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Abstract
The successful of transplantation is determined by the 

shared human leukocyte antigens (HLAs) and ABO blood 
group antigens between donor and recipient. In recent 
years, killer cell receptor [i.e. , killer cell immunoglobulin-
like receptor (KIR)] and major histocompatibility com
plex (MHC) class I chain-related gene molecule (i.e. , 
MICA) were also reported as important determinants 
of transplant compatibility. At present, several different 
genotyping techniques (e.g. , sequence specific primer 
and sequence based typing) can be used to charac
terize blood group, HLA, MICA and KIR and loci. These 
molecular techniques have several advantages because 
they do not depend on the availability of anti-sera, 
cellular expression and have greater specificity and 
accuracy compared with the antibody-antigen based 
typing. Nonetheless, these molecular techniques have 
limited capability to capture increasing number of 
markers which have been demonstrated to determine 
donor and recipient compatibility. It is now possible 
to genotype multiple markers and to the extent of a 
complete sequencing of the human genome using next 
generation sequencer (NGS). This high throughput 
genotyping platform has been tested for HLA, and it 
is expected that NGS will be used to simultaneously 
genotype a large number of clinically relevant trans
plantation genes in near future. This is not far from 
reality due to the bioinformatics support given by the 
immunogenetics community and the rigorous improve
ment in NGS methodology. In addition, new develop
ments in immune tolerance based therapy, donor 
recruitment strategies and bioengineering are expected 
to provide significant advances in the field of trans
plantation medicine. 

Key words: Transplantation; ABO blood group; Human 
leukocyte antigen; MICA; Killer cell immunoglobulin-like 
receptor; Graft rejection; Graft vs  host disease

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Transplantation is a systematic medical pro
cedure for patients with organ failure and haema
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and recipient are determined by several genetic markers 
which include matching for ABO blood group, human 
leukocyte antigen, MICA and killer cell immunoglobulin-
like receptors. The elucidation of genes code for these 
markers of tissue identity reviewed here and significant 
advancement in the field of transplant immunology are 
expected to have a positive impact on transplantation 
medicine. These include both the waitlisted and trans
planted patients. 
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INTRODUCTION
Transplantation is a systematic medical procedure 
for patients with organ failure and haematological 
disorders[1,2]. Transplantation can be classified into four 
categories: Autograft, isograft, allograft and xenograft 
based on the origins and the recipients of the grafts 
(cells, tissues or organs). In autograft transplantation 
(also known as autologous transplantation), a graft 
is taken and transplanted from different parts of 
the same individual. The processes of transferring 
grafts between genetically identical and non-identical 
individuals of the same species are known as isograft 
and allograft transplantation, respectively. In contrast, 
xenograft refers to the transplantation of grafts 
between two different species such as from baboon 
to human. Implantation of human cancer cells in mice 
for tumour study is also assumed to be xenograft 
transplantation[3,4].

The current practice of allograft transplantation is 
to have as many match for ABO and human leukocyte 
antigen (HLA) loci as possible between the donor and 
recipient. However, this is not the case for isograft and 
autograft as the transplanted graft originated from the 
genetically identical resources. Incompatibility between 
donor and recipient will cause rejection since the graft 
will be considered as non-self by the recipient’s immune 
surveillance and the rate of graft rejection will vary 
depending on time courses, types of tissue or organ 
grafted and the immune responses involved. 

REJECTION AND GRAFT VS HOST 
DISEASE
In general, there are three types of graft rejections, i.e., 
hyperacute, acute and chronic rejection[4]. These types 
of rejections are categorized based on the speed that the 
rejection occurs. For hyperacute rejection, this process 
may occur within minutes or hours, and is usually not 
longer than 24 h. Sometimes, hyperacute rejection may 
occur immediately during the surgery process. This type 

of rejection is due to preformed alloantibodies against 
the mismatched ABO and HLA antigens between patient 
and donor. The alloantibodies may exist due to previous 
transplantation or transfusion, pregnancy or infections[5]. 
This pre-existing antibody can activate the complement 
system and cause injury to the endothelial cells which 
will then lead to platelet adhesion and thrombosis. 
Therefore, the graft will never be vascularised and the 
organ must be removed immediately. The hyperacute 
rejection may be managed with systematic antibody 
screening and cross matching between donor and 
recipient[6].

The most common type of graft rejection is acute 
rejection. The onset of rejection varies from weeks to 
months and is largely attributed to HLA incompatibility. 
This type of rejection involves both cellular- and humoral-
mediated immunity. However, the cellular-mediated 
immune responses are more significant through either 
direct recognition of non-self HLA molecules on the 
surface of the graft or indirect antigenic peptide pre
sentation by self HLA molecules to T cells[7-9] (Figure 
1). The CD4+ T cells will also secrete several types of 
cytokines such as interleukin-4 (IL-4) and IL-2. These 
cytokines will then lead to several mechanisms including 
inflammation, recruitment of other inflammatory cells 
and may also induce T and B cell proliferations[9]. The 
major histocompatibility complex (MHC) class I chain-
related gene A (MICA) molecules are also important 
markers of tissue identity and have been implicated in 
transplant immunology[10,11]. The stress-induced MICA 
has previously known as PERB11.1 glycoproteins and 
are coded for by the gene located on the classical class 
I subregion of MHC[12] (Figure 2) and incompatibility 
between the donor and recipient for the MICA antigen 
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Figure 1  Schematic diagram of human leukocyte antigen class I and II 
antigenic peptide presentation to CD8+ T and CD4+ T cells, respectively. 
HLA: Human leukocyte antigen.



will trigger cytotoxic activity of lymphocytes (CD8+ 
and γδ T cells) and natural killer (NK) cells[11,13-15] (see 
the following sub-sections). The role of MICA in graft 
rejection and donor specific antibodies to MICA antigens 
have been reported by several others[11,16-18]. 

The third type of rejection is chronic rejection which 
takes place months to years following transplantation 
procedure. It induces chronic damage via the production 
of cytokines and alloantibodies which activate the 
classical pathway of complement system[19,20]. However, 
the actual mechanism of this rejection is not very well 
understood. It is usually characterized by fibrosis and 
arteriosclerosis, due to extensive proliferation of smooth 
muscle cells. Repairing process of damaged tissues and 
macrophages activation in chronic rejection can lead to 
fibrosis formation[21-23]. 

The transplanted allograft can also trigger immune 
reactions [i.e., graft vs host disease (GVHD)] against 
mismatched antigens possessed by the recipients. 
The GVHD is predominantly occurs in bone marrow 
transplantation which involves alloreactivity of donor’s 
lymphocytes against the incompatible tissues of the imm
une-suppressed host [8]. However, improved outcomes 
were observed in haplo-identical (i.e., a single HLA 
haplotype-mismatched) stem cell transplantation[24-26]. 
In this context, donor’s NK cells will recognize leukaemia 
cells as non-self and initiate alloreactivity (i.e., graft 
vs leukaemia effect) against the cancerous cells after 
haplo-identical stem cell transplantation[27-29]. The 
inhibitory and alloreactivity of NK cells are determined 
by HLA molecules which acting as ligands (Table 1) 
for their immunoglobulin-like receptors [i.e., killer cell 
immunoglobulin-like receptors (KIRs)][29,30] (see the 

following sub-sections). Thus, this receptor-ligand incom
patible might lead to either NK alloreactivity against 
transplanted graft or GVHD. Our understanding of this 
immune surveillance has provided the basis for the adop
tive infusion of NK cells as part of immunological based 
modality in transplantation and ultimately reduce the 
potential toxicity effects of other immunosuppression 
agents[29,31,32] (see later).

MANAGEMENT OF GRAFT REJECTION
The immunosuppressive therapy is used to increase the 
survival rate of the graft, especially during acute rejection. 
However, this therapy cannot be used for chronic 
rejection since it is difficult to manage. This therapy does 
not only involve drugs but also antibodies[33,34]. Examples 
of the drugs that have been used in immunosuppressive 
therapy are like mycophenolate mofetil, cyclosporine, 
tacrolimus and sirolimus[35-38]. Each of these drugs 
has their own mechanism of action which will result in 
immune cells suppression. For example, mycophenolate 
mofetil is administered to block proliferation of lym
phocytes by inhibiting the key enzyme that is important 
for purine synthesis and DNA replication[36] while cyclo
sporine is given to inhibit transcription factor for T-cell 
activation[39,40]. For antibodies, a number of monoclonal 
and polyclonal antibodies have been given to the patients 
in preventing graft rejection. Most of these antibodies 
are specific for T cells or T cell sub-populations and they 
are very effective for blocking T cells activation and 
binding[41,42]. 

However, most of the immunosuppressive agents 
can cause various side effects to the recipient on their 
long term use. Besides that, the immunosuppression 
effects of the agents are not specific only on the graft, 
but also attack the overall body systems including 
the lymphocyte maturation. Hence, this will put the 
recipient at a high risk of getting other infections, can
cer, cardiovascular diseases and metabolic bone dis
eases[33,43-45]. Additionally, the recipient will have a chance 
of getting transplant rejection once they stop taking 
these immunosuppression agents. As an alternative, 
researchers are working on finding a new therapy that 
maintains the health of the graft without compromising 
the immune system. This new method involves inducing 
immune tolerance and mainly focus on T cell depletion 
in thymus (i.e., central tolerance) and suppression of 
mature T cells in lymph nodes (i.e., peripheral toler
ance)[20,46]. 

The key element in tolerance induction is specificity, 
which means the recipient immune system is not com
pletely paralyzed. For example, the traditional antithy
mocyte globulin (TGA) was used as immunosuppressive 
agent drugs to prevent an acute rejection in organ 
transplantation[47-49]. As an alternative, this treatment 
is replaced with another antibody known as anti-IL-2Rα 
receptor antibodies. This type of antibody is widely used 
to replace TGA as it does not cause chronic expression 
of cytokines and improves the development of immune 
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  KIR Alleles Protein variants HLA ligands

  2DL1   43 24 C2
  2DL2   28 11 C1, C2
  2DL3   34 17 C1, C2
  2DL4   46 22 G
  2DL5   41 17 Unknown
  2DS1   15   7 C2
  2DS2   22   8 Unknown
  2DS3   14   5 Unknown
  2DS4   30 13 A*11, some C
  2DS5   16 11 Unknown
  3DL1   73 58 Bw4
  3DS1   16 12 Unknown
  3DL2   84 61 A*03,-11
  3DL3 107 55 Unknown
  3DP1   22   0 0
  2DP1   23   0 0

Table 1  List of killer cell immunoglobulin-like receptors and 
their human leukocyte antigen ligands

The C1 are HLA-C allotypes with serine and asparagines at position 77 
and 80 of α1 domain, respectively. The C2 are HLA-C allotypes with 
asparagines and lysine at position 77 and 80 of α1 domain, respectively. 
The Bw4 are HLA-B allotypes with isoleucine or threonine at position 80 
of α1 domain. This table is adapted from Robinson et al[99] and Parham 
et al[104]. KIRs: Killer cell immunoglobulin-like receptors; HLA: Human 
leukocyte antigen. 
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immune reconstitution. This may help to induce a better 
protection of infection or cancer relapse and conse
quently reducing GVHD incidence. 

GENETIC MARKERS 
Immunologically compatible donor and recipient are 
determined by several genetic markers which include 
matching for ABO blood groups, HLA, MICA and KIRs 
(see preceding sections). These antigens are encoded 
by highly polymorphic and independent loci in our 
genome and are distributed differently between indivi
duals and populations. Incompatibility between the 
donor and recipient for these antigens will lead to either 
allograft lost or GVHD. In the following sub-sections, we 
discuss the molecular bases for the genes encoded for 
the determinants of transplant compatibility. 

ABO 
The ABO is important blood group in transfusion and 
transplantation and consists of three antigens; A, B and 
O. These red cell antigens are determined by the ABO 
allelic variants (A, B and O alleles) on the long arm of 
chromosome 9. The co-dominant A and B alleles differ 
by four nucleotide substitutions (C526G, G703A, C796A 
and G803C) while the ∆261G deletion differentiates 
between the recessive O and A alleles[83-85]. The α1,3-
N-acetylgalactosaminyltransferase encoded by A allele 
and α1,3-D-galactosyltransferase encoded by B alleles 
then convert H antigens, the products of H gene located 
on human chromosome 19 to either A or B antigens, 
respectively[86]. In contrast, there is no enzymatic 
activity on H antigen for those bearing the O allele due 
to the ∆261G deletion on the background of O allele. 
Thus, the A, B, O and AB phenotypes are determined 
by the three ABO allelic variants; A, B and O alleles. 

HLA
The HLA class I molecules consist of a non-polymorphic 
β2-microglobulin and a highly polymorphic α-chain 
glycoprotein encoded by the genes within MHC on 
the chromosome 6[87-89]. There are three types of HLA 
class I molecules (A, C and B) with their specificities 
depend on the polymorphic α-chain encoded by HLA-A, 

tolerance[50-53]. Besides anti-IL-2Rα, the combination 
of costimulatory molecule blockage with inhibitory 
of signal activation also appear to be effective in 
inducing tolerance in a few animal studies. Interaction 
between T cell receptor and costimulatory signals 
such as CD28 is required for T cell activation. Thus, 
blockage of the CD28 and its ligands (i.e., B7 family 
molecules) resulted in transplantation tolerance[46,54,55] 
and induction of anergic state in T cells activation[56]. 
In addition, another molecule that binds to ligand for 
T cell activation (e.g., CD152 or also known CTLA-4) 
also has a potential in inducing tolerance. For example, 
treatment with CTLA-4 immunoglobulin (Ig) during 
bone marrow transplantation in murine models was 
able to induce long-term survival rate of allograft[57]. 
Similarly, Ig treatment of other ligand for T cell receptor 
(e.g., PD-1) and costimulatory molecule (e.g., CD40) 
have also been shown to limit T cell proliferation and 
activation[58-60]. Acute rejection in non-human primates 
is also preventable by anti-CD40L treatment with or 
without CTLA-Ig[61,62]. 

Besides using inhibitory molecules, Treg (CD4+CD25+) 
and NK cells can also be used to suppress CD4+ and 
CD8+ T cell proliferation[63-67] and reduced rejection 
and GVHD[68-74]. Other than post-transplant, infusion 
of Treg cells before a transplant procedure is found to 
promote immune reconstitution and improve immunity 
to opportunistic infection, hence, preventing GVHD[75]. 
By increasing NK cells by total lymphoid irradiation, the 
immune tolerance is induced after organ and HSC trans
plantation[76]. A study suggests that the interaction of 
NK cells and Treg cells can promote immune tolerance. 
IL-4, which is secreted by NK cells, induces the expre
ssion of negative costimulatory molecules on the Treg 
cells[77]. The purification of NK cells in allogeneic trans
plantation may be achieved by depleting CD3+ cells 
followed by CD56+ cell enrichment[78]. Donors are also 
reported safe in completed clinical trials of NK cells 
infusion[79-81]. Stimulated NK cells with IFN-γ, IL-2 and 
anti-CD3 show MHC-independent cytotoxicity effect and 
NK cells infusion is proven safe to use after autologous 
HSCT[82]. The strategies of using immune cell infusion 
therapy have significantly increased the level of immune 
tolerance against allogeneic graft. New discoveries on 
Treg and NK cells administration posit that they appear 
to be effective in inducing transplant tolerance and rapid 
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Figure 2  Approximate locations of human leukocyte antigen class I and II and major histocompatibility complex class I chain-related gene A loci on the 
short arm of chromosome 6. HLA: Human leukocyte antigen; MICA: Major histocompatibility complex class I chain-related gene A .
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-B and -C genes in the classical class I sub-region of 
MHC[90]. In contrast, both α- and β-chains of class II 
HLA molecules (DP, DQ and DR) are encoded by genes 
in the classical class II sub-region of MHC[12] (Figure 2). 
The HLA class I and II gene clusters within MHC are 
separated by the class III sub-region which codes for 
complement components and not part of endogenous 
and exogenous peptide presentation to CD8+ and CD4+ 
cells, respectively[91-93] (Figure 1).

The World Health Organization has developed an 
alphanumeric nomenclature to name HLA antigens, 
genes and alleles (Figure 3). This systematic alphanu
meric nomenclature begins with letters representing 
specific HLA gene and followed by an asterisk and 
two sets of digits specific for HLA allele group and 
glycoprotein. Two additional sets of digits are then 
used to specify synonymous nucleotide changes and 
mutation outside the non-coding region, respectively. 
Suffixes (e.g., L: low cell surface expression, N: Null, 
C: Allele is expressed in cytoplasm but not on the cell 
surface and A: Aberrant expression) may be added to 
the end of this string of numbering system to indicate 
expression status of particular HLA alleles[12,94]. 

MICA
The MICA molecules are stress induced antigens 
encoded by a gene within MHC region (Figure 2) and are 
expressed by a wide range of cells including monocytes, 
keratinocytes and fibroblasts[14,87,95-97]. Unlike HLA class 
I molecule, MICA is not linked to β2-microglobulin and 
NK cells and CD8+ T (αβ and γδ) cells reactivity are 
stimulated through interaction of MICA and its ligand, 
the NKG2D receptor[13-15,98]. Variants of MICA gene are 
largely due to single nucleotide polymorphism and 
repeated units of alanine (i.e., 4 to 10 Ala residues) in 
exons 2, 3 and 4 and exon 5, respectively[99-102] (see 
González-Galarza et al[100] for the list of populations 
characterized for MICA). The diversity within MICA gene 
reflect its role in immunity and as a marker of tissue 
identity[96,97]. 

KIR
The NK cells recognize healthy and unhealthy cells 
through either their lectin-like or immunoglobulin-
like receptors encoded by NK and leukocyte receptor 
complexes located on human chromosome 12 and 19, 
respectively[103,104]. The leukocyte receptor complex 
also code for KIRs, one of the highly polymorphic trans
membrane glycoprotein receptors expressed by NK 
cells[105,106]. Currently there are 16 KIR genes and more 
than 570 genotypes (combinations of haplotype A and B 
KIR genes - Table 2) and 600 alleles were documented 
in public databases[99,100]. 

Each KIR is classified according to the number 
of their extracellular immunoglobulin (two and three 
domains and assigned as 2D and 3D, respectively) and 
the length of cytoplasmic (short and long and assigned 
as S and L, respectively) domains, respectively[107]. 
The KIRs with short and long cytoplasmic domains are 
activating and inhibitory receptors and transduce their 
signals through DAP-12 and tyrosine-based motifs, 
respectively. The only exception is for KIR2DL4 which 
transmits both, inhibitory and stimulatory signals[99]. The 
highly diverse and complex of KIRs were also reported 
for their ligands, the HLA class I molecules (Table 1) and 
both have significant influences in transplantation and 
pathogenesis of various diseases[108].  

COMPATIBILITY TESTING BETWEEN 
DONOR AND RECIPIENT
Typing of ABO and HLA, antibody screening and cross 
matching are three important procedures in determining 
the compatibility between donors and recipients. 
These procedures have been largely conducted using 
serological approaches (e.g., complement dependent 
cytotoxicity test, ELISA, Luminex and flow cytometric 
assays; see Howell et al[8] for details). Alloantibodies 
against the transplanted organs/cells are usually deve
loped in highly transfused patients or due to previous 
transplantation and pregnancy. These are the three main 

HLA allele
group

Synonymous
mutation

Expression
status

HLA locus
HLA subtypes

Mutation in non-coding
region

Figure 3  Systematic human leukocyte antigen nomenclature developed by the World Health Organization Nomenclature Committee for Factors of the 
human leukocyte antigen system. HLA: Human leukocyte antigen.
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events where individuals might be exposed to non-self 
antigens including the clinically important transplant 
antigens such as ABO antigens, HLA and MICA. Thus, 
antibody screening and cross matching are crucial 
to avoid allograft lost. Nowadays, molecular typing 
techniques such as those using sequence specific 
oligonucleotide primer, and Sanger sequencing have 
largely been used for genotyping of ABO, HLA and 
MICA and KIR genes. These molecular techniques have 
several advantages as they are not dependent on the 
availability of anti-sera, cellular expression and have 
greater specificity and accuracy as compared with the 
antibody-antigen based typing (recently reviewed by 
Howell et al[8], Dunn[109] and Edinur et al[110]). 

FUTURE DEVELOPMENTS AND 
CONCLUDING REMARKS 
Advances in the field of molecular biology and genetics 
have contributed immense benefits to the medical field 
including in transplantation medicine. A number of 
molecular techniques have been developed following the 
elucidation of molecular bases of the genes encoding 
for transplant determinants. Currently, several different 
genotyping platforms can be used to screen blood 
group, HLA, MICA, and KIR loci (see Howell et al[8], 
Dunn[109], Edinur et al[110] and Finning et al[111]). It is now 
possible to genotype multiple markers and to the extent 
of complete sequencing of human genome using the 
next generation sequencer (NGS). This high throughput 
genotyping platform has been tested for HLA (e.g., 
see Bentley et al[112], Holcomb et al[113], Wang et al[114] 
and Skibola et al[115]) and it is expected that NGS will 
be used to simultaneously genotype large number 
of clinically relevant transplantation genes in near 

future. This is not far from reality due to bioinformatics 
support given by the immunogenetics community and 
the rigorous improvement in NGS methodology (see 
Robinson et al[94] and Grada et al[116]). In addition, new 
developments in immune tolerance based therapy, 
donor recruitment strategies and bioengineering (tissue 
engineering and regenerative medicine) will provide 
significant advances in the field of transplantation 
medicine. This paper provides only brief discussions of 
these new developments, while others[20,46,110,117,118] have 
conducted systematic reviews of them.
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