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Abstract
Like the wars predating the First World War where 
human foot soldiers were deemed tools in the 
battlefield against an enemy, so too are the host immune 
cells of a patient battling a malignant gastric cancer. 
Indeed, the tumour microenvironment resembles a 
battlefield, where the patient’s immune cells are the 
defence against invading tumour cells. However, the 
relationship between different immune components of 
the host response to cancer is more complex than an 
“us against them” model. Components of the immune 
system inadvertently work against the interests of 
the host and become pro-tumourigenic while other 
components soldier on against the common enemy – 
the tumour cell.
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Core tip: Many solid tumours are now being treated 
with immunotherapies and gastric cancer is no excep
tion. Here we review the literature on molecular 



which are primarily intestinal in histology)] may have 
a host immunological response, this differed to the 
two immunogenic subtypes[7]. Here we explore some 
of the features of the immune response to GC to try 
and reconcile some of the clinical observations, such as 
differences in survival and also to explore the utility of 
immunotherapies for this particular cancer.

Currently, the immune context of GC comprises 
both anti- and pro-tumoural immune responses. 
The immune system includes inter-linked innate and 
adaptive arms, both have cellular and soluble effectors. 
The innate immune system cells respond to foreign 
antigens that are recognised via pathogen recognition 
receptors (PRR) for pathogen-associated molecular 
patterns (PAMPs) or danger associated molecular 
patterns (DAMPs)[9]. The PRR can recognise PAMPs 
or DAMPs derived from a diverse array of viruses, 
bacteria or tumour cells. The innate immune system 
is evolutionarily conserved and performs an immune 
surveillance role via cells [macrophages, dendritic 
cells (DCs), neutrophils and natural killer (NK) cells] 
and soluble factors such as, the complement system. 
There is considerable cross-talk between cells within 
the innate immune system as well as cross-talk with 
cells of the adaptive arm, for example, tissue resident 
DCs induce an adaptive immune response through 
antigen presentation[10]. The adaptive immune system 
recognizes and eliminates antigens; conventional T cells 
recognise antigen as peptide-major histocompatibility 
complex (MHC) on virus infected cells or tumour cells, 
whereas B cells recognise conformational antigen. 
Priming of naïve T and B cells to antigens occurs in 
the tissue draining lymph node of a particular organ. 
Effective antigen recognition and co-stimulation 
activates the antigen-specific T or B cell driving their 
proliferation and generation of effector and memory 
cells. Effector T cells traffic to the site of priming 
and participate in resolution of the threat/pathogen. 
Memory T cells reside in secondary lymphoid tissue 
(central memory), or the peripheral tissue (tissue 
resident memory cells) and can respond quickly to any 
future pathogen threat, termed “long term protective 
immunity”. In healthy individuals the immune system 
is remarkably effective at responding to and eradicating 
a diverse array of pathogen threats; however the 
immune system can be a double-edged sword in 
cancer, which has the ability to shape the immune 
response to facilitate tumour cell growth and survival 
rather than eliminating the tumour[11].

THE IMMUNE SYSTEM AND CANCER
The immune system detects and eliminates tumour 
cells. This usually prevents cancer development through 
a process termed immune-surveillance[12,13]. Tumour-
specific antigens (TSA) are antigens present only on 
tumour cells, while tumour-associated antigens (TAA) 
are antigens present on tumour cells as well as normal 
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subtypes of gastric cancer and how they each have 
different immunological responses and hence may be 
differentially responsive to these immunotherapies. We 
emphasise that while treatment of gastric cancer may 
be benefited by immunotherapy we should try to target 
this based on molecular and immunological signatures 
of the individual patient. This will match the ideal 
therapy to the specific patient and is a step forward on 
the pathos precision medicine.
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“Advances in medicine and agriculture have saved 
vastly more lives than have been lost in all the wars in 
history.”

Carl Sagan

INTRODUCTION
Gastric cancer (GC) continues to be a significant cause 
of mortality globally, being the third leading cause of 
cancer-related death[1]. While there have been advances 
in the outcomes of many solid tumours[2-4], gastric 
adenocarcinoma, the predominant form of GC, has not 
shown the same degree of improvements in survival[5], 
despite aggressive multi-modality treatment[6]. Potent 
new immunotherapies induce host immune-mediated 
destruction of malignant cells and offer new hope in 
the battle against GC. Here we explore some of the 
positive and negative characteristics of the host immune 
response to the presence of a malignant cell.

It is incumbent on us to be aware that all cancers are 
not equal. The Cancer Genome Atlas (TCGA) Network has 
produced a landmark study using integrative genomics 
to molecularly phenotype four subtypes of GC[7] that 
are to some extent related to histological features of 
the disease. Previous studies suggest the histology 
of the tumour according to Lauren classification may 
explain some of the molecular heterogeneity of GC[8] 
but the host immune response to the cancer may 
also account for some of the differences. The TCGA 
study describes two particular subtypes both of which 
consist of predominantly intestinal type tumours 
that had a significant immunological association: the 
Epstein-Barr virus (EBV) subtype accounted for about 
9%[7] of the GCs profiled and were characterised by a 
strong immune signature and; the MSI (Microsatellite 
Instability) subtype (22% of cancers in this study[7]), 
which had a high mutational load, also had a significant 
immune signature. While the other two GC subtypes 
[GS (Genomically Stable and predominantly diffuse) 
subtype and CIN (Chromosomal Instability subtype 



cells. Expression of TSA and TAA generally results from 
tumour-associated genetic mutations. Tumour-resident 
DCs constantly sample the microenvironment via 
endocytosis, they process the TSA or TAA as peptides 
and assemble them on MHC, either in the endoplasmic 
reticulum for MHC class Ⅰ, or endosomes for MHC 
class Ⅱ. The DC requires an activation signal, such as 
a DAMP or PAMP, in order to mature and subsequently 
increase peptide MHC expression levels. Activated DCs 
change chemokine receptor and adhesion molecule 
expression making them responsive to chemokines 
emanating from the tumour draining lymph node 
(TDLN). Having migrated to the TDLN, the mature DC 
presents TSA/TAA on MHC class Ⅰ to CD8+ T cell, or on 
MHC class Ⅱ to CD4+ T cells, priming an antigen-specific 
T cell response[14]. For successful activation, Cytotoxic T 
cells (CTLs) require two signals from antigen processing 
cells (APCs); (1) antigen presentation, T-cell receptor 
(TCR) binding to peptide-MHC class Ⅰ molecules; and 
(2) co-stimulation, CD28 molecule on T cells binding 
to co-stimulatory molecules CD80 (B7-1) or CD86 
(B7-2) on APCs. In the absence of signal 2, signal 1 
induces immune tolerance to TAA/TSA. Signal 2 is only 
provided by mature DCs, as they express CD80/CD86 
at higher levels. At this point, activated tumour-specific 
naïve T cells proliferate and form effector and memory 
T cells, as described for the pathogen response above. 
Tumour-specific CD8+ effector T cells, also termed 
CTLs, traffic from the TDLN to the tumour and attack 
tumour cells presenting cognate antigen, with the 
help of CD4+ helper T cells (Th cells), mainly Th1 cells. 
During the effector phase, T cells infiltrate the tumour 
(referred to as tumour infiltrating T lymphocytes or 
TILs) in response to chemokines, such as CX3CL1, 
CXCL9, CXCL10 and CCL5[15]. These TILs kill tumour 
cells by direct and indirect mechanisms. The direct 
mechanism utilises perforin and granzymes. Figure 1A 
outlines some of the aspects of antigen recognition, 
presentation and the effector immune cells (T cell and 
NK cell) killing of tumour cells. Tumour-specific CTL 
recognition of cognate antigen induces their activation 
and formation of an immune synapse (IS, a specialised 
molecular structure formed between a cytotoxic 
lymphocyte and a target cell) at the site of antigen 
recognition. Simultaneously, the CTL moves cytotoxic 
granules (containing perforin and granzymes) to the IS, 
these granules fuse with the CTL cell membrane and 
release their contents. Perforin polymerises and inserts 
into the tumour cell membrane forming a pore, this 
enables entry of granzyme B into the cytoplasm, which 
induces tumour cell apoptosis. Indirect mechanisms 
include secretion of cytokines including type Ⅰ IFN, 
IFN-γ and TNF[16,17]. After clearance, surviving CD8+ T 
cells differentiate into T memory cells[18], which can 
retain anti-cancer properties and can enact faster and 
stronger anti-cancer immune response when they next 
encounter tumour cells. 

Another cell type important in an early response 

to cancer is the NK cell. NK cells are part of the innate 
immune system that act non-specifically against 
tumour cells and can directly kill these cells. This type 
of anti-cancer immunity is reported in hematopoietic 
malignancies and solid tumours[19]. 

HOW CANCER ESCAPES FROM IMMUNE 
SYSTEM
The “immune-editing” paradigm was proposed to 
explain how tumour cells influence the behaviour 
of innate and adaptive immune cells through an 
immunosuppression process to finally present as a 
clinical tumour[20]. The immune-editing mechanism, 
which is the most important process during immuno
suppression, consists of three sequential phases: 
elimination, equilibrium, and escape[20-22]. During 
the elimination phase, the immune system destroys 
developing tumour cells. In the equilibrium phase, 
sufficient tumour cells survive the immune attack to 
maintain tumour size, but there is no obvious tumour 
progression. During this phase, the immune system 
sculpts the immunogenicity of genetically unstable 
tumour clones. Finally, in the escape phase immune 
resistant tumour clones emerge, proliferate and spread 
either locally or to distant sites. 

Precisely how tumour cells evade the immune 
system (in the escape phase), as summarised in Figure 
1B, is an area of active research, and can be broadly 
grouped into three main mechanisms including: 

Immune recognition/ignorance: where tumour 
cells can control immune recognition via down-
regulation of antigens and MHC molecules on the cell 
surface[23-25].

Immune suppression/tolerance: Where tumour-
derived suppression mechanisms are driven via tumour-
derived cytokines and influence the differentiation of 
immune effectors driving their functional polarization 
to suppressors. Immune suppressors include tumour 
associate macrophages (TAMs), myeloid-derived 
suppressor cells (MDSCs) and regulatory CD4+ T cells. 
Macrophages within the tumour microenvironment 
have been described as pro-tumourigenic as they 
support cancer initiation and progression, or anti-
tumourigenic based on differentiation patterns into 
M1 or M2 subtypes[26,27]. M1 macrophages have a 
tumouricidal activity by producing pro-inflammatory 
cytokines, such as IL-1, IL-6, IL-23 and TNF. M2 
macrophages possess a tumour-promoting capacity 
by producing IL-10 and TGF-β. TAMs frequently have 
a spectrum of differentiation and, through the balance 
of M1 and M2 macrophage subtypes in the tumour 
microenvironment, may influence aggressiveness of the 
tumour and prognosis of patients. There is generally 
a poor outcome if M2 macrophages predominate in 
the tumour microenvironment[28,29]. Tumour cells may 
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immature myeloid cells with strong immunosuppressive 
capacity that have been shown to support tumour cell 
growth, differentiation, and metastasis[33,34]. CD4+ T 
cell response to tumour-derived antigen in the context 

also induce an M1 to M2 switch, mediated by TGF-β[30]. 
Several studies have identified an association with the 
density of TAMs in the microenvironment of GC and a 
poor outcome[31,32]. MDSCs are a group of activated but 
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Figure 1  Process of immune system killing tumour and processes of tumour evasion. A: Outlines the process of immune system killing tumour cell. First, 
antigens (including neo-antigens) expressed by the tumour, are recognized by immature DC then the innate immune system is activated and the antigen is presented 
by APC to the T cell. The T cell becomes activated, then proliferates and infiltrates into tumour sites. The adaptive immune system is then responsible for activation 
of the effector immune cells (e.g., CTL, Th cell or NK cell) that secrete cytokines to kill the tumour cell; B: Describes part of the processes of immune evasion. This is 
the mechanism by which the tumour cell evades the immune system (escape phase) through the processes of immune recognition/ignorance; immune suppression/
tolerance and; adaptive immune resistance. DC: Dendritic cell; CTL: Cytotoxic T lymphocytes; Th cell: T helper cell; NK: Natural killer cell; APC: Antigen processing 
cell; MHC: Major histocompatibility complex; TCR: T-cell receptor.
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of TGF-β induces up-regulation of the key transcription 
factor (FoxP3) and regulatory T cells (Tregs) functional 
polarization. Tregs are powerful suppressors of the 
tumour-specific T cell responses (both CTL and effector 
CD4+ T cells) and can be found at increased numbers 
in patient TILs, both at the tumour margin and inside 
the tumour itself[35].

Adaptive immune resistance: where tumour 
cells can induce T cell inactivation through a process 
described as “adaptive immune resistance”[36]. When 
CTL’s recognise cognate antigens on tumour cells 
their effector mechanisms include secretion of IFN-γ, 
IFN-γ binding to tumour cell IFN-γR induces JAK-
STAT signalling and up-regulation of tumour cell 
programmed death ligand-1 (PD-L1) expression. CTL 
recognition of antigen induces programmed death-1 
(PD-1) expression. Binding of PD-L1 to its receptor 
PD-1 on T cells, delivers an inhibitory signal to the T 
cell IS and results in T cell paralysis. The over-arching 
result is tumour cell resistance to killing by T cells[36,37]. 
The molecules involved in the immune co-inhibitory 
pathways are called immune checkpoints. These 
molecules have an important normal physiological 
role, and are important in turning off the immune 
system once effective T cell effector function has been 
achieved (i.e., once antigen has been cleared). The 
checkpoint inhibitors include: PD-1 (also known as 
CD279) and its ligands PD-L1 (B7-H1; also known as 
CD274) and PD-L2 (B7-DC; also known as CD273); 
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, 
also known as CD152) and its ligands CD80 and CD86; 
T-cell immunoglobulin and mucin-domain containing-3 
(TIM-3) and its ligand galectin-9; lymphocyte-
activation gene 3 (LAG3, also known as CD223) and 
Indoleamine-pyrrole 2,3-dioxygenase (IDO). These 
pathways are discussed later as they have been 
transformed into successful immunotherapies in the 
war against cancer. Other components of the adaptive 
immune response are two subcategories of T cells, 
the Treg and Th17 cell. Tumour cells can induce Tregs, 
which in turn promote tumour progression by secreting 
TGF-β, as well as Th17 cells, which accelerate tumour 
progression by producing IL-17[38]. 

These are some of the physiological mechanisms 
that a tumour cell can exploit to survive, perpetuate 
and invade a host organism resulting in poor outcomes 
seen in many malignancies.

IMMUNOGENIC SUBTYPES OF GC
Integrated genomic analysis of GC showed that 
molecular subtypes have distinct signatures. The EBV 
and MSI subtypes have significant immune signatures 
(Figure 2A) compared to the CIN and GS subtypes 
(Figure 2B). It is recognised that MSI cancers result in 
increased tumour cell mutational load[39] and presen
tation of neo-antigens[40] resulting in an augmented 

host immune response with increased TILs[41-43], DCs 
and macrophages[44]. EBV-associated GC also has an 
increased density of TILs[41,45-47]. Despite a significant 
host immune response these tumours persist, likely 
due to immune escape mediated by over-expression 
of immune checkpoints, such as PD-L1 and PD-L2[7]. 
Llosa et al[48] found similar changes to the tumour 
microenvironment of MSI colorectal cancer. These 
MSI cancers showed up-regulation of immune check
points, such as PD-1, PD-L1, LAG-3, CTLA-4 and IDO. 
In colorectal cancer MSI-high specimens are often 
associated with high infiltration of CD3+, CD4+ and 
CD8+ cells and show more frequent infiltration by 
PD-1 positive intraepithelial lymphocytes compared to 
microsatellite stability samples[49]. Indeed, colorectal 
cancer is a good example of how the immunological 
reaction to the tumour has been used as a prognostic 
marker and may identify a group of cancers that can 
be targeted with specific immunotherapies[50,51]. The 
mechanisms for the robust immune response in the 
EBV subtype remain unclear, but are likely due to long 
term inflammation induced by the infection in the 
stomach[52]. 

An association between lymphocytic infiltration 
and survival in GC was first proposed over 100 years 
ago[53]. Since then numerous studies have shown an 
increased density of TILs is associated with favourable 
clinical outcomes in a variety of solid tumours[54-57], 
including GC[58]. This holds true for intratumoural B 
cells[42] and NK cells[59] in GC. However, GC expression 
of the checkpoint inhibitor PD-L1 is associated with 
poor clinical outcomes[60-66]. Tumour expression of 
PD-L1 is not universally a negative predictor as patients 
with ovarian cancer expressing high PD-1 (generally 
thought to be expressed by the immune cells) and 
PD-L1 levels in tumour cells as well as TILs having 
favourable prognosis[67]. These contrasting results are 
partially explained by methodological differences in the 
studies where most investigators report on the intra-
tumoural immune component only and ignore the peri-
tumoural context of the cancer or focus on particular 
components of the immune response in isolation and 
ignore the dynamic environment that is the tumour 
microenvironment. Importantly, another variable that 
is not factored in the GC literature is the molecular 
characteristics of the tumour cell itself. As described 
in the Asian Cancer Research Group study from 
Cristescu et al[68], tumours of the MSI subtype (similar 
to TCGA) have the best prognosis of the subtypes 
described in their study. Marrelli et al[69] confirm the 
favourable prognosis of MSI in non-cardia intestinal 
gastric tumours. Kim et al[70] investigated the type 
and density of TILs and macrophages in the MSI-high 
subgroup of GC and found that increased density of 
intra-tumoural CD8+ and FoxP3+ TILs was associated 
with a good prognosis. It was further shown that the 
balance of TILs and TAMs (M2-polarized macrophages) 
also showed favourable prognostic significance[71]. 
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IMMUNOTHERAPY OF CANCER
The immune system is an integral part of the tumour 
microenvironment and immune cell evasion by tumour 
cells has recently been highlighted as one of the 
hallmarks of cancer[11]. Promotion, or activation, of 
the immune system, referred to as “immunotherapy”, 
has also been proposed as an option for targeted 
treatment. Unlike chemotherapy, which uses potent 
drugs to eliminate tumour cells or control their 
growth, cancer immunotherapy involves boosting the 
immune system of a patient to eliminate or control a 
malignancy. Using the immune checkpoint inhibitors 
(ICIs), T-cells can be re-activated or maintained in an 
active state allowing them to recognize and eliminate 
tumour cells. Documented clinical responses of ICIs in 
a number of cancer types, especially in solid tumours, 
including melanoma, non-small cell lung cancer, 
renal cell carcinoma[2-4] have been reported and 
provide us with new anti-cancer strategies. The use of 
immunotherapy, especially the ICIs, for treating GC is 
still in its infancy with several clinical trials underway. 

CTLA-4, one of the immune checkpoints, is expres
sed on the surface of T cells following recognition of 
antigen. T cell CTLA-4 has a higher affinity than CD28 
for APC CD80/CD86. This transduces an inhibitory 
signal to T cells serving as a “brake” on T cell activation. 
Ipilimumab, an IgG1 antibody which blocks CTLA-4 
activity, allows ongoing APC priming of antigen-specific 
T cells in the TDLN (i.e., brake removed). An additional 
proposed mechanism of ipilimumab action includes 
targeting of CTLA-4hi intra-tumoural Tregs tipping the 
balance of effector T cells: Treg in favour of an anti-
tumour response. Ipilimumab was the first approved 
immune checkpoint therapy and has shown a survival 
benefit in advanced stage melanoma patients[72,73]. The 
repercussions of meddling with the physiologic processes 
governing immunity is an increase in a variety of 
immune related side effects, including skin lesions (rash, 
pruritus, and vitiligo), colitis, thyroiditis, hypophysitis, 
and hepatitis[74]. A clinical trial in GC patients with 
unresectable, locally advanced or metastatatic cancer 
following first line standard chemotherapy with a 
fluoropyrimidine/platinum combination (NCT01585987) 
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has recently been completed however initial results are 
not promising with poorer PFS (secondary endpoint) in 
the ipilimumab treated group[75]. Tremelimumab, another 
anti-CTLA-4 monoclonal antibody, was investigated as 
a second-line treatment for patients with unselected 
metastatic gastric and oesophageal adenocarcinomas. 
The results were disappointing and among 18 recruited 
patients only one patient achieved a partial response[76].

A second immune checkpoint target is the PD-1/
PD-L1 axis. PD-1 is present on the surface of activated 
T-cells, B-cells and monocytes whilst PD-L1 is found on 
the surface of tumour cells and antigen presenting cells 
(macrophages and DCs)[2]. Similarly PD-L2, expressed 
exclusively on DCs, is also a ligand for PD-1 and has 
been shown to inhibit T-cell activation, proliferation and 
cytokine production[77]. Checkpoint inhibitor antibodies 
directed to the PD-1/PD-L1 pathway are thought to 
largely rescue function of pre-existing tumour-specific 
TILs. 

Anti-PD-1 (nivolumab, pembrolizumab) or anti-PD-L1 
(MSB0010718C, BMS936559, MPDL3280A, Medi4736) 
agents are humanized monoclonal antibodies, which 
inhibit binding of PD-1 to PD-L1 and restore T cell 
activity. Due to promising results from initial clinical 
trials utilising these antibodies in melanoma and in 
other cancer types, they are currently being explored 
in GC. A phase I clinical trial (NCT01928394) using 
nivolumab in GC patients has been completed and 
initial results showed objective responses occurred in 
patients irrespective of PD-L1 status[78].

Pembrolizumab has been tested in GC patients 
selected based on immunohistochemical staining of 
PD-L1 (NCT01848834)[79,80] and initial results reported 
at ESMO 2014[79] with updated results presented at 
ASCO 2015[80]. Eligible patients had PD-L1 positive 
staining in stromal or ≥ 1% tumour nest cells. 
Based on these criteria this study observed a 40% 
rate of PD-L1 positive cancers and demonstrated 
manageable toxicity and promising antitumour activity 
in advanced GC[80]. When used in melanoma patients, 
a positive response was associated with expression 
of four specific immune signatures (presented as an 
abstract)[81]. These findings were recapitulated in the 
GC[82] patients suggesting that screening for expression 
of these signatures could be used as a method to best 
select patients who might benefit from this treatment. 
A large number of clinical trials testing these drugs 
in combination with standard chemotherapies are 
currently underway and have been reviewed in detail 
elsewhere[83].

Several anti-PD-L1 monoclonal antibodies, including 
Avelumab (MSB0010718C), Durvalumab (Medi4736) 
and Atezolizumab (MPDL3280A) and BMS936559, 
are under evaluation in digestive cancers, including 
GC[84]. GCs comprise only a small minority of the 
patients recruited to the early phase clinical trials 
currently underway and as such only limited data 
on their efficacy is currently available[85]. It is worth 

noting that therapeutic strategies should be carefully 
considered. Whilst targeting the PD-1/PD-L1 + PD-L2 
checkpoint pathways should increase anti-tumour 
efficacy, this may come at the cost of increased “off 
tumour target” toxicity. Therapies targeting only 
PD-L1 whilst maintaining PD-L2 activity may result in 
decreased anti-tumour effects coupled with decreased 
toxicity. There are currently no PD-L2 specific inhibitors 
available. 

Therapeutic strategies targeting both CTLA-4 and 
PD-1 in combination are currently being tested in 
GC in the hope of identifying synergistic effects. The 
CheckMate032 (NCT01928394) trial testing the effects 
of nivolumab as a sole agent, or in combination with 
ipilimumab in a variety of solid cancers, including GC, 
and in a refractory setting is currently recruiting. This 
combination has previously showed successful tumour 
regression in the setting of melanoma[86].

The molecular, genetic and immunological hetero
geneity described by the TCGA highlights a need to 
stratify patients based on their likelihood of responding 
to different treatment options including immunotherapy. 
Despite this, many of the clinical trials described above 
recruited GC patients of all subtypes which, unfor
tunately may dilute out the potential positive effects 
of these therapies. EBV and MSI subtypes of GC are 
associated with a vigorous immunological reaction, 
as well as over-expression of immune checkpoints, 
highlighting these two subtypes of GC as particularly 
attractive candidates for immune checkpoint blockade, 
and indeed trials in these particular GC subtypes are 
underway. 

The EBV subtype described by the TCGA[7] is 
characterised by a high prevalence of mutations in 
the PIK3CA suggesting a possible therapeutic role 
for PI3K inhibitors. This subtype is also associated 
with a high prevalence of DNA hypermethylation and 
amplifications in the genes CD274 and PDCD1LG2 
which encode the immunosuppressive proteins PD-L1 
and PDL-2, which highlights this subtype as an ideal 
candidate for immunotherapy[7,83]. A clinical phase Ⅱ/Ⅲ 
trial (NCT02488759, CheckMate358) plans to test the 
efficacy of nivolumab in subjects with virus- associated 
tumours including EBV-positive GC. This trial is 
currently in the recruitment phase. Given that most of 
these patients have concurrent immune infiltrate and 
harbour mutations in targetable genes, an adjuvant 
approach including a targeted therapy in conjunction 
with a PD-1 inhibitor such as pembrolizumab may be 
warranted. Such a treatment combination would need 
to be evaluated to ensure that the targeted therapy 
doesn’t directly inhibit immune effector cell signalling 
pathways.

The MSI TCGA GC subtype was characterised by 
high levels of microsatellite instability and elevated 
mutation rates[7]. Unsurprisingly gastrointestinal 
tumours that are MSI-H or mismatch repair deficiency, 
when compared to microsatellite stable tumours, have 
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shown promising immune-related objective response 
rates (ORR; 40% vs 0%) and progression-free survival 
(PFS; 78% vs 11%) when treated with PD-1 inhibitor, 
pembrolizumab[87]. This emphasizes this subtype as a 
potential candidate for immunotherapy. 

Genomic amplifications in receptor tyrosine kinases 
were a distinguishing feature of the CIN subtype as 
defined by TCGA[7]. Many of these are candidates for 
treatment with molecular targeted therapies. A phase 
I clinical trial testing the effects of Pembrolizumab in 
combination with ramucirumab (NCT02443324) is 
currently recruiting and may be particularly effective in 
this subgroup. This group was also enriched for TP53 
mutations.

The GS TCGA subtype[7] (20% of all cases) comprised 
predominantly of tumours classified as diffuse GC, 
with poorer survival compared to the intestinal type 
GC, by the Lauren classification and was associated 
with mutations in CDH1 and RHOA genes as well as 
aneuploidy. At this stage it is unclear whether this 
subtype would benefit from existing immunotherapies 
and warrants specific investigation.

With the significant clinical benefits from immune 
checkpoint blockade drugs, novel opportunities are 
emerging for GC treatment. To improve effectiveness 
of GC immunotherapy, novel criteria based on different 
molecular and immunological subtypes to predict 
potential response and prognosis are needed. Galon et 
al[88,89] have established an “immunoscore” in colorectal 
cancer based on the number and location of CD3+ 
and CD8+ cells[90]. This type of classification could be 
useful in GC. While we have focused on the immune 
component of the tumour microenvironment we must 
not lose sight that GC remains heterogeneous and while 
we may co-opt the immune system in destroying some 
cancers others may have mechanisms of resistance 
to avoid this form of killing. Therefore combination 
therapies may be the way of the future and we will 
need to be cognizant of the ensuing toxicities these 
therapies may invoke. It is important to also recognize 
the microenvironmental and immunological impact of 
the more traditional chemotherapeutics[91]. Examples 
include oxaliplatin, a platinum drug used often in GC 
chemotherapy which induces immunogenic cell death 
and provides a release of tumour antigens[92]. 

CONCLUSION
In most communities GC is diagnosed late and sub
sequently has poor prognosis. There are now exciting 
new therapies that utilise the host’s immune system 
to fight back. However, data to date suggests we need 
to use these therapies judiciously to derive maximum 
benefit. GC is molecularly and immunologically hetero
geneous, and this heterogeneity influences the tumour 
microenvironment in different ways. Returning to 
the battlefield analogy, the immunogenic or immune 
activating GC subtypes, EBV and MSI, are likely to 

be more conspicuous to the immune system by the 
expression of larger numbers of neo-antigens and other 
foreign epitopes that stimulate a vigorous immunological 
response that can be augmented by current therapies 
(Figure 2C), whereas the less immunogenic GCs, the 
CIN and GS subtypes, are more stealthy, with less 
antigen presentation providing a stronger defensive 
system against the host immune attack (Figure 2D). 
Like the battles in the wars of old, you need to choose 
your battlefield carefully and one of the key strategies, 
as enunciated by Sun Tzu, is to “know thy enemy”, 
which translates to understanding the molecular nature 
of the cancer you are treating.
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