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Abstract
The human body consists of several physiological bar-
riers that express a number of membrane transport-
ers. For an orally absorbed drug the intestinal, hepatic, 
renal and blood-brain barriers are of the greatest im-
portance. The ATP-binding cassette (ABC) transporters 
that mediate cellular efflux and the solute carrier trans-
porters that mostly mediate cellular uptake are the two 
superfamilies responsible for membrane transport of 
vast majority of drugs and drug metabolites. The total 
number of human transporters in the two superfami-
lies exceeds 400, and about 40-50 transporters have 
been characterized for drug transport. The latest Food 
and Drug Administration guidance focuses on P-glyco-
protein, breast cancer resistance protein, organic anion 
transporting polypeptide 1B1 (OATP1B1), OATP1B3, 
organic cation transporter 2 (OCT2), and organic an-
ion transporters 1 (OAT1) and OAT3. The European 
Medicines Agency’s shortlist additionally contains the 
bile salt export pump, OCT1, and the multidrug and 
toxin extrusion transporters, multidrug and toxin ex-

trusion protein 1 (MATE1) and MATE2/MATE2K. A va-
riety of transporter assays are available to test drug-
transporter interactions, transporter-mediated drug-
drug interactions, and transporter-mediated toxicity. 
The drug binding site of ABC transporters is accessible 
from the cytoplasm or the inner leaflet of the plasma 
membrane. Therefore, vesicular transport assays uti-
lizing inside-out vesicles are commonly used assays, 
where the directionality of transport results in drugs 
being transported into the vesicle. Monolayer assays 
utilizing polarized cells expressing efflux transporters 
are the test systems suggested by regulatory agencies. 
However, in some monolayers, uptake transporters 
must be coexpressed with efflux transporters to assure 
detectable transport of low passive permeability drugs. 
For uptake transporters mediating cellular drug uptake, 
utilization of stable transfectants have been suggested. 
In vivo  animal models complete the testing battery. 
Some issues, such as in vivo  relevance, gender differ-
ence, age and ontogeny issues can only be addressed 
using in vivo  models. Transporter specificity is provid-
ed by using knock-out or mutant models. Alternatively, 
chemical knock-outs can be employed. Compensatory 
changes are less likely when using chemical knock-
outs. On the other hand, specific inhibitors for some 
uptake transporters are not available, limiting the op-
tions to genetic knock-outs.
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IMPORTANT BARRIERS AND 
TRANSPORTERS
The human body harbors a number of  physiological bar-
riers. From an oral drug administration point of  view the 
intestinal, hepatic, renal and blood-brain barriers are con-
sidered pivotal. 

The intestinal barrier is the site of  absorption of  orally 
administered drugs. The main cellular components of  the 
intestinal barrier are the enterocytes. Generally, the small 
intestine is considered of  utmost importance. The large 
surface area and the stomach-proximal position make the 
small intestine the site of  absorption of  many oral drugs. 
With the development of  controlled release formulations, 
more and more studies are concerned with absorption 
through the colon. The activity of  several metabolic en-
zymes is lower in the colon than in the small intestine[1,2] 
making the colon an attractive site for absorption. The 
regional transporter expression data from several papers 
are inconclusive. The only consensus is that there is sig-
nificantly higher expression of  P-glycoprotein (P-gp)/
multidrug resistance protein 1 (ABCB1) in the colon 
compared to the small intestine, and higher expression of  
multidrug resistance associated protein 2 (MRP2, ABCC2) 
in the small intestine compared to the colon[1,3]. Transport-
ers that are expressed in the enterocytes are depicted in 
Figure 1A. The only transporters that are highly expressed 
in the intestine and are on the shortlists of  both the Food 
and Drug Administration (FDA)[4] and the European 
Medicines Agency (EMA)[5] are the apically located P-gp[6] 
and breast cancer resistance protein (BCRP, ABCG2). 
These transporters are known to transport many xenobi-
otics and, therefore, constitute a barrier for drug absorp-
tion via the intestines. 

Two major interfaces connecting the blood and brain 
compartments are the blood-brain barrier (BBB) and the 
blood-cerebrospinal fluid barrier (BCSFB). The BBB is 
by far the more important barrier, as the surface area of  
the human BBB is approximately 100-fold larger than 
the surface area of  the BCSFB[7,8]. In addition, the dis-
tance between neurons and brain capillaries is less than 
20 nm in the BBB while the distance between the brain 
ventricles and circumventricular organs is in millimeter 
or centimeter range in the BCSFB[9]. The barrier function 
in the BBB is provided by the microcapillary endothelial 
cells that contain no fenestrations. Transporters that are 
expressed in the brain microcapillary endothelial cells are 
depicted in Figure 1B. Similar to the intestinal barrier, the 
two transporters on the list of  regulatory agencies are the 
luminally located P-gp and BCRP, indicating that, from a 
drug development point of  view, the BBB mainly func-
tions as a barrier for drug absorption.

The hepatic barrier is the major site of  excretion of  
drugs and drug metabolites. The transporters that are 
expressed in the parenchymal cells (hepatocytes) are 
depicted in Figure 1C. The hepatic transporters on the 
FDA short list are uptake transporters of  the organic 
anion transporting polypeptide (OATP)/Solute Carrier 

OATP (SLCO) family members rganic anion transporting 
polypeptide 1B1 (OATP1B1)/SLCO1B1 and OATP1B3 
(SLCO1B3), and efflux transporters P-gp and BCRP. The 
EMA short list adds three additional hepatic transport-
ers: organic cation transporter 1 (OCT1, SLC22A1), bile 
salt export pump (BSEP, ABCB11) and multidrug and 
toxin extrusion protein 1 (MATE1, SLC47A1). BSEP 
transports bile salts and, therefore, has toxicological sig-
nificance. Noticeably, missing from both lists is MRP2 
(ABCC2), a transporter on the canalicular membrane, 
which transports many drugs and phase II drug metabo-
lites into the bile. The vectorial summation of  the activ-
ity of  the sinusoidal/basolateral uptake transporters and 
canalicular/apical efflux transporters drives the secretory 
function of  this barrier. 

The renal barrier is the other major site of  excretion. 
The main cellular components of  the renal secretory 
transport are the proximal tubule epithelial cells (PTC). 
The transporters that are expressed in the PTC are shown 
in Figure 1D. The renal transporters on the FDA short 
list are basolateral uptake transporters OCT2 (SLC22A2), 
OAT1 (SLC22A6), OAT3 (SLC22A8) and apical efflux 
transporters P-gp and BCRP. The EMA guidance also 
refers to MATE1 and MATE2/MATE2K (SLC47A2) as 
transporters that should be considered. This arrangement 
is similar to the hepatocyte, suggesting that the PTC 
mainly work in a secretory fashion as well. It should be 
noted that although significant xenobiotic reuptake oc-
curs through PTC, literature data mainly focus on reup-
take of  physiological substrates.

In general, the transporters listed above have been 
shown to play a role in ADMET (Absorption-Distribu-
tion-Metabolism-Excretion-Toxicity) of  drugs. However, 
regulatory guidances[4] note that additional transporters 
(e.g., MRPs) should be considered when relevant for the 
therapeutic class of  drug being studied.

TRANSPORTER-MEDIATED PERMEATION 
VS PASSIVE PERMEABILITY/DIFFUSION
In the pharmaceutical industry transcellular permeation 
of  drugs has been viewed as the combination of  passive 
and/or transporter-mediated processes[10]. Sequencing 
of  the human genome yielded 883 putative transporter 
genes[11]. The suggested number of  two main superfami-
lies of  human membrane transporters, the ATP-binding 
cassette (ABC) transporters, mediating mainly cellular 
efflux, and the solute carriers (SLC), mediating mainly 
cellular uptake of  their substrates, is well over 400[12]. It 
is likely that any particular cell may express dozens of  
transporters. Because of  the large number of  transport-
ers and the broad substrate specificity of  many of  trans-
porters, as well as the energetically unfavorable trans-
bilayer permeation of  small charged molecules, it has 
been suggested that drug transport is essentially carrier 
mediated[13]. It has been hypothesized that lack of  satura-
tion of  transcellular permeation of  some drugs, which is 
considered by many as the proof  of  passive diffusion[14], 
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is the result of  transport by a series of  transporters with 
different affinities[13]. It has also been argued that lack of  
stereospecificity in permeability of  some drugs can be 

attributed to the broad substrate specificity of  transport-
ers[15]. Correlation of  apparent permeability coefficients 
(Papp) for the same drug across different cell lines is a 
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Figure 1  Expression of transporters in human enterocytes (A), brain microcapillary endothelial cells (B), hepatocytes (C) and renal proximal tubule epithe-
lial cells (D). OCTN: Organic cation transporter novel; BCRP: Breast cancer resistance protein; MRP: Multidrug resistance associated protein; OATP: Organic anion 
transporting polypeptide; ENT: Equilibrative nucleoside transporter; PEPT: Peptide transporter; P-gp: P-glycoprotein; MATE: Multidrug and toxin extrusion protein; 
BSEP: Bile salt export pump.
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focus of  the debate[10,13]. However, multiple drugs show 
identical Papp values in A > B and B > A direction when 
the known transporters are blocked[16-18]. As in polarized 
monolayers the transporter expression and activity on 
the basolateral and apical membranes are likely different 
these observations require explanation. Even the simplest 
models used to extract kinetic parameters of  transcellular 
transport of  drugs require extensive computation[16,19-23]. 
Therefore, the consideration of  multiple transporters 
may be a challenging concept to develop into a generally 
accepted model for use by the pharmaceutical industry.

IN VITRO TESTING
The vast majority of  drugs are effluxed by ABC trans-
porters. Other important transporters include members 
of  the MATE/SLC47 and the equilibrative nucleoside 
transporter (SLC29) families. In addition, efflux action 
by SLCO[24,25] and OCT novel (SLC22A4-5) family mem-
bers[26,27] has been suggested. From a pharmacological 
point of  view the main function of  MATE transporters 
is drug efflux. However, based on their classification as 
an SLC, as well as the predominant assay format (cel-
lular uptake), these transporters will be discussed among 
uptake transporters. The list of  the ABC and SLC trans-
porters identified by the regulatory agencies as of  special 
importance is shown in Table 1.

Efflux transporters
Both membrane-based assays and cellular assays are wide-
ly used to test drug transport and drug-drug interactions 
by ABC efflux transporters. Membrane assays include 
ATPase and vesicular transport (VT) assays[28]. ATPase as-
says are based on coupling of  ATPase activity to transport 
and can be considered as surrogate transport assays. VT 
assays utilize inside-out vesicles and measure accumulation 
of  substrates into the vesicles. Cell-based assays include 
monolayer efflux assays, cytotoxicity assays, cellular ac-
cumulation and efflux assays as well as dye efflux assays. 
Monolayer efflux assays monitor transcellular transport 
of  substrates and measure the vectorial contribution of  
transporters. Monolayer efflux assays can be performed 
in a bidirectional mode or in a unidirectional mode in the 
presence and absence of  an inhibitor. Cytotoxicity assays 
are mostly used to measure efflux transporter mediated 
drug resistance[29,30] which can be reversed by a transporter 
specific inhibitor. It is assumed that efflux transporters 
inhibit accumulation, hence, efficacy of  substrate che-
motherapeutics. Thus, the assay is a surrogate transport 
assay. Cell accumulation and efflux assays are performed 
in cells overexpressing the transporter. The most com-
mon setup involves accumulation in the presence and 
absence of  a specific inhibitor. In cellular efflux assays, 
after the initial loading, substrate efflux is measured in 
the presence and absence of  specific inhibitors and cell 
associated drug content is plotted as the percentage of  
drug remaining in the cells vs time[31]. With the exception 
of  reversal agent development neither cellular accumula-

tion nor cellular efflux assays are commonly performed 
in drug ADME studies. Dye efflux assays monitor efflux 
activity of  transporters using fluorescent probe substrates 
or non-fluorescent precursor probes[29]. The Calcein as-
say is the prototype of  dye efflux assays which use non-
fluorescent dyes as probes[29]. The non-fluorescent calcein-
AM, which is a substrate for both P-gp[32] and MRP1[33], 
is cleaved by intracellular esterases to yield the fluorescent 
calcein, which is a substrate for MRP1, but not for P-gp[34]. 
Calcein is hydrophilic and will not diffuse out of  the cells, 
therefore it accumulates at a slower rate in P-gp or MRP1 
overexpressing cells compared to control cells, unless the 
transporters are inhibited. The advantage of  using a non-
fluorescent substrate is that it can be conveniently per-
formed in high throughput without the need of  a fluores-
cence activated cell sorter or extensive washing. Dye efflux 
assays are commonly performed as inhibition assays[35] 
applicable to various cell types and, therefore, can be done 
in a tissue/cell type specific manner[36].

Two large studies correlated P-gp ATPase and P-gp 
monolayer efflux measurements[37,38]. Both studies found 
that a group of  high passive permeability substrates that 
were efficacious ATPase activators did not appear to be 
P-gp substrates in the monolayer assay. The likely expla-
nation is that the contribution of  the transporter to the 
overall permeability of  these compounds is negligible. 
These compounds were then termed as non-transported 
substrates[37]. However, several of  these compounds such 
as verapamil[37], ketoconazole[37] and itraconazole (Fekete 
et al: manuscript in preparation) have shown P-gp depen-
dent BBB permeability in humans[39] and mice[40,41]. Due 
to their high passive permeability, none of  the cellular or 
other vesicular assays would work for these compounds. 
Therefore, for this group of  ABC transporter substrates 
the ATPase assay is the only assay that predicts a P-gp 
limited penetration of  the BBB.

Passive permeability is a key determinant in assay 
selection. For example, low passive permeability com-
pounds may be false negatives in P-gp ATPase activation 
assays[37]. VT/uptake assays work best for low passive 
permeability compounds[28]. For low and intermediate 
passive permeability compounds monolayer assays work 
well, although, for some low passive permeability com-
pounds, an uptake transporter is required for significant 
transcellular transport[42]. Passive permeability does not 
play a role in membrane assays when used in an inhibition 
format. However, monolayer assays will not necessarily 
work for low passive permeability inhibitors. The effect 
of  passive permeability on assay selection is depicted in 
Figure 2. 

Membrane lipid composition is also an important de-
terminant of  transporter activity. BCRP[43-45] and BSEP[46,47] 
activity is significantly greater in mammalian or cholesterol 
enriched insect cell membranes than in native insect cell 
membranes, which contain significantly lower amounts 
of  cholesterol[44], and both BCRP[48] and BSEP[49] are local-
ized in cholesterol rich microdomains. Interestingly, per-
haps with the exception of  the cyclosporin A-BSEP inter-
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action, cholesterol loading did not affect IC50 data[43,44,46]. 
All in all, these data show that the best and certainly the 
most relevant expression systems are the mammalian/hu-
man cells. 

Transporter expression levels may affect apparent 
ADME parameters. Apparent KM values generated in 
monolayer assays displayed a linear correlation with P-gp 
expression[50]. In contrast, the intrinsic KM values that 
were based on intracellular concentrations showed inde-
pendence from transporter expression[19,22]. Some IC50 
values were also shown to depend on transporter expres-
sion with increasing values in higher expressers[36,51]. The 
phenomenon was predicted by simulations[21] and appears 
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Table 1  Characteristics of transporters on the shortlists of regulatory

Transporter Expression (tissue/cell type/
localization)

Physiological substrates Select drug substrates Guidance

P-gp Brain/endothelial cell/apical Phospholipids, cytokines, steroids Aliskiren, ambrisentan, colchicine, dabigatran 
etexilate, digoxin, everolimus, fexofenadine, 
imatinib, indinavir, itraconazole, lapatinib, 
maraviroc, nilotinib, paclitaxel, posaconazole, 
ranolazine, saxagliptin, sirolimus, sitagliptin, 
talinolol, tolvaptan, topotecan, vinca alkaloids

FDA/
EMAKidney/epithelial cell/apical

Liver/hepatocyte/canalicular
Small intestine/enterocyte/apical

(colon) 

BCRP Brain/endothelial cell/apical Vitamins (riboflavin, biotin), porphyrins, 
estrogen sulfate conjugates

Methotrexate, mitoxantrone, daunorubicin, 
doxorubicin, imatinib, irrinotecan, lapatinib, 
rosuvastatin, pitavastatin, provastatin, 
sulfasalazine, topotecan

FDA/
EMALiver/hepatocyte/canalicular

Small intestine/enterocyte/apical
Kidney/epithelial cell/apical
Placenta/syncytiotrophoblast/
apical (maternal)

BSEP Liver/hepatocyte/canalicular Taurocholate, glycocholate Pravastatin, paclitaxel, vinblastine EMA
OATP1B1 Liver/hepatocyte/basolateral Bilirubin and its conjugates, thyroxin, 

triiodothyronine, bile acids, eicosanoids 
(thromboxane B2, prostaglandin E2, 
leukotriene C4), dehydroepiandrosterone 
sulfate, estradiol 17β-glucuronide, 
estrone 3-sulfate, glycocholate

Atrasentan, atorvastatin, bosentan, ezetimibe, 
fluvastatin, glyburide, methotrexate, 
olmesartan, pitavastatin, pravastatin, 
repaglinide, rifampin, rosuvastatin, 
simvastatin acid, SN-38 (active metabolite of 
irinotecan), valsartan

FDA/
EMA

OATP1B3 Liver/hepatocyte/basolateral Estradiol 17β-glucuronide, taurocholate, 
estrone 3-sulfate, dehydroepiandrosterone 
sulfate, thyoxin

Atorvastatin, bosentan, digoxin, methotrexate, 
olmesartan, paclitaxel, pitavastatin, 
rosuvastatin, telmisartan, valsartan 

FDA/
EMA

OAT1 Kidney/proximal tubular cell/
basolateral 

Para-aminohippuric acid, homocysteine, 
Cysteine,dicarboxylates, prostaglandine 
E2, urate, estrone-3-sulfate

Adefovir, captopril, cidofovir, furosemide, 
lamivudine, methotrexate, oseltamivir, 
tenofovir, zalcitabine, zidovudine 

FDA/
EMA

OAT3 Kidney/proximal tubular cell/
basolateral 

Estrone 3-sulfate, estradiol 
17β-glucoronide, cAMP, taurocholate, 
cortisol, dehydroepiandrosterone sulfate, 
prostaglandine E2, urate, succinate, para-
aminohippuric acid

Acyclovir, bumetanide, ciprofloxacin, 
famotidine, furosemide, methotrexate, 
oseltamivir acid, (the active metabolite 
of oseltamivir), penicillin G, pravastatin, 
rosuvastatin, sitagliptin, valacyclovir, 
zidovudine

FDA/
EMA

1-Oct Liver/hepatocyte/basolateral Corticosterone, β-oestradiol, progesterone, 
testosterone, choline, creatinine, 
guanidine, L-carnitine, thiamine, 
thyramine, acetylcholine, dopamine

Acyclovir, amantadine, gancyclovir, imatinib, 
lamivudin, metformin, oxaliplatin, quinidine, 
quinine, ranitidine, zalcitabine

EMA
Small intestine/enterocyte/
basolateral

2-Oct Kidney/epithelial cell/
basolateral

β-oestradiol, progesterone, testosterone, 
choline, creatinine, guanidine, L-carnitine, 
acetylcholine, dopamine, epinephrine, 
norepinephrine, histamin, serotonin, 
choline, dopamine, prostagladine E2

Amantadine, amilorid, cimetidine, cisplatin, 
dofetilide, famotidine, lamivudin, metformin, 
oxaliplatin, pindolol, procainamide, 
ranitidine, zalcitabine

FDA/
EMA

MATE1 Kidney/epithelial cell/apical Choline, creatinine, guanidine, 
corticosterone, estrone 3-sulfate, thiamine

Acyclovir, cimetidine, fexofenadine, 
gancyclovir, metformin, procainamide, 
topotecan

EMA
Liver/hepatocyte/canalicular

MATE2/
MATE2K

Kidney/epithelial cell/apical Choline, creatinine, guanidine, 
corticosterone, estrone 3-sulfate, thiamine

Acyclovir, cimetidine, gancyclovir, metformin, 
procainamide, topotecan

EMA

FDA: Food and Drug Administration; P-gp: P-glycoprotein; EMA: European Medicines Agency; BCRP: Breast cancer resistance protein; OAT: Organic 
anion transporter; OCT: Organic cation transporter; MATE1: Multidrug and toxin extrusion protein 1.
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to have in vivo relevance[52,53]. The simulation study also 
predicted that in a VT system steady-state is established in 
seconds, as no permeability barriers exist[21]. 

The monolayer assay system is the suggested assay 
format for efflux transporter substrate and inhibition as-
says[4,5]. The advantage of  the system is that it shows if  
the contribution of  an efflux transporter is comparable in 
magnitude to passive permeability and, thus, modulates 
transcellular permeability of  substrate drugs. However, 
in some aspects VT substrate and inhibition assays offer 
advantages over the monolayer assays, as data obtained in 
VT assays are not confounded by permeability barriers. 
Along this line, in earlier publications VT inhibition as-
says have been suggested as drug-drug interaction assays 
for low passive permeability drugs[54].

Digoxin is the consensus substrate for P-gp[4] and 
PSC833 is a commercially available P-gp specific inhibi-
tor[55]. Dabigatran etexilate[56-58] or fexofenadine[58-60] could 
also be considered as probes as these are lower bioavail-
ability substrates and are potential probes for clinical 
drug-drug interaction studies. However, only fexofena-
dine has been extensively studied in vitro[59,60]. Quinidine 
is an acceptable alternative to digoxin in microdialysis 
experiments where application of  digoxin is not feasible 
due to non-specific adherence to tubing as well as toxic-
ity[55,60]. No consensus has been reached on the probe 
substrates and inhibitors for BCRP. Topotecan[4,61], rosuv-
astatin[4], prazosin[44,62] and sulfasalazine[63,64] have all been 
suggested. However, these compounds are substrates of  
multiple efflux transporters that are co-expressed with 
BCRP on apical membranes. On the contrary, chlorothia-
zide, a non-metabolized[65], low bioavailability drug[66] is a 
specific BCRP substrate[67] and a potential probe. Ko134 
and Ko143 have been extensively used in preclinical stud-
ies as BCRP-specific inhibitors. For BSEP, taurocholate 
is the consensus probe[46,68,69] and cyclosporin A, a cho-
lestatic drug[70] is the reference inhibitor used most of-
ten[46,68,69,71,72]. Potential ABC transporter probe substrates 
are listed in Table 1. 

Uptake transporters
Cellular uptake of  drugs and endobiotics is mediated via 
uptake transporters of  the SLC superfamily. The list of  
the uptake transporters identified by the regulatory agen-
cies as important is shown in Table 1. Mechanistically 
these transporters are uniporters (e.g., OCT1), symport-
ers [e.g., sodium taurocholate cotransporting polypeptide 
(NTCP, SLC10A1), peptide transporter 1 (PEPT1, SL-
C15A1)] or antiporters (e.g., OATP1B1, OAT1, MATE1). 

Membrane assays are applicable to symporters where 
the driving force of  the transport is known and the assay 
set-up is straightforward. Na+-taurocholate cotransport-
ing polypeptide (NTCP)-mediated taurocholate trans-
port into right-side out (ROV) rat sinusoidal membrane 
vesicles has been shown[73]. Proton gradient driven 
dipeptide transport into ROV prepared from intestinal 
brush-border membranes has also been published[74]. For 
exchangers (e.g., OATPs, OATs) a vesicular uptake assay 

would be cumbersome to perform even if  the identity of  
the exchange ion was known.

The most common assay system for uptake transport-
ers are primary cells [e.g., hepatocytes, brain microcapil-
lary endothelial cells (BME), proximal tubule cells (PTC) 
of  the kidney], cancer cell lines (e.g., Caco-2), immor-
talized cell lines (e.g., human brain endothelial cell line, 
hCMEC/D3) or transfectants. Transfectants are the test 
systems recommended by regulatory agencies[4]. 

Oocytes microinjected with the mRNA or cDNA of  
the respective transporter have been used early on. Oo-
cytes offer the option of  electrophysiological measure-
ments as the transport of  many substrates is electrogenic. 
However, the system is transient, the quality of  the oo-
cytes display seasonal variations, the lipid composition of  
the plasma membrane is different from physiological and 
the throughput is low-to-intermediate[75,76]. 

For uptake transporters brain slices[77], liver slices[78,79] 
and kidney slices[80,81] are commonly used to compute 
clearance values.

Uptake transporters have highly overlapping substrate 
specificities and multiple family members are expressed in 
the same cell type. Quantification of  contribution of  the 
different transporters is a challenge. OATP1B1 and OAT-
P1B3 have very similar substrate specificities and are both 
expressed in hepatocytes. Estrone-3 sulfate and cholecys-
tokinine octapeptide (CCK-8) are selective substrates of  
OATP1B1 and OATP1B3, respectively, and can be used 
as reference substrates to determine activities of  these 
transporters in a hepatocyte preparation[82]. The most no-
table non-statin drugs are bosentan, a substrate of  OAT-
P1B1[83] and OATP1B3[83], valsartan[84] or repaglinide[85], 
substrates of  OATP1B1, and telmisartan[86] or nafcilin[87], 
substrates of  OATP1B3. Fluo-3 is a highly sensitive fluo-
rescent probe of  OATP1B3[88]. Rifampin and cyclosporin 
A are the recommended reference inhibitors[4] however 
various statins are also commonly used[89]. For clinical 
drug-drug interaction studies the use of  statins as vic-
tims/probes has been suggested[4]. OAT1 and OAT3 are 
co-expressed in the basolateral membrane of  PTC. These 
transporters have overlapping substrate specificities, with 
OAT3 having a bias for amphiphilic, larger molecular 
weight compounds[90]. Adefovir can be used as a reference 
substrate for OAT1 and benzylpenicillin for OAT3[80]. 
Tenofovir[91], azydothimidine/zidovudine[92], para-amino-
hippurate[4] for OAT1 and methotrexate[93], cimetidine[94], 
furosemide[95], estrone-3-sulfate[4] for OAT3 are also appli-
cable. Probenecid inhibits both transporters[4] but benzyl-
penicilline is considered an OAT3-specific inhibitor[80,96]. 
P-aminohippurate has been used as a specific OAT1 
inhibitor[80] and also as inhibitor of  both transporters[96]. 
For OCT1[97,98] and OCT2[98-100] metformin is an accepted 
drug substrate. Alternatively, 1-methyl-4-phenylpyridinium 
(MPP+) and cimetidine can be used for both OCT1[101,102] 
and OCT2[4,103]. Cimetidine or verapamil can be used as 
an OCT1[98,104] and OCT2 inhibitor[4,98,104], although, clini-
cal relevance of  cimetidine mediated inhibition of  OCT2 
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has been questioned lately[105]. Metformin is a relevant 
substrate for both MATE1[106] and MATE2/MATE2K[106] 
and cimetidine[105] and verapamil[104] are potent inhibitors. 
Importantly, pyrimethamine has been shown to selectively 
inhibit MATE1 and MATE2/MATE2K[105,107].

Uptake transporters play a major role in pharmakoki-
netics of  substrate drugs. Inhibition of  hepatic[108] and/or 
renal[109] clearance by co-administered drugs can lead to 
clinically significant drug-drug interactions. Interactions 
of  the hepatic uptake transporters often result in > 5-fold 
increase in Cmax values of  victim drugs[110]. Nevertheless, 
most in vitro assays commonly employ either physiologi-
cal substrates such as estrone-3-sulfate or estradiol-17β-
glucuronide for anion transporters or synthetic non-drug 
substrates, such as tetraethyl-ammonium for cation trans-
porters[89]. Broad-scale application of  LC/MS/MS meth-
odology in drug quantification will facilitate revalidation 
of  uptake transporter assays using drug probes.

IN VIVO TESTING
In vivo studies using knock-out and mutant animals shows 
the paramount importance of  transporters[61,76,111]. Obvi-
ously, in vivo significance of  a transporter in clearance of  a 
drug can only be addressed by in vivo studies[61]. Other im-
portant applications, such as gender difference, as well as 
age and ontogeny are also preferably studied in vivo[112-114]. 
With the availability of  double and triple knockouts, 
transporter complementation[115] and transporter-enzyme 
interplay[116] can now be addressed. Nevertheless, utiliza-
tion of  knockouts is perhaps not as extensive as originally 
envisioned. Compensatory changes may mask the ef-
fect of  transporter deletion. P-gp is upregulated in Bsep 
knockout mice and the metabolism of  bile acids is altered 
as well[117,118]. Cytochrome P450 enzymes which share 
substrate specificity with P-gp are dramatically up-regulat-
ed in P-gp knockout mice in a gender specific manner[119]. 
Species specificity issues also limit utilization of  these 
models by the pharmaceutical industry. In addition to dif-
ferences in substrate specificities[120], significant differenc-
es have been observed in transporter expression between 
species. Canalicular expression of  MRP2/Mrp2 is about 
10-fold greater in rodents than in humans[121] and the ra-
tio of  BCRP/P-gp expression in the BBB is about 4-fold 
greater in humans than it is mice[122]. Chemical knockouts 
can circumvent the problems stemming from compensa-
tory changes. However, species specificity issues can only 
be overcome by utilization of  humanized models. As the 
availability of  humanized models increases, the relevance 
of  in vivo studies will certainly increase as well[123-125].

CONCLUSION
In the past decade utilization of  transporter assays by 
the pharmaceutical industry has been rapidly growing. 
Lower activity pharmacogenomic variants such as BCRP 
412G>A[126] and OATP1B1 521 >C[85] make it possible to 
show the impact of  the wild type transporters on human 

pharmacokinetics of  substrate drugs and clearly demon-
strate clinical relevance of  drug-transporter interactions.
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