. 
Early studies by Buffone et al[103] demonstrated that 
spermatozoa from asthenozoospermic men showed 
a reduced protein tyrosine phosphorylation during 
capacitation in vitro, which may be related to a decrease 
in membrane fluidity leading to the inability to achieve 
a hyperactivated motility[104]. Among the proteins that 
are highly phosphorylated in tyrosine during the process 
of capacitation, A-kinase-anchoring proteins (for review 
see[105]), structural proteins of the sperm tail, represent 
an interesting target of these studies, in light of their 
involvement in motility. 

Although ubiquitination is another important PTM, 
which most likely acts as a sperm quality control system 
during epididymal transit[106,107] and is related positively 
to normal sperm morphology[108], most ubiquitin-
modified proteins in spermatozoa are still unknown. 
A similar PTM to ubiquitination is sumoylation, which 
is associated with poor motility, occurrence of DNA 
damage and recognition of morphologically defective 
spermatozoa[109,110]. Recently, Vigodner et al[109] identified 
by mass spectrometry several sumoylated proteins, 
whose role in sperm functions remains undefined. 

Clearly, proteomic studies on spermatozoa are still 
in their infancy and need to be further validated in field 
trials before drafting a complete list of sperm proteins 
that may differentiate fertile and infertile subjects.
 
SPERM ION CHANNELS
In the attempt to find new male infertility markers, 
researchers have focused their attention on sperm ion 
channels having a central role in sperm physiology 
and in the fertilization process[111]. In particular, proton 
voltage-gated ion channels (Hv1) induce intracellular 
pH (pHi) modification involved in the capacitation 

process[112]. pHi regulation and the role of Hv1 channels 
has assumed importance with the discovery of two 
pHi- and voltage-sensitive ion channels, namely Slo3 
and Cation channel of sperm (CatSper), that may be 
connected functionally to the regulation of important 
sperm activities. Slo3 is a sperm-specific potassium 
channel involved in mouse sperm capacitation[113], 
whose role in human sperm functions has yet to be 
defined. Recent studies have shown that Slo3 channel 
activity may be regulated also by intracellular calcium 
increase[114]. Calcium is a well-studied sperm second 
messenger, whose role in the fertilization process has 
been widely demonstrated over the last 15 years. 
Many different types of calcium channels have been 
described in spermatozoa. Among them, the CatSper 
calcium channel[115] appears to play a key role in 
intracellular calcium regulation. CatSper knock-out mice 
are unable to develop hyperactivated motility, and, 
for this reason, to reach and fertilize the oocyte[115-117]. 
Similarly, men with CatSper gene mutations leading to 
a lack of expression of the protein are infertile[118,119]. 
CatSper gained further importance when, in 2011, two 
independent groups of research[120,121] demonstrated 
that it is activated, in human spermatozoa, by proges
terone which is considered the main candidate for 
stimulating the acrosome reaction process in the 
fertilizing spermatozoon[122,123]. We have demonstrated 
recently that sperm CatSper expression is lower in 
asthenozoospermic men and correlates positively with 
progressive and hyperactivated motility[124,125]. In addi
tion, we found that CatSper (but none of the parameters 
evaluated by routine semen analysis) accurately 
predicts the ability of the sample to hyperactivate[125]. 
Conversely, the involvement of CatSper in the acrosome 
reaction process, although expected, is debated in the 
literature[124,126,127]. CatSper and Slo3 expression and 
activity may be related to the fertility status of the 
patient and may be involved in the pathogenesis of 
asthenozoospermia. However, introduction of CatSper 
or Slo3 evaluation in the diagnosis of male infertility is 
presently unlikely. Indeed, the techniques to evaluate 
their function or expression (patch clamping, flow 
cytometry and Western blot) are costly and/or need 
skilled personnel, becoming unsuitable for routine 
clinical practice. Studies on CatSper gene mutations 
or polymorphisms[118,128], if conducted in a large cohort 
of infertile men, could help to identify novel gene 
candidates for male infertility. In addition, both channels 
represent an attractive target for development of a 
male contraceptive[129,130], being expressed only in germ 
cells[114,115]. 

CONCLUSION
Follow-up studies reveal that ART children present an 
increased incidence of birth defects, prematurity and 
low birth weight[131], congenital malformations[132] and 
imprinting disorders[133] when compared to naturally 
conceived children. A large study conducted in Australian 
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ART couples demonstrated that, after multivariate 
adjustments for male and female factors of infertility, the 
risk for any birth defect retained statistical significance 
only for ICSI, hypothesizing that differences in male 
infertility factors, which lead to the use of ICSI, may 
underlie the phenomenon. Similarly, a recent large and 
well-designed retrospective study demonstrated that 
ICSI children have an increased incidence of neuro
developmental disorders[134]. Identifying the possible 
causes of male infertility may lead, in the future, to a 
decrease in ART children’s anomalies, not only because 
of the possible development of new therapeutic 
strategies for male infertility but also because of the 
establishment of new technologies for a better sperm 
selection for ARTs. However, despite the urgency of esta
blishing new diagnostic tests and defining new sperm 
markers of male infertility to be used in conjunction with 
semen analysis, new tests based on “omics” studies or 
in evaluating sDF (Table 1), are not routinely made a 
part of the diagnosis of infertile men, mainly because of 
a lack of standardized procedures, the need to validate 
the results, and the establishment of clinically accepted 
cut-off values. 

Researchers’ efforts should be devoted to gradually 
translating their acquired knowledge to clinical practice. 
In this respect, a continuous discussion between clini
cians and researchers is desirable, so that basic research 
will be conducted on the real needs of the medical 

practice. This will allow for research innovations to be 
transformed into new diagnostic or therapeutic methods 
in order to achieve a more successful natural or assisted 
conception and delivery of healthy babies. The inclusion 
in clinical practice of new markers, employing advanced 
technologies, could be more expensive and may 
require skilled personnel compared to semen analysis, 
however, once such predictive markers are validated 
and, consequently, widely employed to diagnose male 
infertility, their costs will likely decrease, allowing a 
breakthrough in the management of infertile couples.
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Table 1  Promising sperm markers of male infertility based on so far published literature

Approach type Main outcomes Ref. Advantages (+)/disadvantages (-)

Semen analysis
Macroscopic and microscopic evaluation of semen [2] (+) Established reference values

according WHO guidelines (-) High operator variability
(-) Poorly predictive of fertility

Genetic and 
epigenetic NGS: Found a set of sperm RNA elements required to achieve 

live births
[47] (+) Broad-spectrum analysis

miRNA: Alteration of 5 miRNAs in subfertile and NOA subjects [46] (-) Lack of validation
compared to controls (-) Not independently predictive of fertility

DNA methylation: Different methylation pattern between fertile 
and infertile subjects

[42,43] (-) Too early for diagnostic purpose

sDF: Discrimination between fertile and infertile subjects [55,56,58] (+) Presently adopted in many ART laboratories
(+) Prediction of fertility independent from semen quality

(-) Employment of different techniques to detect sDF
(-) Lack of agreement on cutoff values

Proteomic
> 6000 proteins (histone variants, transcription factors, zinc 
finger proteins, receptors, proteins related to metabolism, 

structure and motility, carriers)

[80,95-98] (+) Broad-spectrum analysis
(-) Isolation of spermatozoa

(-) Low available sperm material in oligozoospermic subjects
(-) Intra- and inter-variability of proteomic profiles

PTMs
Phosphorylation: Reduced tyrosine phosphorylation in 

asthenozoospermic subjects
[101] (+) Higher biological relevance compared to gene or protein 

expression per se
Ubiquitination: Sperm quality control system [104] (-) No target proteins identified

Sumoylation: Marker of defective sperm [107,108] (-) Too early for diagnostic purpose
Ion channels

Slo3: Involved in hyperpolarization during sperm capacitation [111,112] (+) Analysis free from confounders
CatSper: Involved in sperm progressive and hyperactivated [123] (-) Skilled personnel and advanced instruments are required

motility (-) Too early for diagnostic purpose

PTMs: Post-translational protein modifications; WHO: World Health Organization; NGS: Next-generation sequencing; NOA: Non-obstructive azoospermia; 
sDF: Sperm DNA fragmentation; ART: Assisted reproduction technique.
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