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Abstract
Infections can hinder orthopedic implant function and 
retention. Current implant-based antimicrobial strategies 
largely utilize coating-based approaches in order to 
reduce biofilm formation and bacterial adhesion. Several 
emerging antimicrobial technologies that integrate a 
multidisciplinary combination of drug delivery systems, 
material science, immunology, and polymer chemistry 
are in development and early clinical use. This review 
outlines orthopedic implant antimicrobial technology, 
its current applications and supporting evidence, and 
clinically promising future directions. 
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Core tip: Infections can hinder orthopedic implant func
tion and retention. Current implant-based antimicrobial 
strategies largely utilize coating-based approaches 
in order to reduce biofilm formation and bacterial 
adhesion. Several emerging antimicrobial technologies 
that integrate a multidisciplinary combination of drug 
delivery systems, material science, immunology, and 
polymer chemistry are in development and early clinical 
use. This review outlines the latest orthopedic implant 
antimicrobial technologies-including updates on chitosan 
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coatings, photoactive-based coatings, electrospinning 
technology, integrated biofilms-highlighting the current 
applications, supporting evidence, and clinically-pro
mising future directions.
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BACKGROUND
Orthopedic implants are commonly used in spine surgery, 
arthroplasty, arthrodesis, as well for applications in 
treating fractures and nonunions[1]. Typically formulated 
from titanium, stainless steel, cobalt-chromium, or 
polyethylene polymers, orthopedic implants can serve as 
niduses for infection and may hinder infection clearance 
due to biofilm formation on the implant surface[2]. 
Orthopedic implant-associated infections are challenging 
complications which can lead to delayed healing, implant 
loosening, implant removal, amputation, or even death[3]. 

In many infections, bacteria will form a biofilm on 
the implant, increasing their resistance to antibiotics 
and resulting in infection persistence despite aggressive 
surgical debridement and prolonged antibiotic treat
ments[4,5]. A biofilm is an aggregated mass of bacteria 
that can form on the surface of an orthopedic implant, 
providing the ideal environment for bacteria to flourish. 
Such bacterial growths are difficult to eliminate and 
present a serious challenge in implant development[6,7]. 
In the United States, orthopedic implants are associated 
with an approximate 5% infection rate, representing 
100000 infections per year[8]. This frequency represents 
a notable economic burden on both patients and health 
care providers. Although exact figures are elusive, even 
with the existence of antibiotic prophylactic it is estimated 
that implant infections increase the overall cost of 
hospitalization up to 45% on average[9,10]. 

ANTIMICROBIAL COATED IMPLANTS 
Current antimicrobial strategies have largely focused 
on coating-based approaches-each of which aims to 
prevent infection by mitigating biofilm formation[11]. Key 
coatings include antibiotic, antiseptic, nano-silver, and 
photoactive-based coatings[11].

Antibiotic-based coatings
Antibiotic coatings allow for local delivery of antibiotics 
with a sustained release based on the drug carrier 
pharmacokinetics[12]. While various antibiotics have been 
studied (e.g., amoxicillin, vancomycin, cephalothin, 
and tobramycin), the most widely studied antibiotic 
for such coatings has been gentamicin[11]. Common 

biocompatible drug carriers for the coatings include 
polymethylmethacrylate (PMMA), poly(lactic-co-glycolic 
acid) (PLGA), poly(lactic acid), polyethylene glycol, 
and poly(D,L)lactide (Figure 1)[7]. Hydroxyapatite (HA) 
was recently shown to be an effective drug carrier of 
gentamicin[13,14].

Neut et al[15] demonstrated the wide-spectrum anti
bacterial efficacy of a gentamicin coating in vitro through 
investigating infection prophylaxis of Staphylococcus 
aureus (S. aureus) in cementless total-hip arthroplasty. 
In a rabbit model, Alt et al[16] found that the gentamicin-
HA composite provided a statistically significant reduction 
in infection rate when compared to uncoated total joint 
replacements. In patient trials, gentamicin-coated 
implants have displayed promising preliminary results 
(Figure 1)[17-20]. Limitations of antibiotic coatings include 
the use of fixed, predetermined antibiotics; limited 
duration of drug elution; and the risk of developing drug 
resistance[21]. 

To overcome the limited duration of drug elution, 
Ambrose et al[22-24] developed antibiotic-impregnated 
bioresorbable microspheres for sustained release of 
antibiotics over several weeks-which have been shown 
to reduce infection rates in animal models. Antiseptic-
based coatings have emerged to address antibiotic 
coatings fixed bactericidal spectrum and possible drug 
resistance limitations. Antibiotic-based coatings are 
currently the most commonly utilized local antimicrobial 
clinical delivery method due to the well characterized 
nature of the antimicrobial agents. These coatings 
are limited by antibiotic classes, which are compatible 
with the chemistry of the coating matrix. Asides from 
pharmacokinetic limitations, antibiotic-based coatings 
represent the most accepted antimicrobial option available.

Antiseptic-based coatings
In contrast to antibiotic coatings, which are formulated to 
work against specific bacterial strains, antiseptic-based 
coatings are intended to combat a wide range of bacteria 
by way of more general chemical agents. For this reason 
antiseptic coatings are less likely to induce bacterial 
resistance compared to antibiotics[25,26]. Common anti
septics include chlorhexidine and chloroxylenol, which 
are thought to act through the interaction of their natural 
cationic nature with the anionic phosphate residue of the 
lipid molecules in bacterial cell membranes. This ionic 
adsorption damages cell membranes and limits bacterial 
adhesion (Figure 2)[27,28]. In 1998, Darouiche[8] first 
demonstrated the effectiveness of antiseptic coatings 
on titanium cylinders studied in vitro with human serum 
before DeJong et al[29] tested chlorhexidine and chloroxy
lenol in a goat model, finding that these two antiseptics 
reduced external fixator pin tract infections. Ho et al[30] 
demonstrated in vivo efficacy of antiseptic coatings 
in humans by reducing vascular and epidural catheter 
infection with application of a chlorhexidine-impregnated 
dressing. Due to their broad spectrum efficacy, antiseptic-
based coatings are not without some level of generalized 
toxicity. Because of their general toxicity, antiseptic based 
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coatings are more commonly utilized as topical dressings.

Chitosan coatings
Chitosan is a polymer of chitin that exhibits active anti
microbial properties. Recent pre-clinical studies have 
provided evidence that several composites of chitosan 
may act as effective antimicrobial agents suited for 
titanium orthopedic implants. Yang et al[31] tested a 
vancomycin-chitosan composite by monitoring the 
proliferation of human osteoblast cells in vitro using 
methyl thiazole tetrazolium and cell adhesion using 
FEMSEM. They found that vancomycin-chitosan coated 
implants displayed lesser biofilm formation, a result 
corroborated by in vivo experiments in a rabbit model[31]. 

In fact, some results indicate that a simple mixtures 
of 2%-3% chitosan and 2% cinnamon oil may also 
hold antimicrobial properties against Staphylococcus 
epidermidis (S. epidermidis) on titanium implants[32]. 
Most recently, Qin et al[33] revealed preliminary in vitro 
results suggesting that chitosan-casein phosphopep
tides coatings could provide antimicrobial benefits for 
cobalt matrix orthopedic implants. Other studies have 
suggested that chitosan alone may not be sufficiently 
potent as an antimicrobial agent and suffers from poor 
release kinetics. More current studies have focused on 
the synergistic use of chitosan and antibacterial agents 
with more promising results. As yet we are not aware of 
any clinical trials incorporating chitosan-based coats. 

25 μm

Figure 1  Diagram of tibial nail with gentamicin coating (A), visualized on metal implant using scanning electron microscopy (B)[20].

A B

A B

C D

Figure 2  Scanning electron microscopy images of Enterococcus faecalis-infected dentin blocks treated with saline and chlorhexidine. Blocks treated with 
saline solution for 10 min show many adhering Enterococcus faecalis (A, × 1500) with normal shape (B, × 20000). The group soaked with 2% chlorhexidine shows 
fewer adhering bacteria (C, × 1500) and chlorhexidine particles attached to bacterial membranes (D, × 20000, white arrows)[28].
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Nano-silver coatings
The antimicrobial properties of silver particles are well-
established[34-38]. Silver particles have several known 
mechanisms of action including binding to thiol groups 
of enzymes, cell membranes, and nucleic acids, result
ing in structural abnormalities, a damaged cell envelope, 
and inhibition of cell division[39-41]. Silver nanoparticles 
(Figure 3)[42] are typically incorporated into titanium 
surfaces or polymeric coating to control the release 
rate and duration of the bioactive silver[11,43-45]. Electrical 
currents are established when silver nanoparticles 
(cathode) embedded in a titanium matrix (anode) are 
exposed to electrolytes[45] - this galvanic coupling can 
cause changes in bacterial membrane morphology and 
DNA, leading to cell death[37]. Silver-based coatings 
have antimicrobial efficacy against a broad spectrum of 
pathogens, including Escherichia coli, S. aureus and S. 
epidermidis[46-48]. Using an in vivo model for osteomyelitis, 
Tran et al[48] inoculated S. aureus into fractured goat tibias 
and found after 5 wk silver-doped coated intramedullary 
nails led to better clinical and histology outcomes than 
the controls fixed with uncoated nails. 

Early clinical studies have shown promising results 
with regard to reducing periprosthetic infections. Wafa 
et al[49] retrospectively compared 85 patients with silver-
coated tumor prostheses to 85 tumor patients with 
non-silver tumor prostheses. The authors found that 
the average infection rate among silver-coated implant 
patients was 10.6% lower than that of their uncoated 
counterparts. In a similar prospective study by Hardes 
et al[50], silver-coated prosthetic tumor implants were 
shown to have an 11.7% lower infection rate over a 
five-year period than uncoated implants. Despite these 
encouraging clinical results, clinical use of silver-coated 
implants has been limited by concerns of mammalian 
bone cell cytotoxicity[51,52]. While this cytotoxic level 
is much lower than the anti-microbial threshold used 
for implant coatings, there is evidence to suggest that 
prolonged exposure to even low doses of nano-silver 
may result in mild toxicity in rats[53]. The long-term 
implications of such toxicity are yet undetermined. 
Because of its long history of usage, and relatively low 
toxicity, silver-based antimicrobial coatings represent 

a very promising tool against antibiotic-resistant path
ogens. The effectiveness of the technology has been 
shown to be largely dependent on the ability of the 
coating matrix to provide efficacious release kinetics and 
formulation of silver nanoparticles or ions. 

Photoactive-based coatings
Photocatalyst coatings are composed of titanium 
alloys and display bactericidal effects via membrane 
degradation after activating exposure to ultraviolet 
irradiation (Figure 4)[54,55]. Titanium oxide (TiO2) is a 
commonly used photocatalytic agent due to its strong 
oxidizing power, lack of toxicity, and long-term chemical 
stability[56]. Villatte et al[56] demonstrated TiO2-based 
photoactive coatings were able to withstand mechanical 
stress from inserting stainless steel pins in cow femurs, 
had antibacterial effectiveness against S. aureus and 
S. epidermis cultures, and has the added benefit of low 
cost and easy scalability. Photocatalysts as antimicrobial 
agents in orthopedic implants remain to be tested in 
vivo.

NON-COATING TECHNOLOGY
Antibiotic-loaded bone cement
In addition to coatings, several other antimicrobial 
orthopedic implant technologies are being evaluated. 
Antibiotic-loaded bone cement (ALBC), such as PMMA, 
is widely used by orthopedic surgeons to help secure 
arthroplasty implants, to fill bone voids, and to treat 
vertebral compression fractures (Figure 5)[57,58]. ALBC 
has been in use since first being developed in 1970 as 
a potential method for in situ drug release[59]. Despite 
its widespread use, the antimicrobial efficacy of ALBC 
is debated[60,61]. Due to irregular release of antibiotic, 
only 5%-8% of the drug typically elutes properly[62]. 
Therefore, the high doses needed for a therapeutic effect 
have been shown to produce pathogen resistance[57].

50 nm 50 nm

A B

Figure 3  Silver nanoparticles of two sizes: Small (A) and Large (B), visualized 
via transmission electron microscopy[42].
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Figure 4  Schematic illustration of proposed photocatalytic and antibacterial 
mechanisms of a nanocomposite photocatalytic coating[55]. TiO2: Titanium 
oxide.
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Antibiotic-loaded reservoirs
A novel system utilizes antibiotic-loaded reservoirs within 
the steel implant itself to enable a more controlled, 
localized release of drug when compared to coatings[63]. 
Initial in vivo testing by Gimeno et al[64] demonstrated 
that sheep infected with a biofilm-forming S. aureus 
strain showed no signs of infection of pre-placed tibia 
implants 7-9 d post introduction of S. aureus. Gimeno et 
al[65] subsequently proposed a design detailing fixation 
pins with tubular reservoirs for loading of antibiotics, 
allowing for more controlled release of the antibiotic 
based on number and size of release orifices (Figure 6). 

Modified surface characteristics
Modifying implant surface characteristics have are also 
been investigated as a means of reducing biofilm. For 
example, mixtures of polyethylene oxide and protein-
repelling polyethylene glycol have shown significant 
bacterial inhibition when applied implant surfaces[66,67]. 
Singh et al[68] demonstrated that modifying surface rough
ness (Figures 7[69] and 8) of a material at the nanoscale 
level could provide antibacterial properties. Surface 

characteristic modification has been shown to interfere 
with osseointegration of the implants, challenging its 
clinical application[70]. Other studies have shown that 
certain pathogens are able to adhere, proliferate, and 
form biofilms more readily on rough surfaces. The data 
available suggests there is threshold where modified 
surface microtopography can be an effective means of 
reducing biofilm, or encouraging bacterial growth. 

Electrospinning
Electrospun matrices of PLGA nano-fibers have re
cently been proposed as a promising antimicrobial 
approach to orthopedic implant-associated infections[71]. 
In electrospinning, ultrafine fibers with nanometer 
diameters form a matrix with a very high surface-area-
to-volume ratio[72]. Produced by syringe-pumping various 
drug and polymer solutions in the presence of a high 
electrical field potential[73], the resulting drug loaded, non-
woven PLGA membranes are flexible, porous, and enable 
controlled drug release (Figure 9)[71,74]. Like coating, the 
matrices adhere directly to orthopedic implants.

Integrated biofilms
Özçelik et al[75] proposed a novel polyelectrolyte multilayer 
film approach using combined antimicrobial and 
immunomodulatory strategies (Figure 10). Composed 
of polyarginine and hyaluronic acid, the film inhibits 
the production of inflammatory cytokines, combats 
bacteria using a nanoscale silver coating, and opens 
the opportunity for bacteria-specific customization via 
embedded antimicrobial peptides. Although development 
of such films is far from clinical practice, microfilms are 
a promising look into the benefits of combining existing 
approaches for limiting implant-related complications to 
develop the composite technology of the future. 

CONCLUSION
Several imperfect options exist for reducing the risk of 
orthopaedic implant infections. Despite technological 
advancement, orthopedic implant-associated infections 
remain as an important clinical problem, necessitating 
additional improvement. With promising technology 
on the horizon, it seems that the answer for reduced 
infection may not lie in solely one device or technology 
but in the synergy of many. 

Figure 5  Antibiotic loaded bone cement beads strung on braided stainless 
steel[58].

A B

Figure 6  Fixation pins with tubular reservoirs for controlled drug release. 
Diagrams highlighting the principle design of fixation pins: A: Scheme of a drug 
releasing fixation pin. Note the permeation through the porous wall (arrows)[64]; 
B: Scheme of implanted fixation pins, each capable of eluting local antibiotics 
around fixation site[65].
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Figure 7  Interaction between surface roughness and bacterial adhesion[69].
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Figure 8  Atomic force microscopy of different surface film topography of increasing thickness (A: 50 nm; B: 100 nm; C: 200 nm; D: 300 nm)[68].
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Figure 9  Micrograph and apparatus perspective of electrospinning technology. Scanning electron microscopy micrographs of PLGA electrospun coatings 
containing (A) vancomycin and (B) no drug[74]; C: Schematic of a charged electrospinning apparatus spinning a PLGA coating onto an implant device[71]. PLGA: 
Poly(lactic-co-glycolic acid).
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