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Abstract
AIM: To develop a new rat model we wanted to gain a 
better understanding of stricture formation in Crohn’s 
disease (CD).

METHODS: Chronic colitis was induced locally by the 
administration of 2,4,6-trinitrobenzenesulfonic acid 
(TNBS). The relapsing inflammation characteristic 
to CD was mimicked by repeated TNBS treatments. 
Animals were randomly divided into control, once, 
twice and three times TNBS-treated groups. Control 
animals received an enema of saline. Tissue samples 
were taken from the strictured colonic segments and 
also adjacent proximally and distally to its 60, 90 or 
120 d after the last TNBS or saline administrations. 
The frequency and macroscopic extent of the strictures 
were measured on digital photographs. The structural 
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features of strictured gut wall were studied by light- and 
electron microscopy. Inflammation related alterations in 
TGF-beta 2 and 3, matrix metalloproteinases 9 (MMP9) 
and TIMP1 mRNA and protein expression were deter
mined by quantitative real-time PCR and western blot 
analysis. The quantitative distribution of caspase 9 was 
determined by post-embedding immunohistochemistry.

RESULTS: Intestinal strictures first appeared 60 d 
after TNBS treatments and the frequency of them 
increased up to day 120. From day 90 an intact lamina 
epithelialis, reversible thickening of lamina muscularis 
mucosae and irreversible thickening of the muscularis 
externa were demonstrated in the strictured colonic 
segments. Nevertheless the morphological signs of 
apoptosis were frequently seen and excess extracellular 
matrix deposition was recorded between smooth muscle 
cells (SMCs). Enhanced caspase 9 expression on day 90 

in the SMCs and on day 120 also in myenteric neurons 
indicated the induction of apoptosis. The mRNA 
expression profile of TGF-betas after repeated TNBS 
doses was characteristic to CD, TGF-beta 2, but not 
TGF-beta 3 was up-regulated. Overexpression of MMP9 
and down-regulation of TIMP1 were demonstrated. The 
progressive increase in the amount of MMP9 protein in 
the strictures was also obvious between days 90 and 
120 but TIMP1 protein was practically undetectable at 
this time.

CONCLUSION: These findings indicate that aligned 
structural and molecular changes in the gut wall rather 
than neuronal cell death play the primary role in 
stricture formation.

Key words: Crohn’s disease; Rat model; TGF-beta; 
Intestinal strictures; MMP9; TIMP1
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Core tip: Intestinal strictures in Crohn’s disease (CD) 
cause hardly treatable complications in patients. 
The aim of this study was to find the correlation be
tween the intestinal stricture formation, the damaged 
innervation of smooth muscle cells (SMCs) and the 
changed expression of TGF-beta 2, 3 and MMP9/TIMP1 
in rats with CD by using different light- and electron 
microscopic and molecular biological methods. Our 
findings indicate that disintegration of SMCs due to the 
up-regulation of TGF-beta 2 and off-balance in MMP9/
TIMP1 expression rather than neuronal cell death play 
the primary role in the formation of intestinal strictures 
in CD.

Talapka P, Berkó A, Nagy LI, Chandrakumar L, Bagyánszki M, 
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Gastroenterol 2016; 22(22): 5154-5164  Available from: URL: 
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http://dx.doi.org/10.3748/wjg.v22.i22.5154

INTRODUCTION
Despite the fact that the formation of obstructive 
strictures is the leading cause of surgical intervention 
in patients with Crohn’s disease (CD), little is known 
about their etiopathogenesis, and no direct therapies 
are available for the effective prevention or reversal of 
this condition[1]. Lasting deep remission has emerged 
as a major therapeutic goal in CD[2,3]. This implies 
not only alleviation of the symptoms, but also the 
achievement of complete mucosal healing, with the 
accompanying decrease in the risk of irreversible 
pathological alterations of the gut wall[4]. However, total 
mucosal regeneration to prevent stricture formation is 
unattainable[5,6].

The spread of fibrosis deep into the gut wall leads 
to disorganization of the lamina muscularis mucosae 
(LMM) and thickening of all layers of the gut wall due 
to the accumulation of extracellular matrix (ECM) 
elements[5,6]. Previous studies have demonstrated 
that the cytokines transforming growth factor-beta 
(TGF-β) isoforms and the tissue-degrading matrix 
metalloproteinases (MMPs) are the key contributors to 
these processes[7,8]. Both TGF-beta and its receptors 
are overexpressed in the intestine of CD patients. 
However, the expression of the TGF-beta isoforms 
varies with the nature of the tissue. Fibrotic tissue 
exhibits a reduced expression of TGF-beta 3 and an 
enhanced expression of TGF-beta 2[9-11]. MMPs are 
secreted as inactive zymogens which must undergo 
proteolytic cleavage to become active, and their 
activity is regulated by specific tissue inhibitors of 
metalloproteinases (TIMPs)[12-14]. The MMPs do not 
simply degrade ECM as their name might suggest, but 
are also responsible for the homeostatic regulation 
of the ECM. Previous studies have shown that the 
gene transcription of MMP9 is inducible and that the 
promoter region is highly responsive to most growth 
factors and cytokines. They directly cleave and activate 
growth factors into active ligands, and therefore 
regulate their bioavailability and/or activity[15-17]. In 
consequence of these complex interactions of the 
regulatory processes, the development of the intestinal 
strictures characteristic of CD cannot be explained 
simply by the lower or higher expression of one or 
other of these factors. The key driver of stricture 
formation rather appears to be an off-balance between 
the TGF-betas, MMPs and TIMPs which develops 
in the chronic phase of inflammation. MMP9 is the 
most abundant MMP expressed in colonic tissue from 
CD patients, and may therefore be regarded as a 
biomarker in the evaluation of the clinical activity of 
inflammatory bowel diseases (IBDs)[18].

The intestinal symptoms common among CD 
patients are often related to enteric neuropathy. The 
evidence suggests that both the quantitative properties 
and function of the myenteric neurons are altered 
substantially by intestinal inflammation[19-22] and in 
fact complete loss of the myenteric neurons has been 
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observed in the strictured regions[23]. However, the 
extent to which the deficient innervation of the smooth 
muscle cells (SMCs) and/or the imbalance in the 
regulation in the molecular events behind the tissue 
remodelling are responsible for the stricture formation 
remains unclear.

We recently reported on a rat model of chronic 
colitis where the mortality was negligible despite the 
severity of the intestinal symptoms. We demonstrated 
that experimentally provoked recurring periods of 
acute inflammation exerted a preconditioning effect 
against the mucosal damage and reduced the rapid, 
significant and widespread loss of myenteric neurons 
observed after the induction of the colitis[24]. In the 
present work, we used this model to investigate the 
long-term consequences of acute inflammation on the 
structural and molecular alterations in the strictured 
gut wall. The aim of the study was to investigate 
the possible coincidence between the expressions of 
TGF-betas, MMP9 and TIMP1 behind the structural 
remodelling of the strictured gut wall. The structural 
findings at the light- and electron microscopic levels 
and the molecular findings at the mRNA and protein 
levels will be discussed.

MATERIALS AND METHODS
Animal model
All procedures involving experimental animals were 
approved from the Local Ethics Committee for Animal 
Research Studies at the University of Szeged. Adult 
male Sprague-Dawley rats weighing 200-220 g were 
used throughout the experiments. The animal protocol 
was designed to minimize pain or discomfort to the 
animals. The rats were acclimatized to laboratory 
conditions (23 ℃, 12 h/12 h light/dark, 50% humidity, 
ad libitum access to food and water) for two weeks 
prior to experimentation. Colitis was induced locally 
under pentobarbital anaesthesia (45 mg/kg ip) by the 
administration of 2,4,6-trinitrobenzenesulfonic acid 
(TNBS; Sigma-Aldrich, St. Louis, MO, United States; 
10 mg) dissolved in 0.25 mL of 25% ethanol, as 
described earlier[24]. Repetitive relapsing inflammation 
(RRI) was mimicked through repeated administration 
of the same TNBS doses. The rats were treated once (n 
= 8), twice (n = 7) or three times (n = 8) with TNBS, 2 
weeks passed between the treatments. Control rats (n 
= 18) received an enema of 0.25 mL of 9 g/L saline at 
the same time as the TNBS was administered. The rats 
were weighed and monitored daily for activity, bloody 
diarrhoea and mortality and were sacrificed 60, 90 or 
120 d after the last TNBS or saline administrations.

Tissue handling
The animals were killed by cervical dislocation 
under pentobarbital anaesthesia. After this the last 
8 cm region of the descending colon from the anus 
was dissected. Digital photographs were taken to 

evaluate the frequency and macroscopic extent of the 
strictures. Three colonic tissue samples were taken 
from each animal: the stricture itself and samples 
adjacent proximally and distally to it. Colonic samples 
of age-matched controls were also collected. Small 
pieces (2-3 mm) of the colonic segments for light- 
and electron microscopic morphometry and post-
embedding immunohistochemistry were fixed in 
20 g/L formaldehyde and 20 g/L glutaraldehyde 
solution and embedded in Epon (Electron Microscopy 
Sciences, Hatfield, PA, United States). Gut segments 
for molecular studies were cut along the mesentery 
and pinched flat. After longitudinal cutting, the mucosa 
and submucosa were removed. Half of the colon 
samples were immediately frozen in liquid N2 and later 
processed for western blot analysis. The other half 
were incubated overnight at 4 ℃ in RNA Later (Qiagen, 
Venlo, The Netherlands) and stored at -80 ℃ until 
processing for quantitative real-time PCR (qRT PCR).

Light- and transmission electronmicroscopic 
morphometry
The Epon blocks were used to prepare semithin 
(0.7 µm) sections, which were stained with 10 g/L 
toluidine blue solution for the light-microscopic 
study. In the selected area of interest in the semithin 
cross-sections, all the layers of the gut wall were 
well oriented. The thicknesses of the LMM and the 
external circular (CM) and longitudinal (LM) smooth 
muscle layers were measured at random points with 
Image J 1.44 (National Institute of Health, Bethesda, 
MD, United States). The same Epon blocks were 
used to prepare ultrathin (70 nm) sections and the 
samples were mounted on nickel grids. Three grids 
per block were stained with uranyl acetate (Merck, 
Darmstadt, Germany) and lead citrate (Merck) and 
were examined and photographed with a Philips CM 
10 electronmicroscope equipped with a MEGAVIEW 
II camera. The width of 15 tight junctions (TJs), 
i.e., the distance between adjacent enterocytes, 
was measured at a magnification of × 46000 in the 
control samples and in the strictures by using the 
AnalySIS 3.2 program (Soft Imaging System GmbH, 
Münster, Germany). The distance between SMCs was 
determined to evaluate the expansion of the ECM 
within the muscularis externa (ME). Ten montage 
photographs per intestinal segment were made at a 
magnification of × 10500 and the distance of SMCs 
was evaluated in limited-size (2000 nm × 2000 nm) 
grids for all images, at the intersection of the grid 
lines, perpendicularly to the cells and calculated by 
using the AnalySIS 3.2 program. The mean distance 
was calculated by using the AnalySIS 3.2 program.

Post-embedding immunohistochemistry
The Epon-embedded tissue blocks used previously for 
the morphometry also served for the post-embedding 
immunohistochemistry of caspase 9, as described 
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gene to normalize the expression data. The results were 
expressed as mean ± SD.

Western blotting analysis and gelatine zymography
Tissue samples were homogenized in TRIS-mannitol 
buffer and the total cellular protein was then dena
turated (mixing and boiling with v/v 20 mmol/L Tris 7-9, 
3 mmol/L EDTA, 20 g/L sodium dodecyl sulphate (SDS), 
100 g/L mercaptoethanol and 200 g/L glycerol) from 
each sample as described earlier[26]. Aliquots of 10 µg 
of total cellular protein were electrophoresed by 100 
g/L SDS-polyacrilamide gel, and transferred to nitro-
cellulose membrane (Amersham, Buckinghamshire, 
United Kingdom). Two hours after blocking (with PBS 
pH 7.4, 2.5 g/L Tween 20 (v/v) and 50 g/L non-fat 
dried milk), the membranes were probed with anti-
MMP9 mouse monoclonal antibody (Abcam PLC, 
Cambridge, United Kingdom; final dilution 1:1000) or 
TIMP1 (H150) rabbit polyclonal antibody (Santa Cruz 
Biotechnology Inc., Santa Cruz, CA, United States; 
final dilution 1:1000) for 2 h, and then incubated with 
horseradish peroxidase-conjugated anti-mouse or anti-
rabbit antibody (Santa Cruz Biotechnology Inc., Santa 
Cruz, CA, United States; final dilution 1:2000) for 1 
h at room temperature with extensive PBS-Tween 20 
washing between. Immunoreaction was visualized 
with an Immobilon Western HRP Substrate enhanced 
chemiluminescence system (Millipore Corporation, 
Billerica, MA, United States) and scanned with a LI-
COR C-DiGit™ Blot Scanner (Li-Cor Corporate, Lincoln, 
NE, United States).

The activity of MMP9 was determined by ge
latine zymography, performed by diluting colonic 
homogenates in zymogram sample buffer (Bio-Rad, 
Hercules, CA, United States) and electrophoresing 
the samples in precast 100 g/L SDS-PAGE containing 
gelatine (20 mg/mL; Sigma-Aldrich, St. Louis, MO, United 
States) at 120 V until resolution was achieved. The 
gels were removed from their casings, gently rinsed 
in ddH2O, placed onto a shaker in 1X renaturation 
buffer (Bio-Rad, Hercules, CA, United States) for 40 
min, and then placed in 1X development buffer (Bio-
Rad Hercules, CA, United States). With change of the 
buffer once at 20 min, the gels were next incubated at 
37 ℃ for 20 h and stained with Coomassie Blue (Bio-
Rad, Hercules, CA, United States) for 40 min before 
being destained in water for 1 h and scanned with a 
LI-COR C-DiGit™ Blot Scanner.

RESULTS
General observations
Despite the severity of the acute intestinal inflammation 
of the TNBS-treated rats, the mortality was negligible: 
only 2 rats died throughout the 120-d experimental 
period. By 1 d following the TNBS treatment, all the 
animals had developed symptoms such as weakness, 
weight loss and bloody diarrhoea. However, by 7 or 8 

earlier[25]. Briefly, ultrathin sections from each block 
were sequentially incubated with anti-caspase 9 
(Sigma-Aldrich, St. Louis, MO, United States; final 
dilution 1:50) primary antibodies overnight, followed 
by protein A-gold-conjugated anti-rabbit (18 nm gold 
particles, Jackson ImmunoResearch, West Grove, 
PA, United States; final dilution 1:20) secondary 
antibodies for 3 h, with extensive washing between. 
Sections were counterstained with uranyl acetate and 
lead citrate, and then examined and photographed 
with a Philips CM10 electronmicroscope equipped 
with a MEGAVIEW II camera. The numbers of gold 
particles were counted on digital photographs at 
a magnification of × 25000 in 10 SMCs and at a 
magnification of × 34000 in 5 myenteric ganglia (MGs) 
per colonic segment in each experimental groups with 
the AnalySIS 3.2 program.

Statistical analysis
Statistical analysis of the histological results was per
formed by using one-way ANOVA and the Newman-
Keuls test with GraphPad Prism 4.0 (GraphPad 
Software, La Jolla, CA, United States), and a probability 
P < 0.05 was set as the level of significance. The results 
were expressed as mean ± SE. The statistical methods 
of the study were reviewed by Mária Bagyánszki from 
University of Szeged.

Quantitative real-time polymerase chain reaction
Tissue samples were homogenized in AccuZol (Bioneer, 
Daejeon, South Korea) directly before qRT PCR. 
Total RNA was prepared from tissue homogenates as 
suggested by the manufacturer (Bioneer, Daejeon, 
Korea). The reverse transcription was achieved by 
using a High Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems, Foster City, CA, United States) 
as described earlier[24]. qRT PCR was performed in 
an Exicycler 96 (Bioneer, Daejeon, Korea) in a total 
volume of 20 µL containing 10 µL of FastStart SYBR 
Green PCR Master Mix, 1 µL of specific primer (0.5 
pmol/µL) and 50 ng of cDNA template. The PCR 
program began with a 15-min initial step at 95 ℃, 
followed by 45 cycles of 15 s at 95 ℃ for denaturation, 
45 s at 60 ℃ for annealing and 25 s at 72 ℃ for 
extension. The sequences of primers were derived 
from NCBI RefSeq Database entry NM_031131.1 for 
TGF-beta 2 (forward: 5’ agtgggcagcttttgctc 3’ and 
reverse: 5’ gtagaaagtgggcgggatg 3’), NM_013174.2 
for TGF-beta 3 (forward: 5’ gaagagggccctggacac 3’ 
and reverse: 5’ gcgcacacagcagttctc 3’), NM_031055.1 
for MMP9 (forward: 5’cctctgcatgaagacgacataa 3’ and 
reverse: 5’ ggtcaggtttagagccacga 3’) and NM_053819.1 
for TIMP1 (forward: 5’ cagcaaaaggccttcgtaa 
3’ and reverse: 5’ tggctgaacagggaaacact 3’). 
Hypoxanthine guanine phosphoribosyltransferase 
(HPRT) (NBCI RefSeq Database entry: NM_012583.2; 
forward: 5’ gaccggttctgtcatgtcg 3’ and reverse 5’ 
acctggttcatcatcactaatcac 3’) was used as a housekeeping 
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d after TNBS administrations, all the visible symptoms 
accompanied by acute inflammation had resolved. By 
day 60 following TNBS treatments, all the rats that had 
previously been exposed to acute colitis had regained 
their initial body weight and strictures had appeared in 
each TNBS-treated group. We, therefore, investigated 
the structural and molecular characteristics of the 
strictured gut wall from this timepoint on. Whereas the 
numbers and sizes of the strictures increased in time 
and with the number of TNBS treatments, they always 
developed within the previously inflamed colonic 
areas (Figure 1) and, once they had appeared, their 
structure and molecular characteristics did not differ. 
To avoid repetitions therefore, representative results 
will be presented here, obtained after the processing 
of tissue samples collected exclusively after the third 
TNBS administration.

Light microscopy
Representative images of toluidine blue-stained 
semithin sections of colon where the thickness of the 
ME was measured are shown in Figure 2. Such colonic 
sections were collected for measurements on days 90 
and 120 following TNBS administrations and also from 
age-matched controls. The strictured colonic regions 
displayed normal mucosal architecture and clearly 
defined, yet thickened muscle layers (not shown). 
Morphometric analyses revealed the approximately 
2-fold thickening of the LMM and layers of the ME in 
the strictured region relative to the control samples on 
90 d. While further significant thickening of the ME was 
measured beyond day 90 after TNBS administrations, 
the thickness of the LMM at later than 90 d was similar 
to that in the controls (Figure 2).

Transmission electronmicroscopy
Transmission electronmicroscopic examination of 
the colonic epithelium in the strictured region on 
days 90 and 120 after TNBS administrations showed 
that the apical surface of the enterocytes with intact 
brush-border and closed TJs was similar to that in 
the controls (Figure 3). The width of the TJs between 
adjacent enterocytes was evaluated morphometrically 
and was always found to be less than 3 nm (data 
not shown). However, autophagosome-like double-
membrane vesicles of different sizes were frequently 
seen within the enterocytes (Figure 3).

Because of the excess accumulation of ECM 
elements in the strictured colonic regions, the SMCs 

had moved away from each other significantly by day 
90 after TNBS administrations, and by 120 d there 
was more than 2-fold increase in the distance between 
adjacent SMCs as compared with the controls (Figure 
4). Because of the ECM deposition, the SMCs also 
moved away from the MGs (Figure 4). By day 120 
post-TNBS treatments, swollen and empty confluent 
vacuoles and autophagosomes were frequently seen in 
the SMCs and also in their close environment, together 
with different cell organelles in the strictured colonic 
areas (Figure 4). The vast majority of the axons 
appeared normal, but necrotic axons were seen rarely 
in the MGs (Figure 4). Quantitative post-embedding 
immunohistochemistry in the strictured areas revealed 
a progressive increase in the number of gold particles 
indicating caspase 9 antigen in the SMCs and MGs 
relative to the control samples (Figure 5). The caspase 
9-labelling gold particles in the MGs were mainly 
associated with the mitochondria (Figure 5), the 
ultrastructure of which was well preserved even 120 d 
after TNBS treatments.

Quantitative changes in TGF-beta, MMP9 and TIMP1 
mRNA and protein expression
On day 90, the TGF-beta 2 mRNA was up-regulated, 
while the TGF-beta 3 mRNA was down-regulated in 
the strictured gut wall and also in the colonic segments 
adjacent proximally and distally to the strictures as 
compared with the controls. The TGF-beta 2 mRNA 
expression progressively increased, while the TGF-beta 
3 mRNA expression further decreased by day 120 in 
all three segments (Figure 6A).

A marked overexpression of MMP9 mRNA was de
tected in all the colonic segments examined on days 
90 and 120 after TNBS treatments (Figure 6B). At 
the same timepoints, the TIMP1 mRNA expression 
was up-regulated in the colonic segments adjacent 
proximally and distally to the strictures, but was down-
regulated in the strictures themselves (Figure 6B). 
MMP9 and TIMP1 expression was also evaluated at 
the protein levels. Although a high amount of MMP9 
protein was demonstrated in the tissue samples from 
the control rats, the progressive increase in the amount 
of MMP9 protein in the strictures was obvious between 
days 90 and 120 (Figure 6C). Gelatine zymography 
demonstrated that an active form of MMP9 protein 
rather than pro-MMP was expressed (Figure 6C). While 
the amount of TIMP1 protein also decreased acutely 
between days 90 and 120 in the control samples, it was 

Figure 1  Representative micrographs from the distal colon of rats with chronic colitis 90 d after the first (A), second (B) or third (C) treatment with 
2,4,6-trinitrobenzenesulfonic acid. The frequency and size of the strictures (arrows) increased in the time and with the number of 2,4,6-trinitrobenzenesulfonic acid 
(TNBS) administrations.
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practically undetectable in the strictures (Figure 6C).

DISCUSSION
We recently reported on a rat model in which all
eviated inflammatory damage in association with the 
persistent up-regulation of HO-1 were salient features 
in the acute phase of intestinal inflammation induced 
by repeated TNBS administrations[24]. The same 
model was used in the present work to investigate 
the structural and molecular events leading to the 
formation of a strictured gut wall. Concerning the long-
term consequences of the acute inflammation in this 
model, all the visible symptoms had resolved by day 
60 after TNBS administration, the body weight of the 

treated rats was similar to that of the age-matched 
controls, and intestinal strictures developed in all 
of the rats that had previously displayed intestinal 
inflammation. These findings accord well with the 
clinical observations that mucosal healing and clinical 
remission alone cannot be treatment endpoints in CD, 
because this does not prevent later stricturing[27,28]. 
The increases in size and frequency of the strictures 
observed here after 60 d provide experimental evidence 
in favour of the view that strictures, once present, 
gradually progress and, once fibrosis develops, it cannot 
be reversed[29].

Aligned thickening of all the muscle layers in the 
strictured gut wall until up to day 90 after TNBS 
administrations was characteristic. Whereas the thic

Figure 2  Thickness of the smooth muscle layers in the colon of control animals and in rats treated three times with 2,4,6-trinitrobenzenesulfonic acid. 
A: Representative light micrographs of a toluidine blue-stained semithin section from the colon of a control rat; B: TNBS-treated rat on day 120 of the experimental 
period. Bar: 25 µm. Significant thickening of the LMM (C), CM (D) and LM (E) was demonstrated in the strictured gut wall of the TNBS-treated rats (S) relative to 
the controls (C) on day 90. Whereas a further significant thickening was measured in the CM and LM on day 120, the thickness of the LMM was similar to that in the 
controls at this timepoint. Data are expressed as mean ± SE. bP < 0.001 TNBS-treated groups vs age-matched controls; dP < 0.001 2,4,6-trinitrobenzenesulfonic acid 
(TNBS)-treated group on day 90 vs TNBS-treated group on day 120. LMM: Lamina muscularis mucosae; CM: Circular muscle layer; LM: Longitudinal muscle layer; 
MG: Myenteric ganglion.
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kening of the ME progressed further and became 
a decisive element of the strictured gut wall, the 
thickness of the LMM did not change after day 90, and 
did not differ from that in the controls by the end of the 
experimental period. Since the LMM is most involved 
in maintaining the mucosal integrity[30], we suppose 
that the earlier cessation of excess ECM deposition in 
the LMM is a consequence of the differential regulation 
of inflammation-related events here through cytokines 
derived from the epithelium[31,32].

At 90 and 120 d following TNBS administrations, 
transmission electronmicroscopy showed that the 
structures of the epithelium necessary to maintain the 
barrier functions were intact. However, the frequent 
presence of double-membrane autophagosomes 
indicated high levels of intracellular stressors in 
the previously affected epithelium. It has been 
well documented that induction of autophagy is a 
determining factor for the maintenance of cellular 
homeostasis in chronic colitis[33,34]. The importance of 
autophagy in the pathogenesis of chronic intestinal 
inflammation has also been demonstrated by genome-
wide association studies which indentified a link 
between the genes involved in autophagy regulation 
and IBDs[35,36].

While the rapid and widespread loss of myenteric 
neurons was a characteristic feature of the onset of 

acute inflammation[24], the precise timing of the cellular 
events in the chronic phase leading to the intestinal 
stricturing here showed that the SMCs in the ME were 
affected first in these processes. Since the excess 
deposition of ECM in the ME was sustained throughout 
the experimental period, the SMCs progressively 
moved away from each other and also from the 
MGs, leading eventually to deficient innervation and 
severe cellular damage. After day 60 following TNBS 
treatments, the appearance of autophagosomes, 
the leakage of cellular contents and the increasing 
number of gold particles labelling caspase 9 expression 
indicated that all three types of cell death mechanisms 
had already progressed in the SMCs by day 90 when 
necrotic axons were only rarely seen in the MGs. As 
the pathological environment became more extensive 
with time, by day 120 after TNBS administration locally 
severe neuronal injury also occurred in the strictured 
tissue as a significant sign of chronic inflammation, 
similarly as described in other models[23,37]. As regards 
the timing of the events, we presume suppose that the 
neuronal injury is a consequence and not the cause of 
the stricturing processes.

Evidence from both animal models[38,39] and human 
studies[18,40,41] has suggested that the up-regulation 
of TGF-beta 2 and of MMP9 may be considered 
to be biomarkers in the post-inflammatory tissue 

A B

C D

Figure 3  Representative electron micrographs of two neighbouring enterocytes from the colon of control animals (A, C) and in rats treated three times 
with 2,4,6-trinitrobenzenesulfonic acid. On days 90 (B) and 120 (D) following the third 2,4,6-trinitrobenzenesulfonic acid (TNBS) administration, both the microvillar 
surface and the width of the apical intercellular tight junctions (arrows) of the enterocytes in the strictured regions were similar to those in the age-matched controls (A 
on day 90 and C on day 120). However, autophagosomes (asterisks) and lysosomes (arrowheads) were commonly observed within the epithelial cells of the strictured 
gut wall. Bars: 200 nm.
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remodelling leading to stricturing in CD. The mRNA 
expression profile of the TGF-beta isoforms, the up-
regulation of TGF-beta 2 and the down-regulation of 
TGF beta 3 in the colonic segments examined in our 
model accorded well with the distinctive expressional 
profile of the secreted TGF-beta isoforms in human CD 
primary intestinal myofibroblasts[41]. The spreading of 
this characteristic expression pattern both proximally 
and distally to the strictures indicated the bidirectional 
diffusion of the disease along the colon in our model. 
We also detected progressive up-regulation of MMP9 
mRNA in all three colonic segments, suggesting again 
the proximally and distally directed diffusion of the 
pathological environment. However, the MMP9 up-
regulation in the strictured gut wall was coupled with 
the down-regulation of TIMP1, and an increased 
amount of active MMP9, but no TIMP1 protein was 
detected here, indicating a stricture-specific off-
balance in the production of proteases and their 
inhibitors. This expression pattern is very reminiscent 

of that which develops in the fistulae in approximately 
one-third of patients with CD[42]. The apparent 
differences in expression profiles between our study 
and the literature data in tissue samples prepared 
from the control guts could be explained by the 
different methodological approaches. The novelty of 
our studies was that we prepared tissue homogenates 
for molecular studies not from the mucosa overlying 
the strictures, but exclusively from the ME, where the 
background events of the chronic inflammation leading 
to stricture formation actually occurred.

In conclusion, The structural and molecular events 
leading to stricturing as a long-term consequence of 
acute intestinal inflammation that were demonstrated 
earlier in animal models and in human studies also 
characterized the stricture formation induced in our rat 
model by repeated TNBS administrations. Since the 
exact timing of the stricturing processes was possible 
in this model, we reached the conclusion that, in 
contrast with the general view, the ME, and not the 

Figure 4  Ultrastructural alterations within the colon of control animals and in rats treated three times with 2,4,6-trinitrobenzenesulfonic acid. Excess depo
sition of extracellular matrix (ECM) was observed within the smooth muscle layers in the ultrathin sections derived from the strictured region (A); Electronmicroscopic 
morphometry revealed that the distance between adjacent smooth muscle cells (SMCs) was significant larger in the strictured gut wall of the 2,4,6-trinitrobenzenesulfonic 
acid (TNBS)-treated rats (S) as compared with the gut wall of the control rats (C) on day 90 (B); A further significant increase in the mean separation distance of the SMCs 
was recorded on day 120 post-TNBS treatment (B). Data are expressed as mean ± SE. bP < 0.01, dP < 0.001 TNBS-treated groups vs age-matched controls; fP < 0.001 
TNBS-treated group on the day 90 vs TNBS-treated group on day 120. Representative electron micrograph of the strictured colonic area 120 d after the third TNBS 
administration (C). Because of ECM accumulation, the SMCs also moved away from the myenteric ganglia (MGs). Swollen and empty confluent vacuoles of different sizes 
(arrows) were frequently seen in the SMCs and also in their close environment. Rupture of the plasma membrane and subsequent leakage of the cell organelles into the 
microenvironment, e.g., the mitochondria (M) and autophagosomes (hollow arrow), were frequently seen in the intercellular spaces (insert). However, the vast majority of 
the axons appeared normal; necrotic axons were rarely seen in the MGs (asterisks). N: Nucleus. Bars: 1 µm and 200 nm (insert).
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Background 
Intestinal strictures are characteristic complications of Crohn’s disease (CD) 
affecting more than one third of all patients. Its can lead to partial or total 
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epithelial barrier or the MGs, was the primary target 
of the events leading to stricture formation. Moreover, 
this TNBS-induced rat model has provided the first 
experimental demonstration of the molecular diffusion 
of the disease both proximally and distally along the 
gut wall. The off-balance in MMP9/TIMP1 expression 
profile found strictly within the border of the strictures 
may well allow use of this model to investigate the 
molecular mechanisms leading to fistulated CD.
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Figure 5  Post-embedding immunogold labelling for caspase 9 in the 
smooth muscle cells and myenteric ganglia in the colon of control 
animals and in rats treated three times with 2,4,6-trinitrobenzenesulfonic 
acid. Representative electron micrograph of a myenteric ganglion (MG) from 
the strictured gut wall (S) 120 d after the third 2,4,6-trinitrobenzenesulfonic 
acid (TNBS) administration (A). The 18 nm gold particles labelling caspase 9 
immunoreactivity (arrows) were mainly associated with mitochondria (M). Bar: 
200 nm. The number of gold particles in the S was increased significantly in 
the smooth muscle cells on day 90 (B) and also in the MGs on day 120 (C) as 
compared with the gut wall in the control rats (C). Data are expressed as mean 
± SE. bP < 0.01, dP < 0.001 TNBS-treated groups vs age-matched controls; fP < 
0.01 TNBS-treated group on the day 90 vs TNBS-treated group on day 120.

Figure 6  Relative mRNA and protein expression of transforming growth 
factor-beta 2 and 3, matrix metalloproteinase 9 and tissue inhibitor of 
metalloproteinases 1 in the colon of control animals and in rats treated 
three times with 2,4,6-trinitrobenzenesulfonic acid. TGF-beta 2 was up-
regulated in the strictured region (S) and also in the adjacent proximal (P) and 
distal (D) segments of the colon as compared with the controls (C) on day 90 
and day 120 (A). TGF-beta 3 gene repression was detected both 90 and 120 
d after the third TNBS treatment in each colonic segment (A). The marked 
overexpression of MMP9 mRNA was confirmed in each colonic segment in the 
chronic phase of the inflammation (B). TIMP1 mRNA expression was detected 
in the P and D colon segments at both timepoints examined, but in the S the 
gene was down-regulated (B). Data are expressed as mean ± SD. 90 d after 
the third TNBS treatment, a decreased MMP9 protein level was detected in 
the S relative to the C (C, upper). Nevertheless, on day 120 the MMP9 protein 
expression was similar to that in the C. The activity of MMP9 was determined 
by gelatine zymography (C, lower). An active form of the MMP9 protein rather 
than pro-MMP9 was expressed in the C and S segments at both timepoints 
examined. Well-detectable amounts of TIMP1 protein were revealed only in the 
control samples from day 90 (C, right side).
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intestinal obstruction with potentially life-threatening consequences. Although 
the treatment of the chronic complications of CD is a serious medical problem, 
the pathogenesis, factors, and cell types involved in stricture formation are 
largely unknown. 

Research frontiers
Despite of the huge amount of animal models and human studies, the structural 
and molecular events leading to stricturing as a long-term consequence 
of acute intestinal inflammation are still not clear until today. Besides, the 
ultrastructure of the intestinal strictures is still unknown.

Innovations and breakthroughs
This TNBS-induced rat model has provided the first experimental demonstration 
of that, in contrast with the general view, the muscularis externa, and not the 
epithelial barrier or the myenteric ganglia, was the primary target of the events 
leading to stricture formation.

Applications 
The authors hypothesize form the results derived our rat model with chronic 
colitis and very low mortality that the experimentally provoked recurrent 
relapsing inflammations characteristic to CD can provoke the recrudescence 
of the strictures post-surgically despite of the complete mucosal healing and 
restoring myenteric neuronal injury.

Terminology 
The authors described earlier that experimentally provoked repetitive relapsing 
inflammations develop preconditioning effect by speeding up mucosal healing 
and restoring myenteric neuronal injury.

Peer-review
This is a well-written manuscript with carefully designed and described 
experiments. The observations are interesting and certainly add to our 
knowledge in the inflammation-induced fibrosis in the large intestine.
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