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Abstract
AIM: To investigate roles of genetic polymorphisms 
in non-alcoholic fatty liver disease (NAFLD) onset, 
severity, and outcome through systematic literature 
review. 

METHODS: The authors conducted both systematic 
and specific searches of PubMed through December 
2015 with special emphasis on more recent data (from 
2012 onward) while still drawing from more historical 
data for background. We identified several specific 
genetic polymorphisms that have been most researched 
and, at this time, appear to have the greatest clinical 
significance on NAFLD and similar hepatic diseases. 
These were further investigated to assess their specific 
effects on disease onset and progression and the 
mechanisms by which these effects occur. 

RESULTS: We focus particularly on genetic poly-
morphisms of the following genes: PNPLA3, particularly 
the p. I148M variant, TM6SF2 , particularly the p. 
E167K variant, and on variants in FTO , LIPA , IFNλ4 , 
and iron metabolism, specifically focusing on HFE,  
and HMOX-1 . We discuss the effect of these genetic 
variations and their resultant protein variants on the 
onset of fatty liver disease and its severity, including 
the effect on likelihood of progression to cirrhosis and 
hepatocellular carcinoma. While our principal focus 
is on NAFLD, we also discuss briefly effects of some 
of the variants on development and severity of other 
hepatic diseases, including hepatitis C and alcoholic liver 
disease. These results are briefly discussed in terms of 
clinical application and future potential for personalized 
medicine. 

CONCLUSION: Polymorphisms and genetic factors of 
several genes contribute to NAFLD and its end results. 
These genes hold keys to future improvements in 
diagnosis and management.
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Core tip: Non-alcoholic fatty liver disease (NAFLD) is 
reaching epidemic proportions not only in the United 
States but worldwide. Its end results can include non-
alcoholic steatohepatitis, cirrhosis, liver failure, and 
hepatocellular carcinoma. Studies since 2008 have 
demonstrated and continue to uncover noteworthy 
genetic factors that influence NAFLD and its onset, 
severity, and ultimate outcome. Awareness of these 
genetic elements yields improved understanding of 
the pathology of the disease and will likely be key to 
individualizing effective patient therapy in the near 
future. 

Severson TJ, Besur S, Bonkovsky HL. Genetic factors that affect 
nonalcoholic fatty liver disease: A systematic clinical review. 
World J Gastroenterol 2016; 22(29): 6742-6756  Available from: 
URL: http://www.wjgnet.com/1007-9327/full/v22/i29/6742.htm  
DOI: http://dx.doi.org/10.3748/wjg.v22.i29.6742

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is the 
hepatic manifestation of the metabolic syndrome[1-4]. 
Its already-high worldwide prevalence continues to 
grow[2,5,6]. Its pathogenesis is related to environmental, 
dietary, and host factors; chiefly to increasing 
obesity and sedentary lifestyles[7-9]. Evidence also 
points to genetic factors playing important roles in 
modulating the occurrence, severity, and long-term 
prognosis of NAFLD. It is important for practicing 
gastroenterologists to be aware of major genetic 
factors that influence NAFLD and its progression 
because they hold the key to better understanding of 
pathogenesis and new and better treatments. In this 
review, we describe and highlight the most important 
of these genetic influences. Table 1 summarizes the 
genes and variants discussed in our review.

MATERIALS AND METHODS
Search strategy and study selection
We conducted a search in PubMed to identify relevant 
articles published from January 1, 2012 to December 
2015. The search terms (NASH OR NAFLD) AND 
genetic* yielded 1,481 published references. Filtering 
for human studies yielded 853; also filtering for English 
yielded 819. Another search approach using the MeSH 
terms “Fatty Liver/genetics”[Mesh] for the same time 
frame yielded 801 published references. Filtering for 
human studies yielded 539; also filtering for English 
yielded 511.

The two searches were combined with duplicates 
eliminated, leaving 997 references, which were sorted 
by the authors according to subject relevance, leaving 
111. After careful evaluation, the 45 recent references 
which proved most important and relevant are cited in 
this article. 

Searches for major background and findings/
publications prior to January 2012 yielded 44 additional 
citations. Further, each author performed independent 
searches based on specific keywords and search 
terms that did not completely intersect with the overall 
search. This yielded an additional 29 sources cited. 
Finally, 35 additional citations were incorporated with 
adaptation of Table 2. 

RESULTS
PNPLA3
Function of PNPLA3: Patatin-like phospholipase 
domain-containing protein 3 (PNPLA3, also called 
adiponutrin) is a 481-amino acid protein expressed to 
greatest degree in hepatocytes[10]. It functions as both 
a triglyceride hydrolase (suggesting catabolic lipase 
activity) and acetyl-CoA-independent transacylase 
(suggesting anabolic lipogenic activity)[11-13]. 

The most commonly studied variant of PNPLA3 
is rs738409, altering wild-type cytosine to guanine 
at nt444 (c.444C>G), which changes isoleucine to 
methionine at residue 148 (p. I148M). This SNP is 
associated with increased hepatocellular triglyceride 
accumulation (up to two-fold greater than wild 
type[14,15]) and the development of NAFLD[16].

I148M increases hepatocellular lipid retention by 
altering enzymatic hydrolysis of emulsified triglycerides. 
The long side chain of the methionine substitution at 
p.148 restricts substrate access to the enzyme’s catalytic 
site[17,18] despite the functional catalytic dyad (Figures 
1 and 2). The defunct I148M protein accumulates on 
hepatic lipid droplets, preventing other lipolytic elements 
from accessing the coated droplet and rendering it 
metabolically inaccessible[19].

I148M subjects have lower hepatic VLDL secretion 
than wild-type homozygotes with the same degree of 
steatosis. In vitro correlation showed a lower degree 
of apoB-containing lipoprotein secretion from I148M 
cells[20].

The I148M variant leads to lower levels of circula-
ting adiponectin[21], associated with susceptibility to 
NAFLD[22]. Adiponectin has anti-inflammatory effects[23]; 
reduced levels may allow inflammation leading to 
progression from NAFLD into NASH[24]. Adiponectin 
may also inhibit activation of pro-fibrotic hepatic stellate 
cells[25].

PNPLA3 I148M as ethnic NAFLD risk factor: 
Many of the studies previously cited were conducted 
on patients of Caucasian descent. The presence of 
rs738409 G, however, has been shown to be strongly 
associated with susceptibility to NAFLD and degree of 
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steatosis across many ethnic groups. Several studies 
indicate that the rs738409 GG genotype is associated 
with development and progression of NAFLD in Asian 
cohorts, including Chinese[26,27], Japanese[28], Korean[29], 
and Indian[30,31] populations. 

The 1000 Genomes consortium has found 
significant ethnic variability in the prevalence of 
rs738409 (Table 3)[32]. The Latin American cohort is 
particularly noteworthy. Persons of Hispanic descent 
have been found to have higher prevalence of hepatic 
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Table 1  Genes and variants emphasized in this review

Gene name Genetic variant Coding DNA 
change

Amino acid change Putative effect of variant

PNPLA3 rs738409 444C>G I148M Increased hepatocyte triglyceride content
rs6006460 1531G>T S453I Lower-than-average hepatic triglyceride accumulation

TM6SF2 rs58542926 499A>G E167K Elevated AST/ALT, increased hepatic triglyceride levels, decreased serum cholesterol
rs10401969 613+80A>G Intron Lower hepatic TM6SF2 mRNA levels correlate with larger hepatocellular lipid droplets

LIPA rs116928232 894G>A E8SJM Cholesterol ester storage disease often resulting in fibrosis→cirrhosis
IFNλ4 rs12979860 151-152G>A Intron Increased degree of hepatic inflammation and fibrosis
HFE rs1800562 845G>A C282Y Increased hepatic iron uptake, associated with greater NAFLD risk/severity

rs1799945 187C>G H63D Increased hepatic iron uptake, associated with greater NAFLD risk/severity
HMOX1 rs2071746 -413A>T Affects promoter Higher HMOX1 activity correlated with less frequent and less severe NAFLD
FTO rs1421085 46-43098T>C Affects repressor Adipocytic phenotype shift from beige (energy-dissipating) to white (energy-storing)
GNPAT rs11558492 1556A>G D519G Worsened iron overload in patients with HFE

Table 2  Variation in frequency of the common PNPLA3 polymorphism in different regions and among different ethnic groups

Descent/ethnicity Alleles C1 Alleles G2 Genotypes 
C|C

Genotypes 
C|G

Genotypes 
G|G

Allele count Genotype count

C allele G allele C|C C|G G|G

All (n = 2504) 73.8% 26.2% 56.9% 33.8%   9.3% 3695 1313 1424 847 233
African (n = 661) 88.2% 11.8% 78.8% 18.8%   2.4% 1166   156   521 124   16
Latin American 
(n = 347)

51.6% 48.4% 27.7% 47.8% 24.5%   358   336     96 166   85

Asian (n = 504) 65.0% 35.0% 44.0% 41.9% 14.1%   655   353   222 211   71
European 
(n = 503)

77.4% 22.6% 60.2% 34.4%   5.4%   779   227   303 173   27

Southern Asian 
(n = 489)

75.4% 24.6% 57.7% 35.4%   7.0%   737   241   282 173   34

1Allele C: Wild type; 2Allele G: Variant rs738409, codes I148M protein.

Figure 1  Structural models of wild type and mutant PNPLA3. Structural models of normal (Ile148) and mutant (Met148, associated with increased hepatic 
triglyceride content) PNPLA3 are shown in the left and right panels, respectively. This change effectively blocks substrate access to the catalytic dyad seen at Ser47 
and Asp166. Adapted from He et al[8] used under Creative Commons-BY licensing. 
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Specifically among Hispanic patients, Mexican 
Americans studied by 1000 Genomes were found 
to have 34.4% of GG GG genotypes and 42.2% CG 
genotypes. It is unsurprising, then, that subjects of 
Mexican descent were recently found to have higher 
prevalence of NAFLD than any other group of Hispanic 
descent[37].

For African Americans, the rs738409 mutation 
has been found to contribute to the risk of increased 
hepatic steatosis[38]. However, another mutation of 
PNPLA3 found in the African American population 
(rs6006460, c.1531G>T, encoding p.S453I) showed 

steatosis (45%) than both white (33%) and black 
(24%) subjects[33]. A study of cryptogenic cirrhosis 
(most often caused by NASH) showed that, despite 
similar prevalence of diabetes between patients of 
Hispanic and African heritages, the prevalence of 
cryptogenic cirrhosis in Hispanics is 3.1-fold higher 
than among Caucasian subjects, and the prevalence 
among persons of African origin was 3.9-fold lower 
than among Caucasians[34]. In Hispanic populations, 
variation in PNPLA3 was found to affect not only 
the degree of liver fat content[35] but also serum 
aminotransferase elevations[36].

Figure 2  Structural snapshots of wild type and mutant PNPLA3 in substrate-free systems. Subplots A-C present conformations of the wild type protein at 1, 5, 
10 ns, respectively, while D-F present the I148M mutant. From Xin et al[18] with permission of the copyright holder.
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Table 3  Summary of genetic modifiers of nonalcoholic fatty liver disease

Gene Protein Study details and comments

Glucose metabolism and insulin resistance
   ENPP1; IRS1 Ectonucleotide pyrophosphatase/

phosphodiesterase family member 
1; insulin receptor substrate 1 

Functional variants promote insulin resistance by impairing insulin receptor 
signaling[114,115]. Carriage of nonsynonymous SNPs in ENPP1 (rs1044498, encoding 
Lys121Gln) and IRS1 (rs1801278, encoding Gln972Arg) reduced AKT activation, 
promoted insulin resistance, and showed independent association with greater 
fibrosis[116]

   GCKR Glucokinase regulatory protein GCKR SNP rs780094 has been associated with hepatic TG accumulation[117] and greater 
NAFLD fibrosis[118]

   PPARG Peroxisome proliferator-activated 
receptor γ

A loss-of-function SNP (rs1805192, encoding Pro12Ala) impairs transcriptional 
activation and affects insulin sensitivity[119]

   SLC2A1 Solute carrier family 2, facilitated 
glucose transporter member 1

Variants in SCLA1 are associated with NAFLD independent of insulin resistance or 
T2DM[120]

Downregulation of SLC2A1 in vitro promoted lipid accumulation and increased 
oxidative stress, potentially linking the key pathogenic features of NAFLD: oxidative 
injury and increased lipid storage

Steatosis: Hepatic lipid import or synthesis
   FTO Fat mass and obesity-associated 

protein
SNP rs1421085 (c.46-43098T>C) disrupts a conserved motif, which leads to de-
repression of a potent preadipocyte enhancer and to a shift in phenotype from energy-
dissipating beige adipocytes to energy-storing white adipocytes, with reduction in 
mitochondrial thermogenesis[70]

   LPIN1 Phosphatidate phosphatase LPIN1 Required for adipogenesis and the normal metabolic flux between adipose tissue and 
liver; also acts to regulate fatty acid metabolism[121,122]

Variants have been associated with multiple components of the metabolic 
syndrome[121,123]

   SLC27A5 Very long chain acyl-CoA 
synthetase

Silencing Slc27a5 reverses diet-induced NAFLD and improves hyperglycemia in 
mice[124]

Carriage of the SLC27A5 rs56225452 polymorphism has been associated with higher 
ALT and greater postprandial insulin and triglyceride levels[124]

In patients with histologically proven NAFLD, the effect of BMI on degree of steatosis 
differed with SLC27A5 genotype[125]

Steatosis: Hepatic lipid export or oxidation in steatosis
   APOE Apolipoprotein E Plasma protein involved in lipid transport and metabolism[126]. Three alleles (ε2, ε3, 

and ε4) determine three isoforms (ApoE2, ApoE3, and ApoE4) resulting in six ApoE 
genotypes (E2/2, E3/3, E4/4, E2/3, E2/4, E3/4). Overall homozygosity for the ε2 
allele in one study was associated with dyslipidemia, but not NAFLD[127]

In a subgroup of non-obese individuals, the ε2 allele and the E2/3 genotype were 
more prevalent in controls, suggesting it might be protective[127]. Consistent with this 
result, the E3/3 genotype was associated with NASH in a Turkish cohort, whereas 
E3/4 was protective[128]

   LEPR Human leptin receptor SNP rs1805096 (c.3057G>A) may contribute to the onset of NAFLD via regulation 
of lipid metabolism[129]. Combination of either of LEPR SNPs rs1137100 or rs1137101 
with PNPLA3 rs738409 exacerbates risk of developing NAFLD more than either of the 
variants on its own[130]

   NR1I2 Nuclear receptor subfamily 1 
group Ⅰ member 2 (also known as 

pregnane X receptor)

NR1I2 encodes a transcription factor that regulates hepatic detoxification and acts 
through CD36 (fatty-acid translocase) and various lipogenic enzymes to control lipid 
metabolism[131]

Nr1i2-deficient mice develop steatosis[131]

Two SNPs (rs7643645 and rs2461823) were associated with NAFLD and were also a 
predictor of disease severity[132]

   PNPLA3 Patatin-like phospholipase 
domain-containing 3

The nonsynonymous c.444C>G nucleotide transversion mutation SNP (rs738409, 
encoding p.I148M) has been consistently associated with steatosis, steatohepatitis, and 
hepatic fibrosis. Function remains incompletely understood[39,42]

   PPARα Peroxisome proliferator-activated 
receptor α

PPAR-α is a molecular sensor for long chain fatty acids, eicosanoids, and fibrates[133]; 
activated by increased hepatocyte fatty-acid load, it limits TAG accumulation by 
increasing fatty acid oxidation
Carriage of a non-synonymous SNP (rs1800234, encoding p. V227A) increases activity, 
and was associated with NAFLD despite reduced BMI[134,135]

A loss-of-function polymorphism (rs1800206, encoding p. L162V) was not associated 
with NAFLD[136]

   TM6SF2 Transmembrane 6 super family 2 The TM6SF2 rs58542926 minor allele is associated with greater steatosis, 
steatohepatitis, and NAFLD fibrosis. The major allele is associated with dyslipidemia 
and greater CVD risk[61,66,68,69]

Steatohepatitis: Oxidative stress
   ABCC2 ATP-binding cassette, subfamily C 

(CFTR/MRP), member 2
Association studies support a role for ABCC2 (also known as MRP2), which facilitates 
terminal excretion and detoxification of endogenous and xenobiotic organic anions, 
including lipid peroxidation products[137]

Severson TJ et al . Genetic factors in NAFLD
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association with lower-than-average hepatic fat 
content[39]. This gene has a minor allele frequency of 
10.4% in African American patients, but only 0.3% in 
Caucasians and 0.8% in Hispanics.

Effect on severity of disease
Fibrosis: Fibrosis is increased in I148M subjects[40,41], 
possibly resulting from increased inflammation due to 
increased hepatic steatosis. It has been suggested that 
there may also be a directly pathogenic mechanism 
to the variant[42], perhaps via fibrogenesis, as I148M 
is associated with increased fibrosis independent of its 
effect on hepatocyte lipid content[43].

Cirrhosis: Presence of c.444C>G (both homozygous 
GG and heterozygous CG) was associated with 
significantly increased risk of cirrhosis when compared 
to wild type[44], regardless of etiology.

Hepatocellular carcinoma: Occurrence of HCC is 
more common in homozygous I148M patients than in 
wild type patients (OR = 1.76)[45-47]. I148M patients 
have more than double the risk for Hepatocellular 
carcinoma (HCC) (adjusted OR = 2.26) for each 
variant allele[48]. It is unknown if the mutation is 

directly oncogenic.

Role in progression of other hepatic diseases: 
Although beyond the scope of this review, it is worthy 
of mention that I148M is positively correlated with 
increased susceptibility, progression, and/or severity 
in alcoholic liver disease[49-51], chronic hepatitis C[52-55], 
chronic hepatitis B[56,57], hemochromatosis[58], and 
Wilson disease[59]. So broad is the effect of I148M on 
hepatic disease, it has been elsewhere suggested as 
the defining criterion of so-called PNPLA3-associated 
steatohepatitis, or “PASH”[60].

Transmembrane 6 superfamily 2
Transmembrane 6 Superfamily 2 (TM6SF2), also 
known as KIAA 1926, is a protein of unknown function 
with 377 amino acids and molecular mass of 42.6 
kDa. The chromosomal location of the TM6SF2 gene 
in humans is 19p13.11. It has broad tissue and organ 
expression with highest relative levels of expression in 
the small intestine and liver[61-63].

TM6SF2 as NAFLD risk
One variant in TM6SF2 (rs10401969, c.613+80A>G) 
is associated with reduced hepatic mRNA levels of 

   GCLC; GCLM Glutamate-cysteine ligase catalytic 
unit; glutamate-cysteine ligase 

regulatory unit 

Glutamate-cysteine ligase is the rate-controlling step in glutathione synthesis; absence 
of the Gclc gene causes steatosis and liver failure in mice[138]

A study of 131 patients with NFLD reported the GCLC promoter region 
polymorphism (c. c-129t, rs17883901) was associated with steatohepatitis compared 
with simple steatosis[139]

   HFE Hereditary hemochromatosis 
protein

Hepatic iron accumulation promotes oxidative stress. Two studies, examining 177 
patients, reported carriage of an HFE polymorphism (rs1800562) that was associated 
with more severe steatohepatitis and advanced fibrosis[95,140]

However, three other studies have not shown increased carriage of either the C282Y 
or H63D (rs1799945) mutations[105-107]. Meta-analysis have also provided conflicting 
results[108,109]

   SOD2 Superoxide dismutase [Mn], 
mitochondrial

Carriage of the nonsynonymous SNP rs4880 has been associated with advanced 
hepatic fibrosis in NAFLD in both Japanese[141] and European[142] cohorts

Endotoxin response
   CD14 Monocyte differentiation antigen 

CD14
A lipopolysaccharide receptor expressed on monocytes, macrophages, and 
neutrophils that enhances TLR4 endotoxin signaling. An association with promoter-
region polymorphism rs2569190 increasing CD14 expression has been reported[143]

   TLR4 Toll-like receptor 4 Study of a spontaneous Tlr4 null mutation in C3H/J mice has established the 
contribution of TLR4/endotoxin to NAFLD pathogenesis in the laboratory[144]

TLR4 polymorphisms rs4986791 and rs4986790 influence hepatitis-C-related 
fibrosis[145,146], but no association with NAFLD and TLR4 variants has been found

Cytokines
   IFNλ4 Interferon lambda 4 The intronic rs12979860 SNP in IFNλ4 is a strong predictor of fibrosis in an etiology-

independent manner, including a cohort of 488 NAFLD cases. Those with rs12979860 
cc had greater hepatic inflammation and fibrosis[85]

   TNF Tumor necrosis factor A promoter polymorphism (c.238G>A) has been associated with NASH[147,148] 
suggesting a primary role in the transition from steatosis to steatohepatitis. A 
separate study found that two other promoter region polymorphisms (rs1799964 and 
rs1800630) were more common in NAFLD than a control population[148]

Fibrosis
   AGTR1 Type-1 angiotensin Ⅱ receptor Studies link SNP rs3772622 with grade of steatohepatitis and stage of fibrosis; the 

most recent study also suggests an interaction with PNPLA3 genotype[149,150]

   KLF6 Kruppel-like factor 6 SNP rs3750861 has been associated with milder NAFLD-related hepatic fibrosis in 
three separate European cohorts[151]

   MERTK Myeloid epithelial reproductive 
tyrosine kinase

Homozygosity for common non-coding rs4374383 G>A polymorphism associated 
with less fibrosis in hepatitis C and NAFLD. Mechanism suggested is modulation of 
HSC activation[152]

Adapted from Anstee and Day[153] with permission of copyright holder.
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TM6SF2[64]. Decreased levels correlated with altered 
expression of multiple genes involved in triglyceride 
synthesis (ACSS2, DGAT1, DGAT2, and PNPLA3) 
and with increased size and number of hepatocytic 
lipid droplets, but with no effect on cell damage and 
proliferation. 

Murine hepatocyte-specific silencing of Tm6sf2 
resulted in decreased levels of plasma triglycerides, 
LDL, HDL, and triglyceride content of VLDL with 
a threefold increase in hepatic triglyceride levels. 
Overexpression of the gene, on the other hand, was 
associated with a reduction in the number and size of 
the hepatocytic lipid droplets. 

Another TM6SF2 SNP (rs58542926, c.499G>A), 
changes glutamic acid to lysine amino acid at protein 
residue 167 (p. E167K). Presence of this variant was 
positively associated with associated with elevations in 
serum aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT)[61] and with the development 
of NASH compared to wild type patients[65]. It was also 
associated with lower levels of plasma triglyceride and 
cholesterol. These were concomitant with increases in 
the hepatic triglyceride levels[66]. Impaired TM6SF2, 
then, increases the likelihood of NAFLD development 
while decreasing the likelihood of hypertriglyceridemia 

and vascular diseases associated with cardiovascular 
disease, making variation in TM6SF2 a two-edged 
sword (Figure 3)[67,68].

Effect of TM6SF2 on disease
TM6SF2 rs58542926 variant was strongly associated 
with NAFLD, advanced fibrosis, and cirrhosis[69], 
independent of age, body mass index (BMI), type 2 
diabetes mellitus and PNPLA3 rs738409 genotype. It 
remains unclear if the minor allele is associated with 
increased risk of HCC. 

Fat mass and obesity-related gene
The fat mass and obesity-associated gene (FTO) 
encodes a nuclear protein of 506 amino acids with 
molecular mass 58.3 kDa that functions as a Fe2+-

containing and requiring oxygenase that repairs alkyl 
DNA and RNA by carrying out oxidative demethylations, 
especially of N(6) methyladenosine residues on RNA, 
the most prevalent internal modification of mRNA in 
higher eukaryotes.

A recent landmark study[70] showed that the single 
nucleotide variant rs1421085 (c.46-43098T>C) of the 
FTO gene disrupts a conserved motif that is essential 
for expression of the repressor AT-rich interactive 

Figure 3  Effects of TM6SF2 genetic variations. TM6SF2 plays a role in VLDL export from liver to serum which results in increased serum lipids and myocardial 
infarction, and decreased risk of liver steatosis. From Kahali et al[67], used by permission of the copyright holder. Chol: Cholesterol; LDL: Low-density lipoprotein 
cholesterol; IHTG: Intrahepatic triglyceride; NASH: Nonalcoholic steatohepatitis; TG: Triglyceride; VLDL: Very low-density lipoprotein.
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domain 5B (ARID5B), which, in turn, leads to de-
repression of a potent preadipocyte enhancer and to 
doubling of Iroquois homeobox 3 and 5 (IRX3 and IRX 
5) expression during early adipocyte differentiation. 
This shifts the adipocyte phenotype from energy-
dissipating beige to energy-storing white, with a five-
fold reduction in mitochondrial thermogenesis. 

Down-regulation of Irx3 in murine adipose tissue 
reduced body weight and increased heat production 
without changes in appetite or exercise. Repair of the 
ARID5B motif of rs1421085 in primary adipocytes 
from a patient with the C [risk] allele activated gene 
expression profiles of brown fat and increased thermo-
genesis seven-fold. 

Thus, this single gain-of-function variant in a non-
coding region of FTO plays a dominant role in BMI set 
point and possibly in NAFLD and NASH as well. It can 
be hoped that pharmacologic or other approaches, 
such as gene editing to restore activity of ARID5B 
and/or to down-regulate IRX3 and IRX5, will prove to 
have pronounced anti-obesity and anti-NAFLD/NASH 
effects. 

LIPA gene (lipase A, lysosomal acid, cholesterol 
esterase) 
The lysosomal acid lipase A gene (LIPA) is located on 
human chromosome 10q23.31[71,72]. LIPA produces 
and regulates lysosomal acid lipase (LIPA), also known 
as cholesterol ester hydrolase. LIPA contains 399 
amino acids and has molecular mass of 45.4 kDa. It 
catalyzes lysosomal hydrolysis of cholesteryl esters 
and triglycerides, which plays a pivotal role in the 
intracellular regulation of the endogenous cholesterol 
synthesis, uptake of low density lipoproteins (LDL) and 
cholesterol esterification[73,74].

At least six splice variants of LIPA have been des-
cribed. Some mutations lead to reduced or absent 
production of the LIPA enzyme, yielding increased 
cholesterol ester storage in the lysosomes. Defective 
LIPA gene inherited as autosomal recessive disorder 
is clinically known as Wolman’s disease (fatal in 
infancy)[75,76] and cholesterol ester storage disease 
(CESD, presenting later in life with dyslipidemia[77,78], 
premature atherosclerosis[79], and cirrhosis[80]). The 
majority of mutations (42%) are due to deletions/
insertions; the remainder are splice-site and missense 
mutations[81]. The most common mutation is a splice-
site at the exon 8, E8SJM (rs116928232, c.894G>A). 

Fibrosis leading to cirrhosis and its complications is 
seen in two-thirds of patients with LIPA deficiency[82]. 
Of LIPA enzyme deficiency patients[80], 64% had 
fibrosis and/or cirrhosis, with cirrhosis present in 29% 
of patients. LIPA mutations have not been associated 
with increased risk of HCC.

Interferon λ  4 gene
IFN Interferon λ 4 gene (IFNλ4)4 codes for a cytokine 
product thought to trigger antiviral responses, especially 

to HCV, by activating the JAK-STAT pathway and up-
regulating selected interferon-responsive genes. The 
gene is widely expressed in nearly all tissues. SNPs 
rs12979860 and rs8099917 are located within intron 
1 region of the IFNλ4 gene on chromosome 19q13.2. 
These polymorphisms control the inflammatory and 
immune response pathways[83,84] which form the basis 
for the interferon-based treatment of HCV. 

A recent study involving 4,172 patients with liver 
disease (chronic HCV, chronic HBV, and NAFLD) found 
that patients with rs12979860 have greater hepatic 
inflammation and fibrosis[85]. The exact mechanism for 
this is unclear. It is thought that NAFLD leads to higher 
basal interferon stimulated genes, leading to immune 
activation and cell death.

Genes and proteins of iron and heme metabolism
Hepatic iron toxicity is chiefly related to the role of 
iron in catalyzing oxidation reactions with formation of 
the highly reactive and toxic hydroxyl free radical[86]. 
Insertion of iron into protoporphyrin forms heme, 
which is also highly reactive and capable of increasing 
oxidative stress[87]. Thus, genetic variations in genes 
and proteins involved in iron and heme metabolism 
may influence NAFLD/NASH, as well as other liver 
diseases[74-80].

Heavy iron overload, such as occurs in hemoch-
romatosis, is known to lead to hepatic fibrosis, cirrhosis 
and HCC[88]. Modest amounts of hepatic iron - which of 
themselves would not produce toxicity - can enhance or 
synergize hepatotoxicity in chronic viral hepatitis and/or 
alcoholic and NAFLD[89-92]. Increased levels of serum 
ferritin are associated with higher severity and stage 
of fibrosis in NAFLD[93] and with all-cause mortality and 
with morbidity and mortality[94]. 

The major (C282Y) and minor (H63D) mutations 
of HFE are risk factors for NAFLD and for more 
severe disease[95-97]. The most important additional 
modulating factors are chronic HCV infection and 
heavy alcohol use. However, other genetic factors, 
such as genetic variation in one or more of the many 
other genes involved in iron metabolism (e.g., BMP2, 
FPN, FTL, HAMP, HJV and others[98,99]) also play a role. 
Recently, a genetic variation in GNPAT (rs11558492, 
c. 1556A>G, exon 11; chromosome 1q42; p.D519G) 
was reported to be significantly associated with more 
severe iron overload in male subjects homozygous for 
C282Y, the major mutation of HFE[100]. The mechanism 
for the effect is suggested to relate to an effect of 
deficient GNPAT to down-regulate hepcidin production. 

The above observations led to the idea that iron 
reduction accomplished by therapeutic phlebotomies 
might be of benefit in the metabolic syndrome, 
diabetes mellitus, and NAFLD. Several studies have 
shown that phlebotomies to near iron-depletion (serum 
ferritin levels about 25 ng/mL), but short of anemia, 
lead to improvements in insulin sensitivity and glucose 
tolerance[101,102], and that chronically sustained iron 
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reduction leads to lower serum ALT/AST, less necro-
inflammation, and less fibrosis[103]. A recently published 
exception is that of Adams et al[104], although the trend 
of data in this paper also favored the iron reduction 
cohort. Lesser effectiveness in this work may relate 
to the shorter duration of study (6 vs 18-36 mo); 
longer duration of iron reduction therapy is probably 
important for study endpoints such as progression of 
hepatic fibrosis/cirrhosis and development of HCC.

Other studies did not show increased frequency 
of carriage of HFE mutations in patients with NAFLD 
than in controls[105-107]. Meta-analyses have also 
yielded divergent results[108,109]. Thus, the role of HFE 
mutations in modulating NAFLD is not entirely settled. 
Some of the reason for this may be that other genetic, 
dietary, and environmental influences, in addition to 
HFE, materially affect iron loading in the liver and 
probably also in other tissues.

Heme oxygenases (HMOX1, HMOX2) are key cyto-
protective enzymes, protecting the liver and other 
organs from oxidative stress caused by excess heme, 
potentially a stronger pro-oxidant than iron[87]. HMOX1 
is especially important, as it is highly inducible by 
heme, heavy metals, oxidative stress, and other forms 
of chemical or physical stress.

Levels of expression of the HMOX1 gene are also 
under genetic control in two major ways: the variable 
length of GT repeats in the promoter and a functional 
SNP at position -413 upstream of the transcription 
starting point (c.-413A>T; rs2071746). Shorter GTn 
repeats [18-22 nts] and -413A are associated with 
higher levels of HMOX1 gene expression and higher 
HMOX1 activities. Higher levels of expression of HMOX1 
have been correlated with less frequent and less severe 
NAFLD/NASH in rodents and humans[110-112].

Results on balance indicate that even modest 
increases in iron or heme are potentially hepatotoxic, 
especially in the presence of chronic hepatitis C or the 
metabolic syndrome. Until more effective treatments 
become available for NAFLD, iron reduction remains 
a safe and reasonable therapeutic modality, recent 
suggestions to the contrary notwithstanding[113].

COMMENTS
Background
The worldwide prevalence of non-alcoholic fatty liver disease (NAFLD) is 
increasing rapidly, related to multiple causes, some better understood than 
others. Delving into the genetic underpinnings of NAFLD development and 
severity is helping us not only to understand better genetic risk factors of 
NAFLD, but also, by assessing the effects of the genes and proteins involved, 
we learn more about the pathogenesis and management of the disease itself. 
The primary aim of this review is to discuss the known major genetic factors 
that influence NAFLD and to improve awareness and understanding of these 
factors among physicians and other healthcare providers.

Research frontiers
The prevalence of NAFLD is likely to continue to increase with the worldwide 
expansion of “Western diets” and sedentary lifestyles pari passu with trends 
toward more frequent and more severe obesity. The number of genetic 
polymorphisms that predispose a patient to NAFLD or worsen an affected 

patient’s prognosis, however, is also likely to continue expanding. Indeed, we 
continue to identify additional genetic factors and associations with NAFLD and 
the metabolic syndrome. It is likely that this will, at some point in the near future, 
allow us to predict, warn about, and ideally prevent disease before it occurs. 

Innovations and breakthroughs
As the author develop a better understanding of the genetic underpinnings of 
fatty liver disease and its progression, they will likely gain insight not only into 
the origins and physiological basis of this problem, but also into how they can 
better combat it. They foresee in the near future development and validation 
of a panel of genetic tests that will identify subjects at higher or lower risk 
of development and progression of NAFLD and that will identify subjects for 
therapies targeted specifically to specific patient genotypes. Regardless of 
favorable or adverse genetic factors, however, for the foreseeable future the 
author will need to continue counseling all their patients about the benefits of 
exercise and sensible diets, consumed in moderation.

Applications 
There have already been therapeutic trials of iron reduction for therapy of 
NAFLD/NASH; such therapy is likely to be more necessary and effective in 
subjects with mutations in HFE, GNPAT, and other genes that tend to increase 
hepatic iron levels. Genetic testing for the variants discussed above and others 
yet to be discovered may ultimately be used to assess individual risk of hepatic 
disease and may direct early detection and prophylactic treatment in patients 
at risk. Similarly, although less studied thus far, genetic variations in PNPLA3 
and/or TM6SF2 may be expected to influence efficacy of other therapies and 
allow for greater individualization of therapy. It will be of increasing value and 
importance going forward to know and to take into account host genotypes in 
both observational and interventional studies in NAFLD/NASH.

Terminology
Non-alcoholic fatty liver disease, or NAFLD, is the most common form of chronic 
liver disease in the United States and continues to increase in prevalence 
around the world. It is caused by increased intrahepatic accumulation of fatty 
deposition in the liver (steatosis) and can progress from a largely benign 
condition to inflammatory hepatitis (NASH), to cirrhosis and beyond. NAFLD is 
now usually diagnosed based upon history, physical examination, and hepatic 
imaging. Diagnosis of NASH requires liver biopsy; staging of severity of fibrosis 
is being done with increasing frequency by assessment of hepatic stiffness by 
elastography, although liver biopsy remains the gold standard.

Peer-review
This article is informative and presented in a systematic way. Well written and 
will be of use to the readership. 
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