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Abstract 
Non-alcoholic fatty liver disease (NAFLD) and irritable 
bowel syndrome (IBS) are two very common diseases 
in the general population. To date, there are no studies 
that highlight a direct link between NAFLD and IBS, but 
some recent reports have found an interesting correla-
tion between obesity and IBS. A systematic PubMed 
database search was conducted highlighting that com-
mon mechanisms are involved in many of the local and 
systemic manifestations of NAFLD, leading to an in-
creased cardiovascular risk, and IBS, leading to micro-
bial dysbiosis, impaired intestinal barrier and altered in-
testinal motility. It is not known when considering local 
and systemic inflammation/immune system activation, 
which one has greater importance in NAFLD and IBS 
pathogenesis. Also, the nervous system is implicated. 
In fact, inflammation participates in the development of 
mood disorders, such as anxiety and depression, char-
acteristics of obesity and consequently of NAFLD and, 
on the other hand, in intestinal hypersensitivity and 
dysmotility.
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Core tip: The link between non-alcoholic fatty liver 
disease (NAFLD) and irritable bowel syndrome (IBS) 
should be carefully evaluated in future research, rep-
resenting an intriguing field of investigation. A better 
understanding of the role of systemic inflammation and 
activation of the immune system may be necessary to 
clarify obscure points of NAFLD and IBS pathogenesis, 
and therefore it can be helpful in the development of 
new therapies.
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INTRODUCTION
Fat accumulation in the liver in the absence of  specific 
causes of  hepatic steatosis, such as alcohol consumption, 
with or without liver inflammation and its consequences, 
is described as non-alcoholic fatty liver disease (NAFLD)[1]. 
To date, there are no studies that highlight the link be-
tween NAFLD and irritable bowel syndrome (IBS), but 
some recent reports have found an interesting correla-
tion between obesity and IBS. A relationship between 
body mass index (BMI) and IBS-like symptoms seems to 
exist[2,3]. Moreover, in IBS subjects a high BMI is associ-
ated with significantly faster colonic and recto-sigmoid 
transit and high stool frequency[4]. Cremonini et al[5] have 
compared obese binge eaters and non binge eaters to 
healthy controls and have evidenced that obese subjects 
more frequently have constipation, diarrhea, straining and 
flatus regardless of  the eating disorder, and that obese 
binge eaters are characterized by more recurrent upper 
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and lower gastrointestinal symptoms. Clements et al[6] have 
highlighted that obese patients experience more severe 
gastrointestinal symptoms than healthy controls, and that 
after laparoscopic Roux-en-Y gastric bypass they have in-
creased abdominal pain, gastroesophageal reflux disease, 
sleep disturbance and IBS symptoms. The development 
of  small intestinal bacterial overgrowth (SIBO) may ex-
plicate, perhaps partially, the incidence of  IBS symptoms 
in obese subjects with previous abdominal surgery, and 
in this case the bacterial overgrowth may be the conse-
quence of  changes in the function and in the morpho-
logical structure of  the gut[7].

NAFLD pathogenesis is strictly allied to metabolic 
syndrome, insulin resistance and obesity[8,9] but inflam-
mation plays an equally important role. Day et al[10] have 
developed in 1998 the classical “two-hit” theory: liver fat 
accumulation is the “first-hit”, linked to obesity, insulin 
resistance and metabolic syndrome, while the “second-
hit” is activated by hepatic inflammation, together with 
oxidative stress and endotoxemia, which have a key 
role in the progression to non-alcoholic steatohepatitis 
(NASH) and, over time, to fibrosis, until the development 
of  cirrhosis[11]. 

Actually, this classic view has been revised, because a 
frank distinction between “first-hit” and “second-hit” is 
not easy to make, leading to the “multiple-hit theory”[12]. 
Recent studies have shown that, independently from fat 
accumulation in the liver, obesity systemically leads to 
activation of  the immune system and low-chronic inflam-
mation from the first stage of  the disease[13].

Obesity and hepatic fat accumulation are hypotheti-
cally implicated in IBS genesis or development. More-
over, an initial correlation between IBS and NAFLD can 
be suggested by some interesting data. In the pathogene-
sis of  NAFLD and NASH, there is a strong involvement 
of  the gastrointestinal system, as evidenced by many 
studies on the so-called “gut-liver axis”, aiming to com-
prehend the role of  gut microbiota, SIBO and intestinal 
permeability dysfunction[14]. On the other hand, hepatic 
fat accumulation and hepatic inflammation in NAFLD 
subjects[15] and gastrointestinal symptoms in IBS sub-
jects[16] both improve after therapy with probiotics.

IBS, one of  the most common gastrointestinal dis-
orders with an estimated prevalence of  7%-10% world-
wide[17], is characterized by abdominal pain/discomfort, 
changes in bowel habits and no association with organic 
cause. Despite the fact that in IBS subjects macroscopi-
cally evident pathological lesions at colonoscopy have not 
been found, molecular biology and in-depth histological 
investigations have revealed the activation of  the immune 
system. A key piece of  evidence is that the exposure of  
rodent[18-20] or human[21] tissues or cell cultures[22] to mu-
cosal or luminal mediators from IBS subjects leads to im-
paired nervous stimulation or intestinal barrier damage. 
A proportion of  patients develop IBS symptoms after 
infectious gastroenteritis, or in a remission state from mi-
croscopic colitis, Crohn’s disease and ulcerative colitis, or 
on a gluten-free diet for celiac disease[23]. 

Inflammation and immune system activation may be 
the mechanisms linking two apparently very different 
diseases, and the purpose of  our review is to collect key 
evidence supporting their relationship and therefore to 
explain the pathophysiological link between the intestine 
and the liver, which is exquisitely firstly anatomical and 
consequently also functional.

IMMUNITY IN NAFLD
A low-grade chronic inflammation underlies all NAFLD 
entities/stages and can develop and promote the liver 
damage[13]. 

Innate and adaptive immune pathways are activated 
in obesity and many findings show that adipose tissue 
inflammation exacerbates hepatic steatosis and promotes 
non-alcoholic steatohepatitis (NASH). Obese individu-
als more frequently develop infectious diseases[24-26] as 
complications after surgery[27,28], and an increased BMI is 
associated with enhanced risk of  infections in institution-
alized geriatric patients[29]. 

The adipose tissue has an important role in regulating 
energy utilization, vascular functions and immune system 
homeostasis[30]. C-reactive protein (CRP)[8], interleukin 
(IL)-6[31], fibrinogen and plasminogen activator inhibi-
tor-1[32] levels are higher in obese patients compared to 
healthy subjects. Stanton et al[33] have recently found that 
obese mice, after high fat and high cholesterol diets, ex-
press abnormal levels of  macrophages and inflammation-
associated genes in adipose tissue and in liver. 

Obesity can influence liver metabolism directly, via 
circulating free fatty acids (FFA), and indirectly, via pro-
inflammatory cytokine production. FFA and other lipids 
in hepatocytes are involved in production of  reactive 
oxygen species, mitochondrial dysfunction and endoplas-
matic reticulum stress. They have proapoptotic capacity 
and can stimulate proinflammatory signaling pathways[30]. 
FFA from adipose tissue, food and intestinal bacteria can 
bind toll like receptors (TLR) expressed on immune cells 
systemically and also in the liver, and enhance the hepatic 
expression of  TLR-4 and TLR-2[34], these being receptors 
fundamental to the activity of  immune system.

The presence of  a dysregulation of  the immune sys-
tem in NAFLD has been firstly evidenced by the modi-
fication in immune cell populations in the liver. Natural 
killer (NK) cell circulating levels are reduced in obese 
rats[35]; meanwhile in the liver of  NASH subjects their 
concentration is increased[36]. These cells have anti-fibrot-
ic effects and produce apoptosis directly[37] and via inter-
feron gamma (IFNγ) production[38] from hepatic stellate 
cells (HSC), which have a major role in liver fibrosis[39]. In 
the light of  the strict resemblance between NASH and al-
coholic hepatitis, Jeong et al[40] have detected that alcohol 
contributes to the anti-fibrotic effect of  IFNγ and NK 
cells in animals.

Another immune cell population, natural killer T 
(NKT) cells, which express NK cell markers and α/β T 
cell receptors, are reduced in steatotic, obese mice[41,42] 
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and in humans[43]. NKT cells are able to produce both T 
helper (Th) 1 and Th2 cytokines but their depletion in 
NAFLD has been associated with Th1 polarization of  
hepatic T cells in mice[44,45].

Two T helper cell subsets were recently discovered 
and are strictly related to the innate immune response. 
Th17 cells on one side and Treg cells on the other bal-
ance tolerance and elicitation of  immune responses[46]. 
Th17 cells produce IL-17, IL-21 and IL-22, and require 
transforming growth factor-β (TGF-β) and IL-6 for 
their differentiation[47], the same cytokines that inhibit 
Treg cells. A Chinese study group has recently discovered 
that oxidative stress induces Treg cell apoptosis in mice 
with fatty livers[48] and subsequently has found also that 
Th17 cells are increased in the liver of  animal and human 
NASH models[49]. 

Kupffer cells (KC) are liver macrophages involved in 
the response to such stressors as infections, ischemia and 
toxins[50] and they are also implicated in liver inflamma-
tion and NASH progression[51].

Tumor necrosis factor (TNF) -α, a cytokine produced 
by KCs, hepatocytes, and abdominal fat, is associated 
with the development in rodents[52,53] and in humans[54-57] 
of  insulin resistance, NAFLD and NASH. The role of  
TNF-α in NAFLD may be due to its capacity to induce 
hepatocyte apoptosis, insulin resistance and to regulate 
KC activation locally[58,59]. Moreover, TNF-α regulates 
hepatic lipid metabolism[60].

In a NASH animal model involving choline-deficient 
diet fed rats it was found that there was an increase in 
serum and portal alanine aminotransferase levels and he-
patic TNF-α, IFNγ and TLR4. Higher TNF-α levels were 
detected in KCs and, most importantly, increased TNF-α, 
TLR4 expression, and macrophage/dendritic cell popula-
tions were found in ileal tissue specimens, demonstrating 
also the involvement of  the gut in steatotic liver damage[61].

To date, it is debatable whether circulating levels 
of  TNF-α may discriminate the presence of  NAFLD 
in obese subjects or in subjects with metabolic syn-
drome[62,63], but they seem to be useful in the non-invasive 
diagnosis of  hepatic fibrosis in NASH[64].

IL-6 is a polyvalent cytokine with proinflammatory 
and prooncogenic activity, and it supports hematopoi-
esis[65] and is a predictive marker of  insulin resistance and 
cardiovascular diseases[66]. In animal[67] and human[68,69] 
models respectively, hepatic and serum IL-6 levels are 
higher in NAFLD. Initially this cytokine was considered 
hepatoprotective because it reduces oxidative stress and 
prevents mitochondrial dysfunction in animal models[70,71]. 
Moreover, there are contrasting data on IL-6 production 
in the liver of  NAFLD subjects[57,72]. IL-6, with TNF-α, 
suppresses adiponectin levels; meanwhile, TNF-α stimu-
lates the production of  leptin[73,74]. Adiponectin is an 
adipocytokine with anti-inflammatory properties and it 
decreases in subjects with increased liver fat concentra-
tion[75]. Leptin has opposite effects; it activates neutrophils 
and innate immune system[76], is associated with obesity 
and may contribute to NAFLD progression[77]. IL-6 pro-
duction is also enhanced by TNF-α and IL-1 and can act 

with paracrine and endocrine mechanisms to activate IL-6 
signaling systemically and peripherally in other organs 
such as liver and muscle[13]. FFA and IL-17 synergistically 
induce IL-6 production; on the other hand IL-6, with 
TGF-β1, enhances Th17 response in in vitro HepG2 cell 
models[49]. Tarantino et al[78] have also observed that, sur-
prisingly, NAFLD subjects have increased TGF-β1 blood 
levels compared with those with chronic hepatitis C.

An anti-inflammatory cytokine, IL-10, is protective 
for hepatic steatosis, as seen in IL-10 deficient mice[79] as 
well as in NAFLD humans[80], and the inhibition of  IL-10 
promotes hepatic steatosis, enhances the expression of  
proinflammatory cytokines and impairs insulin signal 
transduction[81]. Main data on the pathophysiological role 
of  inflammatory cytokines in NAFLD are summarized in 
Table 1.

Brun et al[82] have observed that HSCs isolated from 
genetically obese and diabetic mice show more pro-
nounced fibrogenic responses induced by lipopolysaccha-
ride (LPS) than HSCs from lean animals. Thus, HSCs are 
more sensitive to bacterial endotoxins, because geneti-
cally obese mice have an impaired intestinal permeability 
leading to increased portal endotoxemia. To expand on 
the evidence that systemic inflammation is also related 
to intestinal inflammation, a recent study undertaken by 
Kant et al[83] has found that weight loss in obese subjects 
reduces fecal calprotectin levels. Precedent studies have 
pointed out that circulating calprotectin levels are related 
to increased BMI[84,85]. As detailed later, the intestine, and 
especially intestinal inflammation, is closely related to 
NAFLD pathogenesis.

IMMUNITY IN IBS
In IBS subjects a low chronic inflammation is present 
and many other immune phenomena are also points of  
contact with hepatic steatosis. 

The intestinal mucosa physiologically contains im-
mune cells much more than other organs and tissues, 
and this is mainly due to its anatomical configuration and 
function as the first barrier of  the organism[86]. In the 
“irritated” gut there is an increased population of  im-
mune cells in the small and large intestine, as reported in 
many studies[87,88]. Moreover, the inflammatory infiltrate is 
lower than in ulcerative colitis (UC) but is similar to that 
revealed in microscopic colitis[89]. These findings, with 
others discussed later, lead to the theory that IBS could 
be considered as an inflammatory disease. 

The adaptive immune system is involved in the low 
grade inflammation of  the gut, specifically, CD3+, CD4+ 
and CD8+ T cell count is increased[89-91] in the gut and in 
the peripheral blood of  IBS subjects.

The innate immune response is also implicated in 
IBS pathogenesis. An increased number of  mast cells are 
found in the small[92] and large[93] intestine. These cells 
are in close contact with enteric nerve endings[94] and this 
is an important factor in the neuronal stimulation that 
underlies the establishment of  typical IBS symptoms[95]. 
Braak et al[96] are discordant on this point because they 
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controls, and also in the same population there is an im-
paired permeability in the proximal and distal gut. 

There are contrasting data on the role of  Treg cells, 
a T cell subpopulation with regulatory functions in IBS: 
these cells seem to be normally or under-expressed in 
intestinal tissues and blood of  IBS subjects[104,105], even 
though previously Chadwick et al[88] have observed in-
creased CD25+ T cell population in the lamina propria of  
IBS subjects. The role of  Th17 cells in the pathophysiol-
ogy of  IBS is still unexplored but, recently, Andoh et al[106] 
have summarized the main evidence on the role of  this 
subpopulation in intestinal inflammation. It would be in-
teresting to see if  IBS might be involved in the dysregula-
tion between Th17 and Treg cells as shown in NAFLD.

Studies on proinflammatory cytokine production in 
IBS have evidenced the activation of  both the innate and 
adaptive immune systems. Indeed, different study meth-
ods were used to explore the systemic cytokine produc-
tion and results were not always concordant[107].

IL-6 and TNFα are the most studied inflamma-
tory cytokines in IBS. In many reports blood levels of  
TNFα and IL-6 are increased[108-112]. Similar results are 
reported in cultured peripheral blood mononuclear 

have observed a decreased number of  mast cells, macro-
phages and T cells in IBS subjects. Moreover, they do not 
find visceral hypersensitivity or abnormal stress response.

Few reports have examined other immune cells in-
volved in the innate immune system in IBS. NK cells[97] 

and neutrophils[98] may be hyper-activated but, to deter-
mine their role in intestinal inflammation, more studies 
are needed.

Contrasting data are reported on the monocyte/
macrophage population. These cells were reduced[99] or 
normal[90] in number in the gut of  IBS patients compared 
to controls but they may be hyper-activated, as seen by 
increased calprotectin expression[90]. Calprotectin is a cal-
cium-binding protein produced by phagocytes with pro-
inflammatory activity, such as leukocyte recruitment[100]. 
Fecal calprotectin may be useful in the differential diag-
nosis between inflammatory bowel diseases (IBD) and 
IBS[101]. Moreover, other authors have observed that pa-
tients with IBD and IBS-like symptoms have significantly 
higher fecal calprotectin levels than those with IBD but 
without IBS symptoms[102]. Shulman et al[103] have shown 
that fecal calprotectin concentration is greater in children 
with IBS and functional abdominal pain compared to 

  Principal findings

  TNF-α
     In vitro: FFA induce TNF-α  gene expression[60]. KC and hepatocytes from NAFLD produce ↑ TNF-α and ↑ lipid peroxidation and accumulation[59,61]. 
     TNF-α induces hepatocyte apoptosis[59]

     Animal: TNF-α regulates KC apoptosis[58]. Hepatic, portal blood and intestinal TNF-α is ↑[52,53,61]

     Human: Circulating levels are ↑ in NAFLD and NASH[57,68]. Contrasting data on simple FL[55,62]. They correlate with activity and progression of NAFLD[64] 
     But do not differentiate mild to severe NASH[60]. NASH subjects have also ↑PBMCs TNF-α, IL-6 and IL-8 production[68]. TNF-α mRNA expression is ↑ in 
     liver and fat of NASH compared with NAFLD[57], but there are contrasting data[55,238] TNF-α polymorphism is most frequent in NAFLD and correlates 
     also with IR[56]

  IL-6
     In vitro: FFA induces IL-6 expression in hepatic cell cultures[72] and enhances Th17 response[49]

     Animal: IL-6, TNF-α, IL-8 production is ↑ in liver and muscle of NAFLD mice[64]. Possible hepatoprotective role[70,71]

     Human: ↑ IL-6 blood levels and other inflammatory and cytonecrosis indexes in NAFLD and NASH subjects compared to controls and obese[57,68,69]. IL-6 
     is an index of NASH activity and progression[72]. Normal levels of IL-6 and normal spleen longitudinal diameter may be useful in excluding NASH from 
     NAFLD[34]. IL-6 tissue expression is controversial in liver of NAFLD[57,72]

  IL-8
     In vitro: IL-8 with TNF-α are ↑ in NAFLD and in NASH compared to FL[64]. FFA induces IL-8 expression[60]

     Human: Blood levels of IL-8, IL-6 and TNF-α are ↑ in NASH[68,69]

  IL-1β
     Animal: NAFLD rats express similar IL-1β, TNF-α and IL-6 levels in liver and in muscle[64]

     Human: TNF-α, IL-6 and IL-1β blood levels are ↑ in NAFLD and NASH[68,69]

  TGF-β1
     In vitro: IL-17 and FFA induce IL-6 in hepatocytes and IL-6, with TGF-β1, enhance Th17 response[49]

     Human: TGF-β1 blood levels in NAFLD are ↑ than CHC[78]

  IL-10
     Animal: After IL-10 inhibition, TNF-α, IL-6 and IL-1β levels increase in liver of HFD mice[81]. IL-10 knock-out mice have ↑ FFA plasma levels and hepatic TG[79]

     Human: In NAFLD and obese children, lower IL-10 blood levels correlate with markers of visceral and subcutaneous fat, insulin, HOMA-IR, ALT, AST 
     and GGT[77]

  IL-17
     In vitro: IL-17 and FFA induce IL-6 production[49]

     Animal: LPS-induced liver injury ameliorated after IL-17 blockade in HFD rats[49]

     Th2 cytokines (IL-4, IL-5, IL-13)
     Animal: Rats genetically oriented to a Th1 response develop steatosis and lobular inflammation more than others oriented toTh2 response[44,45]

Table 1  Principal findings on inflammatory cytokines in non-alcoholic fatty liver disease in humans, and in in vitro  and animal models

TNF-α: Tumor necrosis factor-α; FFA: Free fatty acids; KC: Kupffer cells; NAFLD: Non-alcoholic fatty liver disease; NASH: Non alcoholic steatohepatitis; 
FL: Fatty liver; PBMCs: Peripheral blood mononuclear cells; IL: Interleukin; IR: Insulin resistance; TGF-1β: Tumor growth factor 1 β; Th17: T helper 
17; CHC: Chronic hepatitis C; HFD: High fat diet; TG: Triglycerides; HOMA-IR: Homeostasis model of assessment-insulin resistance; ALT: Alanine-
aminotransferase; AST: Aspartate-aminotransferase; GGT: γ-Glutamyltransferase; LPS: Lipopolysaccharide; Th2: T helper 2; Th1: T helper 1.
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cells[108,111]. Studies on Peripheral blood mononuclear cells 
(PBMCs) have also noticed decreased levels of  the anti-
inflammatory IL-10[112,113], in agreement with the systemic 
inflammatory state in IBS. Moreover, the IL-10 high 
producer genotype seems to be protective against IBS, 
whereas IL-10 low producer, and maybe even TGF-1β 
intermediate producer genotypes, are a risk factor for IBS 
development[114]. In IBS mice, IL-6 may enhance colonic 
cells neuronal activation and their absorption/secretory 
responses[115]. The intestinal cytokine production is poorly 
understood[116-119], and, as described in a recent review 
by Ortiz-Lucas et al[120], only IL-1β expression is clearly 
increased in post-infectious IBS (PI-IBS)[121]. On the con-
trary, Hughes et al[122] have observed increased cytokine 
expression in supernatants of  mice with IBS and that vis-
ceral neurons express receptors for IL-6, TNF-β, IL-1β 
and IL-10, confirming the role of  these pro-inflammato-
ry cytokines in gut homeostasis. 

Th 2 cytokines were also considered in recent reports: 
in animals Th 2 cytokines enhance intestinal motility[123] 
and in IBS subjects stimulated PBMCs produce more 
IL-5 and IL-13 than controls[124].

Cytokines have several roles in the development of  
IBS symptoms. For example, TNF-α can act on the pe-
ripheral nervous system as well as on the central nervous 
system (CNS) to develop a symptom burden of  hyper-

sensitivity, nausea, emesis, gastric hypomotility, anorexia 
and fever[125,126]. IL-6 is able to stimulate submucosal 
neurons in IBS animal models[127], most probably via a 
TLR-mediated mechanism[128]. TNF-α and IL-6 are also 
implicated in intestinal barrier integrity[129] (Table 2). 

NAFLD AND IBS MAY BE RELATED
The above-mentioned evidence suggests that innate 
immunity is a main pathogenetic component of  both 
NAFLD and IBS. But, how does the immune system 
work in patients with both NAFLD and IBS? In other 
words, is the similar action of  pro-inflammatory cyto-
kines, such as IL-6 and TNF-α, the only one that can be 
found on the immune system side? 

The metabolic syndrome, which often anticipates or is 
detected in conjunction with NAFLD, leads to a state of  
chronic inflammation, systemic or local (hepatic)[12], but 
to date it is still unclear which one of  the two types has a 
greater impact on these patients, even if  a lot of  evidence 
favors the former[13]. A very similar scenario, but with 
partly different participants, is possible in IBS. Although 
the disease has not been overtly related to an inflammatory 
systemic disease, as happens for the metabolic syndrome, 
nevertheless, IBS is characterized by hyper-activation of  the 
immune system and general inflammation. Indeed, many 

  Principal findings

  TNF-α
     Animal: D-IBS supernatants have ↑ levels of proinflammatory cytokines and they cause hypersensitivity in mouse colonic afferent endings[122]

     Human: IBS has ↑ circulating TNF-α levels[109,112], especially D-IBS[112] or in patients with comorbidities such as fibromyalgia, premenstrual dysmorphic 
     disorder and chronic fatigue syndrome[109]. Baseline and LPS-stimulated levels in PBMCs of proinflammatory cytokines as TNF-α, in IBD and D-IBS, are 
     ↑ and are related to symptom intensity[108]. TLR-2, TLR-4 and TLR-5 antagonists induce TNF-α production[128]. No difference in TNF-α and other 
     proinflammatory cytokine production (IL-6 and IL-1β) in the gut of IBS subjects compared to controls[116]

  IL-6
     In vitro: No differences in colonic production between IBS and controls 116. IL-6 have excitatory action on colonic cells from IBS rats producing neuronal 
     activation and absorption/secretory responses[115]

     Animal: IL-6 colonic secretion is ↑ in IBS rats and activate submucosal neurons[127]

     Human: IL-6 blood levels are ↑ in all IBS subtypes[109-111]. IL-6 levels are related to ACTH response and ∆ACTH/∆Cortisol ratio[110]. Baseline and LPS or 
     TLR agonist-stimulated PBMC levels are ↑ in IBS[108]

  IL-8
     In vitro: Reduced expression of mRNA of IL-8 in ex vivo biopsy cultures[116]

     Human: Circulating levels of IL-8 are ↑ in IBS[109-111,119]. TLR-3 and TLR-7 agonists induce IL-8 production in PBMCs[128]

  IL-1β
     Animal: In stressed rats with previous acute colitis IL-1β mRNA expression is ↓[117]

     Human: ↑ IL-1β levels in IBS[108,128], in C-IBS and in D-IBS[108]. With TNF-α, IL-1β ↑ levels are found in IBS subjects with fibromyalgia, premenstrual 
     dysmorphic disorder and chronic fatigue syndrome[109]. IL-1β ↑ production in PBMCs stimulated by antiCD3/CD28 antibody[91] and by TLR-4 and 
     TLR-5 agonists[128]. Increased IL-1β expression in rectum of PI-IBS[121]

  TGF-1β
     Animal: No different expression of TGF-β1 protein in colon of IBS rats[11]

     Human: TGF-1β intermediate producers may be at risk of developing IBS[114]

  IL-10
     Human: IBS subjects have ↓ circulating levels of IL-10[112]. Altered IL-10/IL-12 ratio in PBMCs with Th1 proinflammatory state[113]. IL-10 levels are ↓ 
     and IFNγ levels are ↑ in colon of PI-IBS compared to non PI-IBS and controls[119]. IL-10 high producer genotype is protective against IBS[114]

  Th2 cytokines (IL-4, IL-5, IL-13)
     Animal: Th2 cytokines may have a role in intestinal hypercontractility[123]

     Human: Stimulated PBMCs IL-5 and IL-13 levels are ↑ in IBS[124]

Table 2  Principal findings on inflammatory cytokines in irritable bowel syndrome in humans, and in in vitro  and animal models

TNF-α: Tumor necrosis factor α; D-IBS: Diarrhoea-predominant irritable bowel disease (IBS); IBD: Inflammatory bowel disease; LPS: Lipopolysaccharide; 
PBMCs: Peripheral blood mononuclear cells; TLR: Toll like receptor; IL: Interleukin; ACTH: Adrenocorticotropic hormone; C-IBS: Constipation-
predominant IBS; PI-IBS: Post-infectious IBS; TGF-1β: Tumor growth factor 1 β; IFNγ: Interferon γ; Th2: T-cell mediated helper response.
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researchers have struggled to find a similar component at 
local level, studying the intestinal cytokine production, but 
they have not always had a favorable outcome[107,120]. In 
some subsets of  IBS patients, such as diarrhoea-predom-
inant IBS (D-IBS) and IBS developing following infective 
gastroenteritis (PI-IBS), there is often a frank intestinal 
inflammation[108,119]. On the contrary, in C-IBS a systemic 
inflammation is not always associated with a local counter-
part or is less apparent than in D-IBS[122].

NAFLD and IBS are classically defined as different 
diseases. NAFLD is related to the metabolic syndrome, 
obesity, diabetes and insulin resistance and IBS is a func-
tional intestinal disease closest to psychological disorders 
such as depression and anxiety, certainly not to liver 
diseases. But, surprisingly, there are many points of  con-
tact, such as the dysfunction of  the intestinal microbiota, 
the impaired intestinal barrier, intestinal dysmotility and 
brain-gut axis dysfunction, which are fundamental to 
their pathogenesis, being related to the immune activation 
and inflammation.

Thus, principal questions are: Can metabolic liver 
disease affect the functions of  the gastrointestinal tract 
leading to syndromic manifestations typical of  IBS? and 
may the bowel dysfunction lead or otherwise support the 
development of  a chronic hepatic inflammatory state?

GUT MICROBIOTA
The gut microbiota is a composite member of  our body. 
Intestinal bacteria interact with the intestinal epithelial 
barrier and subsequently with extraintestinal organs per-
forming physiological and pathological actions. 

This close contact makes the microbiota important 
for the metabolism of  nutrients and energy delivery[130], 
the intestinal barrier function[131], the natural tropism of  
the intestinal wall[132] and ensures the maturation of  intes-
tinal immune tolerance and the immune response[133]. 

The dysregulation of  the intestinal bacterial milieu is 
a component of  NAFLD and IBS. Recent reports have 
also shown both in NAFLD and in IBS an important role 
for TLR. These are receptors that characterize the innate 
immunity and link specific molecules such as pathogen-
associated molecular patterns, LPS, and danger-associated 
molecular patterns[134]. These receptors are able to elicit 
the innate immune response once activated (they induce 
the expression of  proinflammatory chemokines, cyto-
kines and adhesion molecules on immune cells)[135]. In 
NAFLD and in IBS this role is consistently related to the 
alteration of  gut microbiota, impaired intestinal perme-
ability and impaired intestinal motility[136,137]. 

Changes in microbiota composition and simultaneous 
or subsequent dysregulation of  intestinal permeability let 
PAMPs and TLRs be in strict contact in the deeper layers 
of  the intestinal wall and thus lead to stimulation of  the 
innate immune response[138].

Despite the fact that the roles of  TLRs in the liver of  
NAFLD and NASH are well established[137], only recently 
have the activity of  TLRs in IBS been studied. Ohman 

et al[139] have observed increased expression of  TLR2 on 
circulating monocytes in IBS. A study from McKernan et 
al[128] demonstrated that the TLR-induced cytokine release 
(IL-1β, IL-6, IL-8 and TNF-α) was enhanced in blood 
from IBS subjects. The TLR mRNA production in the 
gut mucosa of  mice with colonic visceral hypersensitivity 
was studied and significant increases were seen[140]. Similar 
results were found in humans[141].

TLRs are fundamental in T-cell differentiation and 
activation, particularly for Th17 and Treg cells[142]. In the 
gut, bacterial products[143], acute phase proteins[144] and 
proinflammatory cytokines such as IL-6 and TGF-β[145] 
promote Th17 response, meanwhile IL-25 and IL-23[146] 
produced by epithelial cells inhibit it.

Obesity and NAFLD
In the literature there are few reports on the intestinal mi-
crobiota composition in NAFLD. The role of  intestinal 
dysbiosis in these patients may be assumed by reports on 
microbiota present in obese subjects or by indirect data 
on the action of  bacterial products from the gut delivered 
to the liver in NAFLD.

Obese patients are characterized by low intestinal 
bacterial diversity. They have a reduced Bacteroides and 
increased Firmicutes population compared to controls, and 
this proportion improves with weight loss[147]. Studying 
the microbiome, the same group has found that obese 
patients exhibit impaired bacterial gene expression[148].

Animal models have shown that the intestinal micro-
biota may have an important role in energy harvesting 
and fat storage. Germ-free mice seem to be protected 
from diet-induced weight gain[149] most probably because 
intestinal bacteria are involved in the fermentation of  
polysaccharides to monosaccharide and in the metabo-
lism of  short chain fatty acids[150]. The microbiota can 
also enhance the lipoprotein lipase activity because it 
reduces the expression of  the fasting-induced adipocyte 
factor in the intestinal epithelium resulting in enhanced 
FFA storage in adipocytes[149]. 

LPS produced by intestinal bacteria constitutes the 
outer membrane of  Gram-negative bacteria and can elicit 
an immune response acting as an endotoxin. LPS may 
also have a role in the development of  obesity, low-grade 
inflammation and insulin resistance[151]. An elegant study 
by Cani et al[152] noticed that high-fat diet induces LPS 
production in mice and probably its abnormal absorption 
through the intestinal epithelium may be fat-dependent. 
The same study has evidenced that endotoxemia induces 
weight gain, intrahepatic triglyceride accumulation and 
hepatic insulin resistance, leading to increased expression 
of  TLR4 and proinflammatory cytokines (TNF-α, IL-6, 
IL-1 and PAI1) in muscle, adipose tissue and liver. 

The correlation between intestinal dysbiosis and lipid 
accumulation in the liver is evidenced by recent research by 
de Wit et al[153]: in mice, a diet with high concentration of  
palm oil induces higher weight gain and liver triglyceride 
concentration, reduces microbial diversity and increases 
Firmicutes/Bacteroidetes ratio compared to one high in poly-
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unsaturated fatty acids. The fecal microbiota of  women 
following a choline-deficient diet, which induces steatosis, 
varies during choline depletion and correlates with changes 
in liver fat concentration, showing modifications in Gam-
maproteobacteria and Erysipelotrichi populations[154]. 

IBS 
Intestinal dysbiosis is also involved in the development 
of  IBS symptoms. The intestinal microbiota modulates 
intestinal motility and sensitivity[155]. An animal study has 
observed that oral antibiotic therapy perturbs the intesti-
nal microbiota, reduces lactobacilli and decreases bacteroides 
and enterococci populations, and affects pain perception and 
viscero-motor responses in the gut. The myoelectrical 
activity in the gut is also altered in germ-free animals and 
it reversed after colonization[156]. The supernatant made 
from Escherichia coli Nissle 1917 stimulates smooth muscle 
cells and enhances colonic contractility[157], and also Lacto-
bacillus rhamnosus GG has a dose- and time-dependent ef-
fect on the acetylcholine-stimulated contraction of  human 
colonic muscle cells[158]. Lactobacillus rhamnosus also has a 
protective role in pain prevention in animal models[159].

The intestinal bacterial population inhabits a complex 
environment and its composition varies throughout the 
gut. It is necessary to distinguish at least three different 
types of  microbiota evaluated in different studies: the lu-
minal microbiota, within the intestinal lumen; the mucosal 
microbiota that adheres to the intestinal wall; and the fe-
cal microbiota, excreted in feces. In IBS subjects, studies 
on fecal microbiota have found increased facultative and 
anaerobic bacteria (as Escherichia coli and Clostridium) and 
decreased lactobacilli and bifidobacteria[160,161]. Later studies 
used molecular techniques because most bacterial species 
in the gut are not cultivable; a recent report of  the Rome 
foundation reviewed principal results[162]. The majority 
of  reports have studied fecal microbiota while only a few 
are focused on the mucosal flora. Furthermore, different 
molecular techniques are carried out and other limitations 
may explain that data shown are often contradictory or 
inconsistent. Moreover, the evidence that SIBO is fre-
quently found in IBS subjects[163], especially in diarrhoea-
predominant IBS (D-IBS)[164], and that IBS can develop 
following infective gastroenteritis (PI-IBS)[165] confirms 
the role of  gut dysbiosis in the IBS pathogenesis. 

INTESTINAL PERMEABILITY
A single layer of  cells composes the intestinal epithelium, 
a selective filter and barrier for exogenous substances and 
water[129]. The ways to pass the epithelial layer are mainly 
two: transcellular and paracellular[166]. 

The regulation of  the paracellular pathway is mainly 
due to complex structures localized at the apical-lateral 
and along the lateral membrane between the cells of  the 
intestinal epithelium: desmosomes, adherent junctions 
and tight junctions (TJs)[167]. 

TJs regulate selective paracellular ionic solute trans-
port, prevent the passage of  luminal antigens, micro-

organisms and toxins, but also regulate the tropism of  
enterocytes[168]. TJs are so called “kissing points”, fusion 
points where there is no space between two entero-
cytes[166], and are formed by different transmembrane 
proteins: tricerullin, occludin, claudins and junctional ad-
hesion molecules, which seal together adjacent cells and 
cytoskeleton[169].

Several stimuli can modulate the intestinal perme-
ability, but bacterial toxins inter alia are able to modify the 
localization of  TJ proteins directly[170] or via the release of  
proinflammatory cytokines such as TNF-α, IFN-γ[171] and 
IL-6[172] that per se can reduce the expression of  zonula 
occludens-1 (ZO-1), occludin and claudin.

NAFLD and NASH
In a recent review, Ilan[151] have focused on the role of  
bacterial translocation in NASH. The bacterial transloca-
tion is intimately connected with liver damage from the 
first step of  lipid accumulation in the liver to the devel-
opment of  steatohepatitis, passing through the activation 
of  the innate immune system and mitochondrial dysfunc-
tion.

Many animal and human studies have focused on the 
microbial dysbiosis in NAFLD and to date the endo-
toxemia, subsequent to bacterial translocation from the 
gut to the liver through the venous portal system, is an 
important factor in the development of  NASH[173]. The 
mechanisms that lead up to endotoxemia are bacterial 
overgrowth and impaired intestinal barrier. Sabaté et al[174], 
and previously Wigg et al[175], have pointed out that obese 
subjects have an increased prevalence of  SIBO and this 
condition correlates with severe hepatic steatosis.

Obese mice have a modified distribution of  occludin 
and ZO-1 in the intestinal mucosa in combination with 
a lower intestinal resistance and higher circulating levels 
of  inflammatory cytokines and portal endotoxemia[82]. 
Similar results are found in mice with fructose-induced 
steatosis: treatment with metformin leads to a decrease 
in hepatic triglyceride accumulation and plasma alanine-
aminotransferase levels and protection against the loss of  
the TJ proteins occludin and ZO-1 in the duodenum[176].

In humans, an immunohistochemical analysis of  duo-
denal expression of  ZO-1 performed by Miele et al[177] has 
highlighted that subjects with biopsy-proven NAFLD 
have increased gut permeability and high prevalence of  
SIBO, and that both correlate with the severity of  ste-
atosis. Also, NASH subjects have a higher prevalence 
of  SIBO, related to enhanced expression of  TLR-4 and 
release of  IL-8[178]. The presence of  endotoxins in portal 
blood is found also in cirrhotic patients and is related to 
an impaired intestinal barrier function[179]. Non-cirrhotic 
NAFLD subjects have increased LPS[180] and LPS-
binding protein serum levels[181]. Probiotic treatment of  
obese mice leads to a lower intestinal permeability and 
improved TJ function, a lower plasma LPS and cytokine 
concentration and a decreased hepatic expression of  
inflammatory and oxidative stress markers[182]. Recently, 
the association between metabolic syndrome, gut micro-
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biota dysregulation and impaired intestinal barrier has 
been further confirmed in an animal model where dietary 
obese rats show reduced expression of  ZO-1 in the gut 
and higher TNF-α levels in combination with reduced 
Lactobacillus and increased Oscillibacter fecal population. 
Moreover, TNF-α and IL-6 mRNA levels were higher in 
mesenteric fat[183].

IBS
The impaired intestinal permeability is not only a key fac-
tor in the development of  NAFLD and NASH. Other 
inflammatory gastrointestinal diseases such as Crohn’s 
disease, UC, bacterial infections caused by Escherichia coli, 
Clostridium difficile and Vibrio cholera, anti-inflammatory 
agents associated enteritis and IBS are involved. In vivo 
studies have observed that IBS patients have an impaired 
intestinal barrier function[87,90]. Nevertheless, it is likely 
that these findings are specific only to D-IBS and PI-IBS 
subjects and in other IBS subtypes similar results are not 
found[87,184].

In IBS, intestinal dysbiosis is an important factor par-
ticipating in damaging the intestinal barrier through the 
activation of  the immune system[185] even though another 
possible cause of  impaired intestinal barrier is the expo-
sure to chronic stress. In healthy animals and humans, 
acute or chronic stress enhances the intestinal permeabil-
ity to water and also to macromolecules, and IBS subjects 
are more sensitive to physical and mental stressors com-
pared to healthy subjects[110]. 

It has been explicated that in IBS subjects there is a 
low grade inflammation in the gut. Mast cells and T lym-
phocytes represent the majority of  intestinal inflammatory 
infiltrate and mast cells are also involved in the regulation 
of  motor and visceral responses in the intestine[19,21,88].

The intestinal permeability is controlled by mast cells, 
via histamine, serotonin 5-hydroxytryptamine (5-HT) and 
protease production[21]. Proteases are markedly increased 
in the mucosa of  IBS subjects[18,186] and supernatants 
rich in proteases from D-IBS subjects are able to evoke 
epithelial dysfunction and allodynia in healthy mice[20]. In 
addition, colonic soluble mediators in supernatants from 
IBS subjects are able to reproduce permeability alterations 
in Caco-2 cells and decrease ZO-1 expression[22]. A recent 
study by Martínez et al[187] confirms this hypothesis because 
it has been demonstrated that activated mast cells induce 
the downregulation of  ZO-1 in intestinal epithelium. 

Another class of  TJ proteins, claudins, is involved 
too; in fact, claudin-1 and claudin-4 levels are decreased 
in the small and large intestine of  D-IBS patients, where-
as claudin-1 and claudin-3 were elevated in constipation-
predominant IBS (C-IBS) patients[188].

INTESTINAL MOTILITY
Intestinal motor and sensory functions are influenced by 
the immune system to activate a mechanism of  defense 
from noxious agents in the intestinal lumen[189].

Mice infected with Trichinella spiralis develop muscle 

hyper-contractility in the gut[190] but these effects disap-
pear in animal models of  athymic and CD4+ cell-deficient 
mice[191], encouraging the hypothesis of  a role for the 
immune system and inflammation in intestinal motor 
functions. Th2 cytokine production was associated with 
enhanced motor functions and appropriate helminthic 
elimination. On the other hand, the response with a re-
duced intestinal motility of  Th1, but interestingly also of  
Th17 cells, seems to be involved in small intestine mo-
tor functions. In this setting, specifically IL-17 induces 
smooth muscle cell contraction[192].

Among Th2 cytokines, IL-13 is secreted by CD4+ 
cells and by many other immune cellular types of  innate 
immunity, as the so called “innate helper cells”, which 
can be found normally in the gut and in blood. IL-13 has, 
in low concentrations, regulatory effects, increasing IL-10 
and decreasing IL-17 levels, but, when up-regulated, it 
leads to inflammatory modifications and hyper-contractil-
ity of  smooth muscle in the gut[193]. 

In agreement with these findings, the production of  
5-HT, one of  the most important neurotransmitters of  in-
testinal motility[194], is also influenced by immune response 
and cytokine production and its secretion seems to be 
enhanced by Th2 and reduced by Th1 response[195]. 5-HT 
is synthesized and secreted by enterochromaffin cells (EC) 
and acts on receptors located on the processes of  intrinsic 
and extrinsic primary afferent neurons in the lamina pro-
pria of  the gut to initiate peristaltic and secretory reflex-
es[196]. The 5-HT transporter (SERT) is the physiological 
inhibitor, it is expressed by enterocytes and removes 5-HT 
from the intestinal space by internalizing it[197]. 

Obesity and NAFLD
In high-fat diet fed mice a slower gastric emptying was 
found, as well as modified intestinal hormone produc-
tion: higher plasma leptin and cholecystokinin (CCK) 
concentrations and lower plasma ghrelin levels were 
found[198]. Covasa et al[199] have shown that in high-fat diet 
fed mice there is a reduction in CCK-induced and oleate-
induced inhibition of  gastric motility. 

In obese rats, after Roux-en-Y gastric bypass, an in-
crease in peptide YY and a decrease in ghrelin concentra-
tions occurred. These hormonal modifications may con-
tribute to weight loss by decreasing the food intake and 
slowing the gastric emptying and transit time[200].

A recent study by Hyland et al[201] confirms the pres-
ence of  an impaired intestinal motility, a modified sub-
mucosal nerve function and a decreased electrogenic 
glucose transport in obese rats. The author hypothesizes 
that the loss of  motor control may lead to an altered host 
defense and intestinal dysbiosis, and the adapted glucose 
transport may be a control mechanism in the restriction 
of  nutrient absorption.

Obese subjects have an accelerated esophageal and 
gastric motility and impaired gastrointestinal hormone 
secretion[202,203]. Vazquez Roque et al[204] have detected a 
lower postprandial gastric volume in obese subjects. A 
recent report disputes their data: in newborns, fasting 
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and postprandial gallbladder volumes and gastric empty-
ing were similar between obese and lean subjects, but in 
obese pre-adolescents, and even more in adults, a larger 
fasting gallbladder volume with slower postprandial gas-
tric emptying was found[205].

Small and large intestinal motility are also involved, as 
reported by Xing et al[206]. As we see above, SIBO is most 
frequently viewed in obese subjects and it has been as-
sociated with an altered pattern of  migrating motor com-
plexes (MMC) in the small intestine[207]. 

The role of  intestinal dysmotility in liver cirrhosis is 
confirmed by numerous data[208]. Vice versa, in NAFLD, 
only a few studies have focused on impaired intestinal 
motility, although obesity, which is one of  the most im-
portant etiological factors of  NAFLD, is strictly related 
to impaired intestinal motility. Initial studies have found 
that NAFLD[209] and non-alcoholic cirrhosis[210] subjects 
have a prolonged orocecal transit time. 

Interestingly, an up-to-date study correlates 5-HT3 
antagonists to reduced endotoxin levels in the portal 
system, attenuated liver fat content, inflammation, and 
cell necrosis, improved TNF-α levels and increased TJ 
expression in the duodenum of  obese, leptin-deficient 
mice[211]. The same group has confirmed these data and 
has found that SERT deficiency causes hepatic steatosis 
and impaired intestinal permeability[212]. These findings 
suggest that obesity, and consequently NAFLD, are af-
fected by impaired gut motility and most probably the 
impaired intestinal barrier, the gut inflammation and also 
neuronal signaling are key points in their maintenance.

IBS
IBS subjects frequently report upper gastrointestinal 
symptoms such as functional dyspepsia[213]. Impaired 
lower esophageal motility and delayed gastric emptying 
are frequently viewed[214] and should be related to small-
bowel dysmotility[215]. 

Many studies have focused attention on the small in-
testine and large intestine gut dysmotility in IBS subjects. 
As reviewed elsewhere, studies on MMCs and clustered 
activity as well as intestinal transit for the small intestine 
and on myoelectrical activity, intraluminal pressure re-
cordings and transit for the large intestine confirm this 
hypothesis[216]. 

In the small intestine of  IBS subjects, alterations in 
the periodicity of  MMCs are found[217]. Kellow et al[218,219] 

have demonstrated that MMCs have a shorter periodicity 
in D-IBS, whereas in C-IBS this is longer. 

EC cell numbers in the intestinal wall are in-
creased[220,221] and postprandial 5-HT levels are increased 
in platelet-poor plasma[222] of  IBS subjects, especially in 
PI-IBS. 5-HT signaling is involved in the pathogenesis of  
intestinal dysmotility and hypersensitivity; indeed 5-HT 
modulators are used in IBS therapy[223]. 5-HT4 agonists 
accelerate colonic transit and are useful in constipation 
unresponsive to laxative treatment, while 5-HT3 antago-
nists inhibit colonic secretion and motility, and visceral 
sensation, and for this reason are used in D-IBS. 

Moses et al[224] have found that SERT was less ex-
pressed in C-IBS and UC colonic biopsy specimens. 
Camilleri et al[225] have shown that SERT polymorphisms 
may influence colonic motility in patients with D-IBS and 
may influence the response to a 5-HT3 antagonist.

In the colon of  IBS subjects activated mast cells in 
proximity to mucosal innervations may contribute to 
pain perception[93] and are correlated with 5-HT release 
by intestinal EC cells[226]. Interestingly, Mizutani et al[123] 
have observed that in an animal model of  IBS, muscle 
hyper-contractility is related to an increased Th2 cytokine 
profile (IL-4 and IL-13). Even if  these data confirm the 
role of  immune activation in gut motility alteration, it is 
mandatory to observe that in IBS, and especially in D-IBS 
and PI-IBS, there is an enhanced gut motor activity even 
though these IBS subtypes are often related to a Th1 cy-
tokine profile, at least in peripheral blood or in PBMCs.
However, there are no reports on the possible role of  
IL-17 and Th17 in IBS; meanwhile, IL-13 production by 
PBMCs is higher compared to controls[124].

Recent studies have shown that bacterial products 
may regulate gastrointestinal motor functions[227,228], but 
intestinal motility may also influence the gut microbiota 
composition[229]. Pimentel et al[230] for the first time dem-
onstrated that the impaired intestinal motility may be 
related to SIBO in IBS subjects, but subsequent contrast-
ing data have questioned this theory[163]. Moreover, as has 
been described before, IBS and NAFLD are character-
ized by an intestinal dysbiosis and only a proportion of  
subjects meet diagnostic criteria for SIBO. 

CNS INVOLVEMENT
A recent review by Capuron et al[231] has focused on how 
the immune system can affect the CNS and contribute to 
the development of  neuropsychiatric disorders such as 
depression, with particular relevance to cytokine signal-
ing. Cytokines are involved in production, function and 
reuptake of  several neurotransmitters, such as 5-HT. 
They affect the hypothalamic-pituitary-adrenal (HPA) 
axis and can modify the neuronal architecture, neuronal 
plasticity and aging, and neuronal circuits in CNS.

As previously described, 5-HT is an important neu-
rotransmitter of  the enteric nervous system (ENS) but it 
is also fundamental to CNS functioning. 5-HT, produced 
from tryptophan, plays a major role in the modulation 
of  brain-gut axis[232]. The brain-gut axis is constituted pe-
ripherally of  ENS communicating with the gut wall and 
centrally with the CNS and HPA axis[233]. The gastrointes-
tinal system and the brain communicate in bi-directional 
mode, both of  them influencing each other (the so called 
top-down and bottom-up model developed in functional 
GI disorder studies)[234]. The HPA axis is composed of  
corticotropin-releasing hormone (CRH), produced in the 
hypothalamic para-ventricular nucleus, which stimulates 
adrenocorticotropin (ACTH) production in the anterior 
pituitary gland that in turn induces the adrenal cortex to 
produce cortisol in response to various stressors[235]. 
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In animal and human models the turnover of  5-HT in 
the brain is altered by acute and chronic exposure to pro-
inflammatory cytokines[236,237].

Cytokines stimulate CRH, ACTH and cortisol produc-
tion and in chronic states influence the diurnal cortisol 
curve because they stimulate inflammatory signaling that 
reduces glucocorticoid receptor functions and expression 
leading to decreased responsiveness to glucocorticoids. 

Obesity and NAFLD
Recently, animal studies have shown that in the hippo-
campus and cortex of  high-fat fed mice there is increased 
production of  inflammatory products[238,239] and sys-
temic inflammation is also related to cognitive dysfunc-
tions[240,241]. Depression and depressed serotoninergic 
state are strictly related to metabolic syndrome and obesi-
ty[242,243]. Tarantino et al[244] have studied urinary 5-hydroxy-
3-indoleacetic acid, a 5-HT metabolite, in depressed and 
obese/overweight subjects and have found that it nega-
tively correlates with dysthymia and depression status.

Alteration in the HPA axis is well established in obese 
patients and chronic stress with hyper-alimentation is an 
important factor in its development[245]. Although there 
are contrasting data on urinary free cortisol (UFC) in 
obese subjects, a recent study has evidenced in NAFLD 
subjects increased UFC and cortisol serum concentra-
tions after dexamethasone suppression, both correlated 
with hepatic inflammation and fibrosis stage[246]. More-
over, in a human model, cortisol clearance is increased in 
NAFLD subjects and is correlated with insulin sensitiv-
ity[247]. Peripherally, cytokines such as TNF-α and leptin 
stimulate 11β-HSD1, an enzyme required for the activa-
tion of  cortisone to cortisol[248]. Also leptin and ghrelin 
increased levels are related to HPA axis dysregulation in 
obese subjects[245].

Finally, early life stress predisposes to overweight and 
insulin resistance, at least in animal models[249].

IBS
Hypersensitivity and brain alterations, investigated with 
different study methods, have been found in the last 15 
years in IBS subjects; and, despite often contradictory 
data, there is strong evidence of  dysregulation in pain 
and other stimuli perception[250]. Moreover, mood disor-
ders (depression, anxiety) and other psychiatric disorders 
(eating disorders, posttraumatic stress syndrome, panic 
attack, etc.) are frequent, evidencing the role of  gut-brain 
dysfunction in these patients[107].

As has been mentioned above, the majority of  reports 
on 5-HT in IBS have studied its intestinal production; 
meanwhile, few are focused on its systemic production. 
Clarke et al[251] have found that IBS subjects degrade 
tryptophan more via the kynurenine pathway, an alterna-
tive metabolic way producing neurotransmitters other 
than 5-HT. Subsequently, the same group has found that 
kinurein from blood of  IBS subjects can influence TLR 
expression[252] in an in vitro model. 

The main evidence on HPA dysregulation in IBS[250] is 

the following: CRH and ACTH stimulate colonic secre-
tion, intestinal motility, visceral sensitivity and anxiety. 
Principal brain regions influenced by HPA axis are the 
amygdala and hippocampus. In IBS there are increased 
HPA axis responses to stressors such as meals, hormonal 
stimuli, and mental stress compared to controls. Fatigue 
and depression are associated with increased mast cell 
counts in the colonic mucosa of  IBS subjects, confirming 
the role of  gut-brain dysfunction in IBS[253]. Indeed, a key 
question still unresolved is whether the SNC dysfunction 
is the primum movens of  the gut inflammation and conse-
quently the visceral hypersensitivity and dysmotility in 
IBS or whether the gut inflammation represents the main 
cause of  subsequent SNC and systemic disorder.

UNANSWERED QUESTIONS
Could weight loss ameliorate IBS symptoms by influenc-
ing intestinal microbiota? Is there a relationship between 
NAFLD severity and IBS symptoms? Could patients suf-
fering from IBS be at major risk to develop NASH? Are 
circulating levels of  inflammatory cytokines overlapping 
in IBS subjects and NAFLD? Could intestinal dysbiosis 
affect CVD risk via NAFLD[254]?
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