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Abstract
The mechanisms that promote liver injury in non-

alcoholic fatty liver disease (NAFLD) are yet to be 
thoroughly elucidated. As such, effective treatment 
strategies are lacking and novel therapeutic targets 
are required. Iron has been widely implicated in the 
pathogenesis of NAFLD and represents a potential 
target for treatment. Relationships between serum 
ferritin concentration and NAFLD are noted in a majority 
of studies, although serum ferritin is an imprecise 
measure of iron loading. Numerous mechanisms 
for a pathogenic role of hepatic iron in NAFLD have 
been demonstrated in animal and cell culture models. 
However, the human data linking hepatic iron to 
liver injury in NAFLD is less clear, with seemingly 
conflicting evidence, supporting either an effect of 
iron in hepatocytes or within reticulo-endothelial cells. 
Adipose tissue has emerged as a key site at which iron 
may have a pathogenic role in NAFLD. Evidence for 
this comes indirectly from studies that have evaluated 
the role of adipose tissue iron with respect to insulin 
resistance. Adding further complexity, multiple strands 
of evidence support an effect of NAFLD itself on iron 
metabolism. In this review, we summarise the human 
and basic science data that has evaluated the role of 
iron in NAFLD pathogenesis.
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Core tip: Iron represents a potential therapeutic 
target for the treatment of non-alcoholic fatty liver 
disease (NAFLD). There are extensive data that link 
iron and disease pathogenesis in human studies as 
well as animal and cell culture models. Studies have 
predominantly focussed on the role of hepatic iron, 
although recently adipose tissue has emerged as a site 
at which iron may promote insulin resistance. In this 
review, we summarize the human and basic science 
data that have evaluated the role of iron in NAFLD 
pathogenesis.
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INTRODUCTION
The worldwide epidemic of obesity has led to a dis­
turbing rise in the incidence of non-alcoholic fatty 
liver disease (NAFLD) and its complications[1,2]. 
NAFLD, regarded as the “hepatic manifestation of 
the metabolic syndrome”, is now estimated to affect 
one billion individuals worldwide[1]. Non-alcoholic 
steatohepatitis (NASH), the aggressive form of the 
disease, can lead to cirrhosis and liver failure[3,4]. 
Indeed, NASH is predicted to soon become the 
predominant cause of advanced liver disease in 
the developed world[5] and the leading indication 
for liver transplantation[4]. NAFLD has also been 
increasingly recognised as an independent risk factor 
for the development of type Ⅱ diabetes mellitus, 
cardiovascular disease and hepatocellular carcinoma, 
the latter of which may occur even in non-cirrhotic 
individuals[3,6,7]. The factors that predispose patients 
to the development of steatohepatitis and fibrosis in 
NAFLD are not well understood and effective treatment 
strategies are lacking[8]. 

There is evidence that a modest degree of iron 
overload is associated with more advanced liver 
injury in NAFLD, although the mechanisms by which 
this might occur remain unclear[9,10]. A syndrome 
of increased hepatic iron in conjunction with the 
metabolic syndrome is commonly observed and has 
been termed dysmetabolic iron overload syndrome[9,11]. 

To date, the majority of studies have focussed 
mainly on the role of hepatic iron and mutations in 
the HFE gene, the gene mutated in type 1 hereditary 
hemochromatosis. Recently, however, it has become 
increasingly evident, that adipose tissue iron plays an 
important role in the pathogenesis of insulin resistance 
and therefore possibly NAFLD[12,13]. 

In this review, the potential involvement of iron in 
NAFLD pathogenesis is explored using the available 
data from human studies, as well as animal and cell 
culture models. In addition, the counterview that 
implicates NAFLD itself in the dysregulation of iron 
metabolism is outlined.

HUMAN IRON HOMEOSTASIS 
Iron is an essential nutrient required for erythropoiesis 
and multiple cellular metabolic functions[14,15]. An 
excess of iron is also, however, a potent cause 
of cellular injury from oxidative stress due to the 
generation of reactive oxygen species by the Fenton 
reaction[16]. Under usual conditions, intracellular 

protection from iron-induced oxidative stress is 
facilitated by sequestration of iron within ferritin[14]. 

Total body iron homeostasis is achieved predo­
minantly by regulation of iron release from duodenal 
enterocytes and macrophages by the hormone 
hepcidin[15,17,18]. Predominantly produced by hepato­
cytes, hepcidin binds the enterocyte basal membrane 
iron transporter, ferroportin, causing its internalisation 
and eventual degradation, thus reducing iron release 
from duodenal enterocytes and other cells[15,18]. 
Ferroportin has been shown to be highly expressed in 
enterocytes, reticuloendothelial cells, and more recently, 
in adipocytes[15,19]. Thus, hepcidin regulates systemic 
iron balance by reducing intestinal iron absorption[15]. 

An understanding of the regulation of hepcidin 
(HAMP) gene expression has come about from 
studying human subjects with various forms of 
hereditary hemochromatosis, and by analysis of gene 
knockout rodent models. Hepcidin is regulated by 
many factors, including erythropoiesis, iron status, 
intracellular oxygen tension and inflammation[18]. 

Pathologic states of iron overload often lead to 
saturation of serum iron transporter, transferrin. As a 
result, serum levels of toxic non-transferrin bound iron 
(NTBI) rise. NTBI is readily absorbed by tissues such 
as the liver and cardiac muscle[18]. Tissue iron overload 
with NTBI results in increased oxidative stress and 
lipid peroxidation, leading to organ dysfunction. The 
common causes of iron overload include hereditary 
hemochromatosis, iron loading anemias (such as 
thalassemia) and parenteral iron overload from 
multiple blood transfusions[18]. 

INSULIN RESISTANCE AND THE 
PATHOGENESIS OF NAFLD
It has become evident that insulin resistance is as­
sociated with a more subtle degree of iron overload 
than is seen in hereditary hemochromatosis and 
thalassemia[9,10,12]. This is important as insulin resistance 
is central to the pathogenesis of NAFLD[3,20]. The 
presence of abdominal obesity and accompanying insulin 
resistance provide fertile conditions for the development 
of NAFLD. Indeed, NAFLD is often considered as the 
hepatic manifestation of insulin resistance and the 
metabolic syndrome[3]. Central obesity is associated 
with adipose tissue dysfunction, characterised by 
infiltration of adipose tissue with macrophages[21]. 
Dysfunctional adipose tissue produces adipokines that 
promote the development of insulin resistance[12]. 
The key sites of insulin action and resistance are the 
liver, skeletal muscle and adipose tissue[22]. In adipose 
tissue itself, insulin resistance potentiates lipolysis 
of triglycerides by hormone sensitive lipase[23]. This 
generates the majority of free fatty acid flux to the 
liver in NAFLD[24]. Insulin resistance in skeletal muscle 
leads to reduced uptake of glucose, whereas in the liver, 
insulin resistance enhances gluconeogenesis[25]. The 
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resultant compensatory hyperinsulinemia and relative 
hyperglycemia promote hepatic de novo lipogenesis and 
cholesterol synthesis and reduced catabolism of free 
fatty acid by oxidation[3]. 

Increased hepatic free fatty acid flux resulting from 
this dysregulation of hepatic lipid metabolism and more 
importantly by adipose tissue lipolysis, appears to be 
central to the pathogenesis of steatohepatitis via direct 
lipotoxicity[3,26,27]. A number of other mechanisms have 
been well demonstrated to be responsible for not only 
the development of steatohepatitis, but also steatosis 
itself. These mechanisms include dysregulated adipo­
kine production[28,29], abnormal bile acid signalling[30], 
cytokine mediated effects[31], in particular as a result 
of increased gut cell permeability and TLR-4 receptor 
activation[32], endoplasmic reticulum stress[33,34] and 
oxidative stress[31,35]. Hepatocellular injury promotes 
cell death and steatohepatitis through a combination 
of apoptosis and cell necrosis[3]. These mechanisms 
also contribute to hepatic stellate cell activation and 
resultant development of hepatic fibrosis[36]. 

IRON AND INSULIN RESISTANCE
The association between hyperferritinemia, insulin 
resistance and type Ⅱ diabetes is compelling. There is 
an increased prevalence of type Ⅱ diabetes associated 
with two common iron overload conditions, HFE-
hereditary hemochromatosis (HH) and β-thalassemia 
major[12]. HH can lead to β-cell pancreatic loss and 
type Ⅰ diabetes, but whether HH causes type Ⅱ 
diabetes by unmasking insulin resistance through 
pancreatic β-cell loss or by causing insulin resistance 
itself remains controversial[12]. Animal data suggest 
that insulin sensitivity is enhanced in HH, but it has 
been difficult to tease out the relative contributions of 
β-cell loss and insulin resistance in human studies[12,37]. 
The case of β-thalassemia major is more clear, with 
evidence suggesting that both β-cell loss and insulin 
resistance are at play[12]. 

In those who have neither hereditary hemochro­
matosis nor another cause of overt iron overload 
such as thalassemia, the evidence for a pathogenic 
role of iron is also strong. In the National Health and 
Nutritional Education Survey (NHANES), 9486 US 
adults were studied[38]. The odds ratios for developing 
diabetes in those with elevated serum ferritin levels 
were high at 3.61 for women and 4.94 for men[38]. A 
further analysis of the NHANES cohort revealed that 
even after accounting for other factors such as age, 
race, alcohol consumption and C-reactive protein 
(CRP) levels, elevated serum ferritin concentration 
still accounted for a two-fold increase in the risk 
of the metabolic syndrome[38]. The risk of diabetes 
itself, has been shown to be strongly linked to serum 
ferritin concentration in healthy women, even within 
the normal range of ferritin[39]. In 2012, the European 
Prospective Investigation in Cancer and Nutrition 
(EPIC)-Potsdam study followed 27548 European adults 

for 7 years[40]. In this time, 849 subjects developed 
type Ⅱ diabetes. Serum ferritin concentration in the 
highest vs lowest quintile had a relative risk (RR) of 1.73 
for the development of diabetes. This observation was 
made after adjusting for multiple variables including 
age, sex, body mass index, waist circumference, sports 
activity, education, occupational activity, alcohol, liver 
function test parameters, high sensitivity CRP (hsCRP), 
adiponectin, high density lipoprotein (HDL) and serum 
triglyceride concentration[40]. 

A recent review of 43 studies further supported 
these findings[41]. In this meta-analysis, the cohorts 
with the highest and lowest quartile of serum ferritin 
concentration were compared. The multivariable 
adjusted RR for the presence of diabetes was 1.91. 
This finding was consistent after including only studies 
that adjusted for inflammation (mostly hsCRP), RR 
1.67. This related to a serum ferritin that was 43.54 
ng/mL higher in type Ⅱ diabetics compared to 
controls. Studies assessing the relationship between 
type Ⅱ diabetes and transferrin saturation have 
yielded conflicting results[41-43]. 

The persistence of association between serum 
ferritin concentration and type Ⅱ diabetes after 
correction for hsCRP implies that inflammation alone 
does not entirely explain the association between 
hyperferritinemia and diabetes. However, it might 
be argued that even hsCRP may not reflect subtle 
degrees of inflammation as strongly as serum ferritin 
concentration. 

SERUM FERRITIN CONCENTRATION AND 
NAFLD
The association between hyperferritinemia and 
histologic markers of liver injury in NAFLD is reasonably 
strong. In 2004, Bugianesi et al[44] found that serum 
ferritin concentration is not associated with hepatic 
iron concentration in NAFLD, but is a marker of severe 
histologic damage. Kowdley et al[45] demonstrated in the 
large NASH Clinical Research Network (CRN) cohort 
of 628 patients that a serum ferritin concentration 
greater than 1.5 times the upper limit of normal was 
independently associated with advanced fibrosis and 
increased NAFLD activity score. Sumida et al[46], have 
demonstrated the utility of incorporating serum ferritin 
into a clinical scoring system to predict steatohepatitis 
in Japanese patients with NAFLD. 

However, other studies have not found such a clear 
association[47,48]. Notably, Valenti et al[47] showed in an 
Italian cohort of 587 patients with NAFLD that serum 
ferritin concentration did not predict fibrosis stage > 1, 
although the proportion of patients with fibrosis stage 
> 1 in this cohort was relatively small. As would be 
expected, serum ferritin concentration was higher in 
the patients who had hepatic iron staining than those 
who did not, but those with non-parenchymal iron had 
much higher ferritin values (606 μg/L) than those with 
hepatocellular iron (serum ferritin 354 μg/L) P < 0.0001. 

8114 September 28, 2016|Volume 22|Issue 36|WJG|www.wjgnet.com

Britton LJ et al . Iron and NAFLD



8115 September 28, 2016|Volume 22|Issue 36|WJG|www.wjgnet.com

shown to correlate with hepatic immunohistochemical 
staining for 7,8-dihydro-8-oxo-2’ deoxyguanosine 
(8-oxodG), a product of oxidative damage to DNA[54]. 
In this study, staining for 8-oxodG was significantly 
reduced with venesection[54]. Patients with NASH 
have been shown to have elevated levels of serum 
thioredoxin, a marker of oxidative stress, which 
declined following venesection[55]. In cultured AML-12 
hepatocytes iron generated oxidative stress and led to 
impaired insulin signalling[56]. 

Iron also appears to have a direct role in the ac­
tivation of hepatic macrophages and hepatic stellate 
cells. In humans with NAFLD, reticulo-endothelial 
iron has been shown to be associated with apoptosis, 
indicated by increased serum cytokeratin-18 (CK-18) 
fragments and increased hepatic TUNEL staining of 
liver sections[57]. In vitro, iron activates inflammatory 
signalling via hepatic macrophages[58]. Recently, dietary 
iron loading in leptin-receptor deficient mice was found 
to lead to inflammasome and immune cell activation 
with hepatocellular ballooning[59]. Furthermore, ferritin 
treatment of rat hepatic stellate cells has been shown 
to lead to a pro-inflammatory cascade by nuclear 
factor kappaB signalling[60]. 

Iron may also contribute to liver injury in NAFLD 
by generating endoplasmic reticulum stress[61]. In a 
mouse model of dietary iron overload and NAFLD, iron 
induced an unfolded protein response and endoplasmic 
reticulum stress[61]. Additionally, hepatic iron loading in 
mice up-regulates cholesterol biosynthesis pathways 
and this has been proposed as an additional mechanism 
of iron-induced liver injury in NASH[62]. The proposed 
mechanisms relating to hepatic iron in NAFLD patho­
genesis are summarized in Table 1.

A number of studies have looked at the relationship 
between hepatic iron concentration (HIC) and liver 
injury in NAFLD. George et al[63] showed that HIC was 
associated with increased fibrosis in 51 patients with 
NASH. Three subsequent and similar studies, however, 
have failed to reproduce these results[44,64,65]. Two much 
larger studies have looked at the association between 
hepatic iron (Perls’) staining and liver histology in 
NAFLD with conflicting results. In a study of 587 
Italian patients with NAFLD, Valenti et al[47] found that 
hepatocellular rather than reticulo-endothelial iron was 
associated with 1.7 fold increased risk of significant 
fibrosis compared to those without iron staining. 
Reticulo-endothelial iron was found to have a trend 
towards an association with a lower risk of significant 
fibrosis. Nelson et al[66], however, found seemingly 
contradictory results, with reticulo-endothelial iron 
being associated with greater risk of advanced fibrosis, 
lobular inflammation and hepatocellular ballooning in 
the US cohort of 849 patients enrolled in the NASH 
CRN database. In this study, the mean NAFLD Activity 
Score (NAS)[67] was 4.8 in the reticulo-endothelial iron 
staining group compared to 4.0 in the hepatocellular 
iron staining group. The exact reasons for this 

This might suggest that macrophage iron can cause 
hyperferritinemia either by direct release of ferritin 
or cytokine-mediated stimulation of ferritin release 
by other cells. An earlier study by Chitturi et al[49] of 
93 patients with NASH, 33% of whom had advanced 
fibrosis, found that serum ferritin concentration was 
not an independent predictor of advanced fibrosis.

In a large prospective population-based study from 
South Korea, 2410 healthy men aged 30 to 59 without 
sonographic evidence of steatosis were followed 
for 7545.9 person years[50]. Of these, 586 (24.3%) 
patients developed ultrasonographically detectable 
fatty liver. Baseline serum ferritin concentration was 
found to be a strong predictor of steatosis. This 
evidence is notable as it demonstrates an association 
early in the disease suggesting that the process that 
elevates serum ferritin concentration is contributing 
to NAFLD pathogenesis very early in the disease and 
pre-dates the development of steatosis. This implies 
that the ferritin association with NAFLD is not simply 
a result of NAFLD itself causing hyperferritinemia. 
Moreover, the results might tend to suggest that the 
link between hyperferritinemia and NAFLD could be 
explained by insulin resistance.

The strengths of these studies lie in the large 
numbers of individuals studied. However, serum ferritin 
concentration is an imprecise surrogate for body iron 
stores and its associations with both NAFLD and, type 
Ⅱ diabetes are clearly not enough to attribute causality 
with respect to iron in either of these conditions.

HEPATIC IRON AND NAFLD
The role of hepatic iron in NAFLD pathogenesis has 
largely focussed on the generation of oxidative stress 
by iron. Given that oxidative stress is an established 
key component of NASH pathogenesis[31], a role 
for iron mediating liver injury in NAFLD via this 
mechanism has been well studied. In NASH, oxidative 
stress leads to cell death via depletion of ATP, NAD 
and glutathione, and by direct damage to DNA, lipids 
and proteins within hepatocytes[31]. Furthermore, 
oxidative stress leads to an increase in the production 
of pro-inflammatory cytokines and a fibrogenic 
response[31]. Not only does oxidative stress potentiate 
steatohepatitis, characterised by inflammation and 
cell death, it can also increase steatosis by preventing 
the secretion of very low density lipoprotein (VLDL) by 
causing increased degradation of apolipoprotein B100 
(ApoB100)[51]. In cultured primary rodent hepatocytes, 
the iron chelator desferrioxamine was able to restore 
ApoB100 and enhance VLDL export[51]. 

Reduced oxidative stress has been observed in 
the livers of rats fed an iron-deficient diet and after 
phlebotomy[52]. In a series of liver biopsies from 
patients with NAFLD, increased hepatic iron stores 
were found to be associated with increased lipid 
peroxidation[53]. In humans, iron overload has been 
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discrepancy between these two large well-designed 
studies is unclear, although it is noted that there were 
some differences between the Italian and US cohorts 
including the frequency of steatohepatitis and beta-
globin mutations[9]. 

One might argue, however, that the sum of the 
human data indicates that if hepatic iron does promote 
liver injury in NAFLD, then its effect is likely to be 
relatively small.

ADIPOSE TISSUE IRON AND INSULIN 
RESISTANCE
In recent years, there has been increasing recognition 
of the role of adipose tissue dysfunction in the 
development of insulin resistance and NAFLD[28]. 
Adipose tissue is undoubtedly a significant endocrine 
organ[68]. It is comprised of adipocytes (fat cells), 
a mixture of cells categorised as the stromal-
vascular fraction including reticuloendothelial cells, 
predominantly macrophages[68]. Central obesity and the 
metabolic syndrome are characterised by infiltration 
of bone marrow-derived macrophages into adipose 
tissue[21,69]. Macrophage accumulation in adipose tissue 
is associated with obesity and the development of 
NAFLD[21,28]. A loss of regulatory T-cells and an increase 
in CD8+ effector T-cells characterises visceral adipose 
tissue in insulin resistance[28,70,71]. The net effect of this 
adipose tissue infiltration with immune cells is a state 
of systemic low grade inflammation that is mediated 
by a number of adipose tissue cytokines, termed 
adipokines[68]. Ectopic fat, such as omental (visceral) 
and epicardial or mediastinal fat, is dysfunctional tissue 
that is more likely to undergo inflammation[72]. In the 
case of visceral fat, this inflammation is particularly 
problematic with regards to liver physiology due to the 
direct transfer of adipokines to the liver via the portal 
vein[29]. 

Adipokines are polypeptides that are expressed 
significantly in adipose tissue in a regulated manner[29]. 
Of these, a number of important macrophage derived 
adipokines appear to play an important role in the 
development of NAFLD. Both tumour necrosis factor 
alpha and interleukin-6 have a pro-inflammatory 

role that may contribute directly to liver pathology 
in an endocrine fashion, and also via paracrine 
mechanisms that influence the production of other 
adipokines from adipocytes[28]. Adipokines produced by 
adipocytes which have been shown to influence NAFLD 
pathogenesis include adiponectin, leptin, resistin, 
suppressor of cytokine signalling-3 and secreted 
frizzled related protein 5[28,29]. 

Adipose tissue has been proposed as a site at which 
iron may have a major pathogenic role in NASH[9]. 
Unfortunately, to our knowledge, direct human data 
reporting iron concentrations in visceral adipose tissue 
and its significance in disease are lacking and this area 
represents both a target for future research and a 
technical challenge.

Evidence for the role of adipose tissue iron in 
NAFLD pathogenesis mainly comes indirectly from 
the association between adipocyte iron and insulin 
resistance. In 2012, Gabrielsen et al[19] demonstra­
ted that adipocyte iron reduced adiponectin gene 
expression, serum adiponectin levels and glucose 
tolerance in an adipocyte-specific Ferroportin 
knockout mouse model. Using the novel Ap2-Cre:
Fpnfl/fl model they were able to selectively load iron 
into adipocytes. The model was developed following 
the observation that adipocytes are high expressers of 
ferroportin[19]. Using cultured pre-adipocytes (3T3-L1 
cells) and chromatin immunoprecipitation analysis, 
iron was shown to alter acetylation and binding of 
the forkhead transcription factor Foxo1 to adiponectin 
gene promoter binding sites. In a human arm of the 
same study, they were able to demonstrate an inverse 
correlation between serum ferritin concentration and 
adiponectin that was independent of inflammation. This 
observation has subsequently been replicated in 492 
Dutch individuals with risk factors for type Ⅱ diabetes[73]. 
Moreover, in obese patients undergoing bariatric 
surgery, two gene expression markers of increased 
adipocyte iron loading: increased hepcidin gene (HAMP) 
mRNA expression and decreased transferrin receptor 1 
(Tfr1) mRNA expression were associated with reduced 
quantities of Adipoq (adiponectin gene) mRNA[74].

Iron-mediated dysregulation of two other adi­
pokines has been demonstrated in rodent models. 
Dongiovanni et al[75] have shown that dietary iron 
loading in mice leads to increased expression of 
resistin via SOCS-3 which are mediators of insulin 
resistance. Recently, data from mouse and 3T3-L1 
cell culture models found that iron down-regulates 
the expression of the appetite-suppressing adipokine, 
leptin - a hormone strongly implicated in NAFLD 
pathogenesis[29,76]. Intriguingly, this may help explain 
the symptom of anorexia in iron deficiency, although 
the significance of these findings in NAFLD is uncertain.

Adipose tissue iron has been shown to directly 
enhance lipolysis in isolated rat adipocytes and 
cultured 3T3-L1 cells[77,78]. As adipose tissue is the 
predominant source of free fatty acid flux to the 
liver[24], this is potentially a very important mechanism 

Table 1  Proposed mechanisms for the involvement of iron in 
non-alcoholic fatty liver disease pathogenesis

Site Mechanism

Hepatic iron Oxidative Stress[31,53-57]

Reduced VLDL export[51]

Macrophage activation[57-59]

Stellate cell activation[60]

Endoplasmic reticulum stress[61]

Increased cholesterol synthesis[62]

Adipose tissue iron Reduced adiponectin[19,73,74]

Reduced leptin[76]

Increased resistin[75]

Increased lipolysis[77,78]
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of adipose tissue iron action in NAFLD, although these 
findings are yet to be demonstrated in animal models 
or humans. Potential mechanisms relating to adipose 
tissue iron in NAFLD pathogenesis are summarized in 
Table 1.

In summary, iron has been increasingly recognised 
as a regulator of adipose tissue function. Evidence 
supports a role for iron in the regulation of adipose 
tissue inflammation, adipokine regulation and adipose 
tissue lipolysis. At present, most of the evidence 
supports a role for adipose tissue iron in the pathogenesis 
of insulin resistance and type Ⅱ diabetes, although 
clearly these mechanisms may be highly relevant in 
NAFLD. 

IRON-RELATED GENETIC 
POLYMORPHISMS IN NAFLD 
PATHOGENESIS
The most common inherited disorder affecting the 
hepcidin-ferroportin axis is type I hereditary hemoch­
romatosis[16,18]. This usually results from homozygous 
p.C282Y mutation of HFE (HFE-hemochromatosis)[79]. 
The additional insult of NAFLD acts as a co-factor for 
the development of liver injury in C282Y homozygotes 
with hereditary hemochromatosis[80]. In non-hemo­
chromatotics, the broader significance of HFE gene 
mutations as co-factors in the pathogenesis of NAFLD 
has received intense interest in recent years. The two 
most significant HFE mutations in Caucasian populations 
are the p.C282Y and p.H63D mutations[18]. 

Heterozygosity for the C282Y mutation is found in 
approximately 10%-11% of individuals in Caucasian 
populations[81,82]. C282Y heterozygosity is associated 
with a mild increase in serum iron markers, but not 
with overt hemochromatosis[82]. 

Many studies have looked at the association 
between HFE gene mutations and the incidence of 
NAFLD, but with conflicting results. These studies may 
have been limited by inadequate statistical power and 
heterogeneity of the cohorts. In 2011, Hernaez et al[83] 
published the results of a meta-analysis of 13 case-
control studies specifically aimed at determining the 
association between HFE gene mutations and NAFLD. 
In contrast to a previous meta-analysis by Ellervik et al[84], 
they found no association between the C282Y/C282Y 
genotype and NAFLD. Similarly the presence of neither 
the C282Y mutation nor the H63D mutation resulted 
in an increased risk of NAFLD in Caucasians. In a 
sub-analysis of three studies of non-Caucasians, an 
association was found between the presence of the 
H63D mutation and the presence of NAFLD[83].

A limitation of the meta-analysis, as noted by its 
authors, is that it was not able to determine whether 
HFE gene mutations might have a disease modifying 
role in subjects after they have developed NAFLD[83]. 
This study appears to show that HFE gene mutations 
are generally no more common in subjects with NAFLD 

than in those without, however, the investigators 
were unable to determine whether those patients 
with NAFLD and HFE gene mutations are more likely 
to develop steatohepatitis and progressive liver injury 
than those without mutations. 

The issue concerning the effect of heterozygous 
mutations in progression to NASH was highlighted by 
an analysis of HFE mutations within the NASH CRN 
cohort[85]. This is a well-defined cohort of patients 
with biopsy proven NAFLD. Subjects with the H63D 
mutation had higher steatosis grades and NAS than 
their wild-type controls. However, those NAFLD 
patients with C282Y mutations had lower rates of 
hepatocyte ballooning and steatohepatitis.

Our group has previously shown that mice with 
homozygous knockout of the Hfe gene develop severe 
steatosis, steatohepatitis and early fibrosis when fed 
a high fat diet, whereas wild-type mice develop mild 
steatosis and no steatohepatitis or fibrosis when fed the 
same diet[86]. Hfe null mice had only modest increases 
in HIC, and it was proposed that the increased histologic 
injury seen in these animals may have been due to 
the lack of HFE protein rather than iron overload per 
se. Hfe null mice demonstrated dysregulated hepatic 
lipid metabolism with increased transcription of genes 
associated with de novo lipogenesis and reduced 
transcription of those associated with fatty acid 
oxidation[86]. 

A number of other non-HFE iron-loading poly­
morphisms have been proposed as modulators of NAFLD 
pathogenesis[9,87]. Of these, the A736V polymorphism 
of the Trans-membrane protease serine-6 (TMPRSS6) 
gene has been studied in patients with NAFLD. The 
TMPRSS6 gene encodes for matriptase-2, an enzyme 
responsible for hemojuvelin cleavage that inhibits the 
bone morphogenetic protein-6 pathway, thus reducing 
hepcidin expression and increasing duodenal iron 
absorption[18,87]. Of 216 Italian patients with NAFLD, 
38% had the AA genotype, 47% AV and, 15% VV[87]. 
The VV genotype is associated with increased hepcidin 
expression and reduced iron loading and in this study 
was associated with a trend (P = 0.05) towards a 
reduction in hepatocyte ballooning[87].

In summary, human and animal model data sup­
port a role for a co-toxic liver injury in the setting of 
hereditary hemochromatosis and NAFLD. Other more 
mild iron loading phenotypes such as heterozygous 
HFE gene mutations and polymorphisms of TMPRSS6 
may have disease modifying roles in NAFLD, although 
their effect is likely to be small.

CLINICAL TRIALS OF IRON REDUCTION 
THERAPY
Although associations of modest iron overload with 
NAFLD and diabetes appear reasonably well esta­
blished, causality is difficult to determine using these 
studies alone. The most useful information with which 
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to more directly assess causality comes from human 
studies that have assessed the response to iron 
removal by venesection.

Venesection has been shown to improve glucose 
tolerance in healthy individuals and improve insulin 
sensitivity in type Ⅱ diabetics with a high serum 
ferritin concentration[88,89]. Moreover, in patients with 
the metabolic syndrome, venesection has been shown 
to improve metabolic syndrome parameters, including 
reduced blood pressure, blood glucose, glycosylated 
hemoglobin (HbA1C) and low-density lipoprotein/high 
density lipoprotein (LDL/HDL) ratio[90]. In patients with 
NAFLD and carbohydrate intolerance, venesection to 
near iron deficiency (decrease in serum ferritin from 
299 ± 41 μg/L to 15 ± 1 μg/L) not only improved 
insulin sensitivity, as measured by fasting glucose, 
insulin and homeostatic model assessment-insulin 
resistance (HOMA-IR) score, but also improved serum 
alanine aminotransferase levels from 61 ± 5 U/L to 32 
± 2 U/L[91]. 

Two randomised controlled trials investigating 
venesection efficacy in NAFLD have recently been 
published. In a study of 38 Italian patients with NAFLD 
and hyperferritinemia, participants were randomised 
to venesection versus no venesection with liver biopsy 
before and after treatment[92]. Of the 38 enrolled 
participants, 21 underwent liver biopsy at the end of 
treatment. Despite the small numbers, histological 
improvement, defined by an improvement in NAS, was 
seen in 8 of 12 participants in the venesection group 
compared to 2 of 9 participants in the control group (P 
= 0.04)[92]. 

The largest randomised study of venesection in 
NAFLD to date involved 74 Australian participants with 
NAFLD[93]. These included patients with sonographically 
detected NAFLD and a wide range of serum ferritin 
concentration, including many within the normal range. 
Non-invasive assessment was performed to assess 
response to randomised therapy of either venesec­
tion with lifestyle advice versus lifestyle advice alone. 
There was no observed effect of venesection on hepatic 
steatosis determined by magnetic resonance imaging, 
serum ALT or CK-18 fragments. Somewhat surprisingly, 
there was also no effect on static and dynamic mea­
sures of glucose homeostasis including the HOMA-IR 
score and insulin sensitivity index[93].

Overall, although there are promising results from 
small studies, venesection cannot currently be recom­
mended as a suitable therapy for the majority of 
patients with NAFLD[94]. However, whether there are 
sub-groups of non-hemochromatotic NAFLD patients 
with increased iron that would benefit from venesection, 
remains to be determined by further studies.

IRON METABOLISM IN NAFLD
So far, we have discussed the effect of iron on the 
pathogenesis of NAFLD and insulin resistance. It is 
also necessary to consider to what extent NAFLD and 

associated conditions, such as insulin resistance and 
obesity, might themselves mediate iron metabolism.

Serum hepcidin levels are typically elevated in 
individuals with NASH[95]. As this in itself fails to 
explain iron loading in NASH, one might consider 
that dysregulated iron metabolism occurs in NASH 
independently of hepcidin. In this regard, Transferrin 
receptor-1 (Tfr1) has been shown to be upregulated 
as a consequence of a high fat diet in mice which 
may lead to hepatocellular uptake in NAFLD despite 
already increased hepatocellular iron[96]. Also, divalent 
metal transporter 1, which is responsible for import of 
iron from the duodenal lumen into enterocytes is up-
regulated in patients with NASH, despite increased 
serum hepcidin[97]. Another intriguing finding is that 
increased red cell fragility in response to a high fat diet 
in rabbits leads to increased erythrophagocytosis[98]. 
This may explain increases in hepatic reticuloendothelial 
iron that have been observed in some NASH cohorts[66]. 

It seems likely that elevated hepcidin in NASH is 
either a reflection of hepatocellular inflammation or 
simply that increased iron, which induces hepcidin, 
pre-dates the development of NASH. Indeed, hepcidin 
expression appears to be directly enhanced by insulin 
and down-regulated in the setting in insulin resistance, 
thus indicting a possible mechanism for iron loading 
as an early event in the pathogenesis of NAFLD and 
type Ⅱ diabetes[99]. Furthermore, it has been observed 
that hepcidin is expressed in white adipose tissue and 
is increased in obesity[100]. Although the contribution of 
adipose tissue-derived hepcidin to the serum hepcidin 
pool is uncertain, this is another potential factor that 
may explain increased serum hepcidin in NASH. 
Further complexity in these relationships arises when 
one considers that iron deficiency has been shown to 
be associated with obesity and in women with obesity 
and NAFLD[101,102]. Together, these findings suggest that 
the interaction between iron and lipid metabolism is 
multi-faceted. It seems that “just enough” but “not too 
much” iron may be critical in preventing dysfunctional 
lipid metabolism.

If one accepts a causal role for iron in NASH 
pathogenesis, then variations in dietary iron may 
explain much of the spectrum of iron loading in NASH. 
Although there is no specific evidence relating iron 
intake to NASH pathogenesis in humans, increased 
dietary iron, particularly from red meat, seems to 
predispose individuals to the development of insulin 
resistance and type Ⅱ diabetes[103-105]. 

CONCLUSION
In summary, there is considerable evidence that 
links increased iron stores with insulin resistance and 
NAFLD. This includes a number of studies that have 
identified serum ferritin concentration as a predictor 
of liver injury. Hepatic iron itself is attractive culprit 
for liver injury, although the cellular location of iron 
within the liver may vary between genetically distinct 
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populations. Increasingly, adipose tissue iron has been 
linked with adipose tissue dysfunction, including the 
dysregulation of adipokines, enhanced adipose tissue 
lipolysis and adipose tissue inflammation. These are 
plausible candidate mechanisms that may link adipose 
tissue iron to liver injury. However, assessment of 
adipose tissue iron concentrations in individuals with 
well characterised NAFLD remains a goal for future 
studies.

Iron-related genetic polymorphisms, such as 
those of the HFE gene, may contribute to NAFLD 
pathogenesis, although it would appear that, other 
than for individuals with hereditary hemochromatosis, 
the effect of these polymorphisms, is likely to be small. 
The complexity of these relationships between iron and 
NAFLD is further increased when one considers the 
possibility that NAFLD itself is likely to have a number 
of effects on iron metabolism.

Finally, venesection studies have offered a unique 
opportunity with which to assess causality of iron 
loading in the pathogenesis of NAFLD. The available 
data suggest that venesection is unsuitable as a general 
treatment for all patients with NAFLD. Therefore, the 
key for future human studies will be to determine 
whether a subset of patients with NAFLD can be 
identified that might still benefit from therapeutic 
manipulation of iron homeostasis.
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