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Abstract
Liver fibrosis is a repair process in response to damage 
in the liver; however, severe and chronic injury 
promotes the accumulation of fibrous matrix, destroying 
the normal functions and architecture of liver. Hepatic 
stellate cells (HSCs) are quiescent in normal livers, 
but in damaged livers, they transdifferentiate into 
myofibroblastic HSCs, which produce extracellular 
matrix proteins. Hedgehog (Hh) signaling orchestrates 
tissue reconstruction in damaged livers and contributes 
to liver fibrogenesis by regulating HSC activation. 
MicroRNAs (miRNAs), endogenous small non-coding 
RNAs interfering with RNA post-transcriptionally, 
regulate various cellular processes in healthy organisms. 
The dysregulation of miRNAs is closely associated 
with diseases, including liver diseases. Thus, miRNAs 
are good targets in the diagnosis and treatment of 
various diseases, including liver fibrosis; however, 
the regulatory mechanisms of miRNAs that interact 
with Hh signaling in liver fibrosis remain unclear. We 
review growing evidence showing the association of 
miRNAs with Hh signaling. Recent studies suggest that 
Hh-regulating miRNAs induce inactivation of HSCs, 
leading to decreased hepatic fibrosis. Although miRNA-
delivery systems and further knowledge of interacting 
miRNAs with Hh signaling need to be improved for 
the clinical usage of miRNAs, recent findings indicate 
that the miRNAs regulating Hh signaling are promising 
therapeutic agents for treating liver fibrosis. 

Key words: MicroRNA; Liver fibrosis; Hedgehog; Hepatic 
stellate cell

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: MicroRNAs (miRNAs) influence various 
biological responses by controlling gene expression. 
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Recent studies investigate the roles of miRNAs in 
liver fibrosis, due to their potential as biomarkers 
and therapeutic agents. Hedgehog (Hh) signaling 
contributes to hepatic fibrosis. Hence, regulation of Hh 
signaling is one of the therapeutic strategies against 
liver fibrogenesis. Therefore, we introduce miRNAs 
relevant to Hh signaling and discuss the interaction of 
miRNAs with Hh signaling, with a particular focus on 
the anti-fibrotic effect of Hh-regulating miRNAs in liver 
diseases. This review suggests that miRNAs-mediating 
Hh signaling are the novel diagnostic and therapeutic 
targets for treating liver disease.
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INTRODUCTION
Liver fibrosis is a major characteristic of most chronic 
liver diseases[1]. This is a process in which extracellular 
matrix (ECM) proteins are accumulated as a wound-
healing response to repeated hepatic injury[1]. Al
though hepatocytes are quiescent in healthy livers, 
they re-enter cell cycles and proliferate in response 
to damage[2-5]. Under severe and/or persistent injury, 
the death rate of hepatocytes is much higher than 
the rate of the proliferation of hepatocytes, leading to 
proliferation of other types of cells, such as hepatic 
stellate cells (HSCs) or progenitors (also called oval 
cells) to compensate for the loss[4,6-8]. HSCs are 
quiescent in healthy livers but are activated upon 
liver injury and further transitioned into contractile 
myofibroblasts[9-11], which produce ECM proteins 
substituting for hepatic parenchyma, distorting the 
normal hepatic architecture[1]. Cirrhosis is defined as 
the end stage at which liver fibrosis eventually forms 
nodules of collagen bands, leading to hepatocellular 
dysfunction and portal hypertension[1,12]. Therefore, it 
is necessary to understand the mechanism underlying 
the fibrotic process and to identify a strategy for 
regulating the activation of HSCs. 

Hedgehog (Hh) signaling was originally known for 
regulating cell fate decisions during developmental 
processes[13]. Recently, the Hh signaling pathway has 
been reported to be an important pathway in liver 
diseases, including liver fibrosis[14,15]. It promotes liver 
fibrosis by stimulating the activation and proliferation 
of HSCs[16-18]. Thus, regulation of Hh signaling in the 
activated HSCs has been suggested as a promising 
treatment against liver fibrosis. Recently, Hh inhibitors 
developed for treating liver cancer and neutralizing 
antibodies to Hh have been shown to reduce hepatic 
fibrosis by suppressing HSC activation[18]; however, 
those agents have been shown to have several 

limitations, such as induction of resistance, pH-
dependence, and side effects on normal cells, although 
they effectively impair the activation and survival of 
HSCs[19,20]. Hence, it is necessary to develop a novel 
strategy that effectively and safely modulates Hh 
signaling in liver fibrosis.

MicroRNAs (miRNAs), about 22 nucleotides of 
endogenous non-coding RNAs, have emerged as 
clinical agents due to their biological characteristics[21]. 
MiRNA genes are first transcribed by RNA polymerase 
Ⅱ (Pol Ⅱ), generating the primary miRNA (pri-miRNA), 
and then the pri-miRNAs go through sequential 
processing steps to become mature miRNA duplexes 
by the RNase Ⅲ-type endonucleases, Drosha and 
Dicer, in the nucleus and cytosol, respectively[22,23]. 
Subsequently, one strand of a miRNA duplex is 
loaded onto an AGO protein to form an RNA-induced 
silencing complex (RISC), which is capable of inducing 
translational repression and the decay of target 
mRNAs through the interaction with the translation 
machinery and mRNA decay factors[23,24]. MiRNAs 
recognize their target genes by base-pairing between a 
sequence of nucleotide positions 2 to 7 at their 5’ end, 
called the seed sequence, and the complementary 
sequence within the mRNA of target genes, usually 
the 3’ untranslated region (UTR)[25]. MiRNAs are easily 
detectable in various biological fluids, including serum, 
saliva, and urine, because they are stable outside of 
cells as a form contained in circulating exosomes[26-28]. 
Therefore, miRNAs are good candidates for biomarkers 
and therapeutic agents for diseases. 

Despite the advances in the research of miRNAs in 
liver fibrosis, the manner in which miRNAs interact with 
Hh signaling in liver fibrogenesis is poorly understood. 
Herein, we introduce recent notable findings of 
miRNAs interacting with Hh signaling in liver fibrosis 
and other tissues/cells, which helps in understanding 
their function in liver. 

SIGNAL TRANSDUCTION OF THE HH 
SIGNALING PATHWAY
Hh was first identified in Drosophila melanogaster and 
named based on the disorganized hair-like bristles 
with the appearance of hedgehog spines on the hh-
null embryos[29]. Hh was identified as a secreted protein 
involved in the pattern formation of the adjacent 
cells during development[13]. There are three types of 
conserved Hh ligands in mammals, including sonic Hh 
(Shh), Indian Hh (Ihh), and desert Hh (Dhh), all with 
different activities in different developing organs. Hh 
signaling also plays a key role in liver development, 
including regulating the survival of hepatoblasts and 
the differentiation of hepatic progenitors[30,31]. In adult 
tissues, Hh signaling influences stem cell homeostasis, 
and its persistent activation is responsible for the 
pathogenesis of various cancers, including hepatocellular 
carcinoma[14,32]. 
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The first identified receptor of Hh was a transme
mbrane protein, Patched 1 (Ptch), which constitutively 
inhibits Hh signaling through the repression of Smooth
ened (Smo)[33,34]. The binding of Hh ligands with Ptch 
brings to the accumulation of Smo at the plasma 
membrane by increasing either trafficking of Smo-
enriched endosomes or its stability[35-37]. Once activated, 
Smo is phosphorylated and undergoes a conformational 
change to an open form of cytoplasmic tail, which 
interacts with GLI-Kruppel (Gli) family[38]. There are 
three members of the Gli family- Gli1, Gli2, and Gli3-
which have a DNA-binding domain and a C-terminal 
activation domain[39]. Gli2 and Gli3 also contain an 
N-terminal repressor domain[39]. The C-terminal-cleaved 
form of Gli3 dominantly acts as a repressor and reduces 
the expression of Gli1/2 and Gli-target genes including 
Pax2, Sall1, Cyclin D1 and N-myc in embryonic 
development, whereas the Gli1 and Gli2 function as 
the transcriptional activators[40,41]. In the absence of 
Hh, the C-terminal domain of Glis is phosphorylated 
and ubiquitinated for degradation[14,42]. The suppressor 
of a fused (SUFU) protein is a well-known negative 
regulator, which directly binds with Glis[43-47], inducing 
ubiquitination of Glis. In the presence of Hh, the active 
Smo inhibits the proteolytic processing of Glis, allowing 
Glis to act as a transcriptional activator to initiate the 
Hh signaling. Thus the full-length form of Gli3 as well 
as Gli2 activates Hh signaling[48]. In addition, the active 
form of Gli3 was report to be upregulated in colorectal 
cancer[49] and liver fibrosis[50]. The Gli-mediated 
transcriptions can be regulated by Smo-independent 
way, which is referred as non-canonical Hh signaling 
pathway[14,51]. The canonical Hh signaling is well-known 
in the primary cilium in vertebrates. Hh signaling is 
activated by the translocation of Smo into the primary 
cilium, a single, tiny, microtubule-based organelle 
that projects from the surface of most vertebrate 
cells[14,52,53]. Inherited ciliary defects, such as Bardet-
Biedl syndrome and Meckel syndrome, was reported to 
have the disrupted Hh signaling[14,54]. In addition, ciliary 
dysfunction blocks the proteolytic process of full-length 
Gli3 to the truncated repressor because of the localized 
SUFU-Gli3 in the tip of cilia where proteolytic processing 
occurs. Therefore, it induces the aberrant activation 
of various Hh-target genes, causing developmental 
failure[14,55].

HH SIGNALING IN LIVER DISEASES
The Hh signaling pathway is inactivated in a healthy 
adult liver. Quiescent HSCs (Q-HSCs) and liver sinu
soidal endothelial cells (LSECs) in a healthy adult liver 
highly express an Hh-interacting protein (Hhip), which 
disrupts the engagement between the Hh ligand and 
the receptor[14,17,18,56,57]; however, the Hh signaling 
pathway is reactivated when liver reconstruction is 
required. In the experimental model of a 70% partial 
hepatectomy (PHx), the expression of Shh and Ihh 
was known to be elevated during liver regeneration[58]. 

In livers of patients with nonalcoholic steatohepatitis 
or primary biliary cirrhosis, a higher expression of Shh 
and Ihh was demonstrated[56,57,59,60]. As the level of Hh 
ligands increase, the number of Hh-responsive cells, 
such as HSCs and progenitors, also increases with the 
decrease of Hhip expression[57,59,61]. This activation of 
Hh signaling is required for liver regeneration, which 
is supported by the evidence that Smo-inhibited 
mice exhibit the reduced hepatic accumulation of Hh-
responsive cells in the liver, resulting in death after 
PHx[58]; however, the sustained expression of Hh due 
to persistent hepatic injury expands the population 
of cells responsible for the progression of chronic 
liver diseases, such as myofibroblastic HSCs (MF-
HSCs)[59,62]. Jung et al[56] previously reported that dying 
hepatocytes produced Hh ligands, and Hh-responsive 
cells, such as progenitors and HSCs, were proliferated 
and activated[18]. These activated HSCs or MF-HSCs by 
Hh ligands released from apoptotic hepatocytes in turn 
produce Hh ligands and further accelerate Hh signaling 
in both an autocrine and a paracrine manner[17] and 
produce more collagen fibrils, eventually contributing 
to the accumulation of fibrous ECM in the liver. Chen 
et al[16] demonstrated that Hh signaling regulated the 
metabolism of HSCs during transdifferentiation into 
MF-HSCs. In their findings, Hh signaling induced the 
expression of Hif-1α and promoted glycolysis rather 
than gluconeogenesis and lipogenesis, leading to 
reprogramming the gene expression toward fibro
genesis. These findings demonstrate that Hh signaling 
is critically important in hepatic fibrogenesis; hence, 
the Hh signaling is a good target for therapeutic 
approaches aimed at controlling the activation of HSCs 
during liver fibrogenesis.

ASSOCIATION OF MIRNAS WITH HH 
SIGNALING DURING DEVELOPMENT
To investigate the degenerative effects of miRNAs, 
researchers have commonly used Dicer-knockout or 
-knockdown models because Dicer-mediated processing 
is critical to miRNA maturation[63,64]. The knockdown of 
the Dicer1 transcript in mice showed disrupted cortical 
layering of the anterior cerebellum, which resulted from 
the premature differentiation of granule cell precursors 
during neonatal development[65]. Interestingly, the 
expression of Hh signaling components, especially 
Gli2, was downregulated in the defective cerebellum, 
suggesting the importance of miRNAs as promoters of 
Hh signaling in granule cell precursor development[65]. 
Also, in Dicer-mutated mouse skin, the expression 
of Shh and Gli1 was lost by postnatal day 7 with 
proliferative defects of hair follicles and evagination of 
dermal cells into the epidermis[66]. In addition, Munoz 
et al[67] reported that PTCH1 protein was rarely reduced 
in Dicer-knockdown glioblastoma multiforme cells, 
indicating the inhibitory effect of PTCH1 translation. 
These findings suggest that the miRNAs are closely 
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of HSCs[14,73,74]. When Q-HSCs are activated into MF-
HSCs, the expression of quiescent markers (e.g., 
PPARγ and GFAP) and epithelial genes (e.g., BMP7, 
desmoplakin, and E-cadherin) is downregulated but 
the expression of myofibroblastic markers (e.g., α-SMA, 
vimentin, fibronectin and Col1α1) and mesenchymal 
genes (e.g., Snail and Lhx2) is upregulated in MF-
HSCs[73,74]. Leptin, an anti-adipogenic and pro-EMT 
factor, promotes the activation of HSCs by inducing 
the expression of Hh signaling components[74]. These 
findings indicate that EMT process characterizes 
the transdifferentiation of the Q-HSC into MF-
HSC. Recently, the role of miRNAs in Hh signaling 
has investigated during the EMT process. Yu et 
al[75] suggested that miR-152 indirectly regulated 
Hh signaling by targeting DNA methyltransferase 
1 (DNMT1), which methylated the Ptch1 gene. 
Although the promoter region of the Ptch1 gene was 
so hypermethylated in activated HSCs that it could 
not be expressed, Salvianolic acid B (Sal B) induced 
the expression of miR-152 suppressing Dnmt1, and 
then demethylated Ptch1 inhibited the Smo-Gli2 
pathway and EMT, leading to the inactivation of HSCs 
in CCl4-treated mice. In another study, Yu et al[76] also 
reported that miR-200a directly targeted Gli2, and an 
overexpression of miR-200a resulted in an increase 
of epithelial markers, including BMP7 and Id2, but a 
decrease of mesenchymal markers, including Snail1 
and S100a4, through Gli2 downregulation in rat HSCs, 
which inhibited the HSCs proliferation and activation.

MiRNA regulating HSC activation by interacting 
with Hh-target genes have also been reported in 
other studies. MiR-125b released from placenta-
derived mesenchymal stem cells (PDSCs) promoted 
the inactivation of HSCs by inhibiting Hh signaling, 
contributing to reduced hepatic fibrosis[77]. In this 
study, Hyun et al[77] found that PDSC-derived exosomes 
contained a large amount of miR-125b transcripts, 
which was upregulated in livers of CCl4-treated rats 
after PDSCs-transplantation, followed by the decreased 
expression of Hh signaling and fibrotic markers. When 
the expression of miR-125b was suppressed in PDSCs, 
the PDSCs failed to block the expression of Hh and pro-
fibrotic genes in activated HSCs. These data indicated 
that miR-125b-mediated Hh signaling influences liver 
regeneration by regulating HSC activation. MiR-378a-
3p was shown to suppress the activation of HSCs by 
directly targeting Gli3 in the livers of CCl4-treated mice. 
In this study, Hyun et al[50] performed a microarray 
analysis of miRNA expression in normal (corn-oil-
treatment: control) and chronically damaged livers 
(CCl4 treatment) of mice with fibrosis and found that 
the miR-378 family, including miR-378a-3p, miR-378b, 
and miR-378d, was downregulated in CCl4-treated 
livers compared to corn-oil-treated control livers[50]. The 
expression of miR-378 family members also decreased 
in mouse primary HSCs during activation of HSCs. 
Particularly, miR-378a-3p led to the inactivation of 
HSCs by reducing Gli2 and Gli3 expressions in activated 

associated with the expression and function of Hh 
signaling during development. 

MIRNAS INTERACTING WITH HH 
SIGNALING IN LIVER FIBROSIS
MiRNAs are involved in various biological processes, 
including normal development, physiology, and 
pathogenesis[68,69]. In the liver, miRNAs regulate lipid 
and glucose metabolism, inflammation, cell survival, 
and proliferation[70]. Therefore, the dysregulation of 
miRNAs is closely associated with various diseases, 
including liver disease. Emerging evidence has shown 
that several miRNAs associated with Hh signaling have 
important functions on liver fibrosis, and they are 
summarized in Table 1. 

The first attempt to find the relation of miRNAs with 
Hh signaling in liver fibrosis was performed in a mouse 
model with disrupted NF-κB signaling in albumin-
expressing cells, including HSCs[71]. Because NF-κB 
signaling was reported to inhibit the expression of anti-
fibrotic miR-29[72], Hyun et al[71] investigated whether 
miR-29 prevented hepatic fibrosis in NF-κB-defective 
mice fed a hepatotoxic methionine/choline-deficient diet 
supplemented with ethionine (MCDE diet). Although 
the expression of the miR-29 family was upregulated 
in the livers of NF-κB-defective mice fed an MCDE 
diet, liver fibrosis was more severe than in the livers of 
chow-fed mice with normal NF-κB signaling. Primary 
HSCs isolated from mice with impaired NF-κB showed 
a decreased expression of a quiescent marker but 
increased expressions of activation markers of HSCs 
compared to HSCs from normal mice. In addition, the 
activated HSCs were Gli2-positive in livers of MCDE-
treated mice with disrupted NF-κB. These results 
demonstrated the essential role of Hh signaling in HSCs 
activation, leading to liver fibrosis, even when miR-29 
was significantly up-regulated.

 Hh signaling promotes epithelial-to-mesenchymal 
transition (EMT), which is involved in the activation 

Table 1  List of miRNAs interacting with hedgehog signaling 
in liver fibrosis

miRNA(s) Expression Target 
gene(s)

Sample type(s) Ref.

miR-378a-3p Downregulated Gli3 CCl4-induced mouse 
fibrotic liver/

Primary mouse HSC

[50]

miR-200a Downregulated Gli2 Rat HSC [76]
miR-125b Downregulated Smo CCl4-induced rat 

fibrotic liver/
Primary rat HSC

[77]

miR-152 Downregulated DNMT1 CCl4-induced mouse 
fibrotic liver/

Primary mouse HSC

[75]

miR-29 Downregulated - MCDE-dieted mouse 
liver

[71]

HSC: Hepatic stellate cell.
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HSCs in vitro. The expression level of Gli2 and Gli3 
is upregulated in activated HSCs and CCl4-induced 
liver fibrosis[50,77,78]. The transcription of primary miR-
378a, a transcribed form of miR-378a DNA, was 
repressed by an NF-κB subunit, p65, of which activity 
was regulated by Smo, an upstream signal of Glis. 
In addition, Hyun et al[50] showed that the miR-378a-
3p exerted an anti-fibrotic effect on CCl4-induced liver 
fibrosis in mice by reintroducing the miR-378a-3p to 
the livers using L-tyrosine polyurethane 2a (LTU2a)-
based nanoparticles. Taken together, these findings 
suggest that Hh signaling plays a significant role in 
the complex regulatory network of liver fibrosis and 
that Hh-regulating miRNAs are promising therapeutic 
agents for treating liver fibrosis.

MIRNAS INTERACTING WITH HH 
SIGNALING IN OTHER TISSUES, BESIDES 
LIVER
The relationships between miRNAs and Hh signaling 
have also been investigated in other types of cells 
and experimental models. The first report of a certain 
miRNA interacting with Hh signaling was in 2005, and 
it showed that miR-196 inhibited the expression of 
Shh by targeting Hoxb8, an upstream positive signal 
of Shh, in the development of chick forelimb[79]. In 
adult cells, miR-125b, miR-324-5p, and miR-326 
were first identified to target Smo (miR-324-5p also 
targeting Gli1) in differentiated granule cells, and 
their expressions were downregulated in human 
medulloblastoma with a high Gli1 level[80]. These 
studies are useful in understanding the pathogenesis 
of liver fibrosis by investigating whether these miRNAs 
also influence liver fibrosis by modulating Hh signaling. 
The miRNAs shown to directly or indirectly interact with 
Hh signaling in various sample types are summarized 
in Supplementary Table 1. 

Among them, several miRNAs have already 
been investigated in liver fibrosis. Both miR-
29a and miR-29b-1 were reported to have a Gli-
binding site in their promoter region, so they were 
transcriptionally suppressed by Hh signaling in 
human cholangiocarcinoma cells[81]. In fibrotic livers 
of both humans and rodents, the miR-29 family 
was downregulated with an increase in collagen[72], 
and miR-29b suppressed the activation of HSCs[82]; 
however, in a mouse model of liver fibrosis, Hyun et 
al[71] demonstrated that the Hh pathway compromised 
the anti-fibrotic effect of the miR-29 family. Al
though the reason for this inconsistency remains 
to be elucidated, it is possible that stimulus type, 
pathological condition, or cell status exert an effect on 
the function and/or the expression of these miRNAs. 
For example, the expression of miR-29s was alleviated 
by lipopolysaccharide (LPS), but the level of collagen 
produced was rarely elevated[83]. In addition, miR-
29s was regulated differently by NF-κB activated 

by interleukin-1[72]. The function and expressional 
regulation of miR-29s also seems to be different 
according to which signaling pathway is triggered in 
response to the damage because these effects are 
known to vary depending on which upstream signaling 
pathways are engaged[84-86]. Thus, this complicated link 
between Hh signaling and the miR-29 family in liver 
fibrosis needs to be investigated further. 

In patients with chronic hepatitis C viral (HCV) 
infections, the miR-21 induced by TGF-β signaling 
negatively regulated the expression of SMAD7, 
inhibiting TGF-β signaling, and further enhanced the 
pathway of miR-21 and TGF-β similar to a positive 
feedback[87]. The miR-21 expression was also up
regulated by Hh signaling in glioblastoma initiating 
cells[88]. Hh signaling was reported to be activated in 
chronic HCV-infected livers[89,90]. These results suggest 
the possibility that the expression of miR-21 might be 
regulated by Hh signaling in a chronic HCV-infected 
liver. In addition, it is possible that miR-21 enhances 
the Hh signaling by up-regulating TGF-β expression 
in the chronic liver of patients with HCV infection, 
because the TGF-β signaling is known to promote the 
expression of Gli1/2 in a Smo-independent manner 
in various cell types, such as skin and lung fibroblasts 
and pancreatic cancer cells[91,92]. These findings indicate 
that miR-21 is involved in the crosstalk between Hh 
and TGF-β signaling.

MiR-146a targeting SMAD4 was downregulated in 
primary MF-HSCs isolated from rat livers with fibrosis 
by CCl4, and the overexpression of miR-146 suppressed 
TGF-β-mediated proliferation and induced the 
apoptosis of HSCs[93]. In mouse livers of nonalcoholic 
steatohepatitis with fibrosis and activated HSCs, the 
expression of miR-146a-5p was also reduced, and 
the overexpression of miR-146a-5p blocked both 
the proliferation and activation of HSCs through 
targeting Wnt1 and Wnt5a[28]. Moreover, the miR-146a 
increased the activation of Hh signaling by targeting 
Numb involved in Gli1 degradation in a mouse colitis 
model of intestinal inflammation and primary mouse 
macrophages[94].

IMPROVEMENT OF THE THERAPEUTIC 
APPLICATION OF MIRNAS IN LIVER 
FIBROSIS
Because the Gli1 has been reported to be an oncogene, 
which is amplified in cancer cells and a number of 
human malignancies[95,96], blocking agents for the Hh 
pathway, such as cyclopamine and vismodegib (also 
called as GDC-0449), which inhibits Smo activity, and 
other small molecular inhibitors have been tested in 
treating epithelial cancers of animal models, including 
prostate and pancreatic cancer xenografts[97]; however, 
there is concern regarding the use of cyclopamine 
in humans because it is converted into isomers, 
such as veratramine or undefined isomers, causing 
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low effectivity and side effects such as hemolysis 
under acidic conditions, such as in the stomach[20]. 
To overcome this problem, a synthetic miRNA and its 
corresponding temporal miRNA duplex, called Gli1-
miRNA-3548 and Duplex-3548, respectively, have 
been engineered[98,99]. The synthetic miRNA was 
designed to target 3’-UTR of gli1 mRNA, and they 
significantly inhibited the proliferation and division of 
Gli1-positive pancreatic and ovarian tumor cells. The 
antisense and sense strands of Duplex-3548 have a 
sequence homology with the natural miR-361 and 
partially with the miR-136, respectively, suggesting 
that there might be naturally acting miRNAs on the 
regulation of gli transcripts. Vismodegib targeting 
Smo-dependent Hh signaling has been approved by 
the FDA for the treatment against advanced basal cell 
carcinoma[100] and it has shown the therapeutic effects 
on both liver fibrosis and hepatocellular carcinoma 
in mice[101,102]. However, vismodegib also has side 
effects, such as muscle spasms, alopecia, dysgeusia, 
weight loss, fatigue, nausea, diarrhea, decreased 
appetite, constipation, arthralgia, vomiting, ageusia, 
hyponatremia, pyelonephritis and presyncope[103,104]. 
Especially, vismodegib is not allowed to be prescribed 
to pregnant women due to its teratogenicity, 
embryotoxicity and fetotoxicity. In addition, it does 
not work for patients having mutations in Smo 
receptor[103,104]; thus the novel therapeutic strategies 
should be developed. A recent study reports that the 
co-treatment of vismodegib with miR-29b-1 targeting 
several pro-fibrotic genes, such as Col1α1, FN-1 and 
PDGF-β, regresses the hepatic injuries and fibrosis 
in bile duct ligated livers of mice[105]. Compared with 
the single treatment with miR-29b-1 or vismodegib, 
this combination therapy was more effective in 
reducing the levels of injury-related enzymes and 
the expression of fibrotic proteins in liver tissue, 
implicating the synergistic action of miRNA and small 
molecular inhibitor in treating liver fibrosis[105].

Recently, bioinformatics and oligonucleotides-
modifying techniques have made great advances 
in knowledge regarding the biological functions of 
miRNAs in pathogenesis. Therefore, therapeutics 
using chemically modified oligonucleotides to target 
endogenous miRNAs, called the miRNA inhibitor or 
miRNA mimic, have been developed to modulate the 
expression of miRNAs in diseases[106-108]. There are 
two miRNA therapeutic agents in particular that are 
used in clinical trials for liver diseases. The miravirsen 
SPC3649 (Santaris Pharma, Horsholm, Denmark), 
which is an inhibitor of miR-122, is for patients with 
chronic HCV infections and is in phase 2a in clinical 
trials[109]. The MRX34 (Mirna Therapeutics, Inc.), 
a mimic of miR-34 encapsulated in a liposomal 
nanoparticle formulation, is the first miRNA mimic 
to be introduced into clinical development for he
matological malignancies and solid tumors, including 
hepatocellular carcinoma[110]. Growing evidence also 
shows the significant therapeutic effects of miRNAs 

in vivo against liver fibrosis[50,111,112]. The ectopic 
expression of miR-101 targets TGF-β signaling using 
lentivirus attenuated CCl4-induced liver fibrosis in 
mice by suppressing the activation of HSCs and the 
apoptosis of hepatocytes[111]. Introducing the miR-142-
5p inhibitor or/and miR-130a-3p mimic by intravenous 
injection also resulted in decreased fibrosis of CCl4-
treated mouse livers by controlling the expression of 
pro-fibrogenic genes in macrophages[112]. Moreover, the 
LTU2a nanoparticle-mediated delivery of miR-378a-3p 
into mice with chronic liver fibrosis by CCl4 led to the 
inactivation of HSCs by suppressing Hh signaling[50]. 
These miRNAs can be promising therapeutic agents 
that should be developed further for clinical use. 

Still, there are challenges in safe and effective 
systems used for delivering the therapeutic miRNAs 
to target cells. Several obstacles, including poor in 
vivo stability, inappropriate biodistribution, disruption 
and saturation of endogenous RNA machinery, and 
untoward side effects, are currently concerns[113]. In 
addition, therapy utilizing miRNAs is complex because 
miRNAs are possible to generate false positive effects 
by targeting multiple target genes. For example, miR-
125b that directly targeted Smo in medulloblastoma[80] 
was shown to have an anti-fibrotic effect by regulating 
Hh signaling in CCl4-injured liver of rats[77]. Zhou et 
al[114] also reported that miR-125b directly targeted 
SMAD4, which inhibited EMT process in hepatocellular 
carcinoma cells. Because EMT is closely associated with 
HSC activation, it is possible that miR-125b exerts its 
anti-fibrotic role through targeting SMAD4 and other 
EMT-related genes, including Hh signaling, in CCl4-
induced liver fibrosis. Therefore, baseline expression of 
various target genes in each patient should be carefully 
considered for miRNA therapy.

Viral vectors are effective carriers of miRNA-targeting 
agents, but they are toxic and immunogenic[115]. 
Therefore, non-viral synthetic materials that offer 
certain advantages, such as enabling the control of 
molecular composition, simplified manufacturing, 
modification and analysis, tolerance for cargo sizes, 
and relatively lower immunogenicity, have been 
developed as delivery systems[116]. In addition, the 
delivery efficiency of non-viral carriers can be improved 
by modifying particle size and surface properties. 
These materials include liposomes, polyethylenimine 
(PEI), dendrimers, poly(lactide-co-glycolide) (PLGA) 
particles, and naturally occurring polymers, such as 
chitosan, protamine, atelocollage, and peptides, derived 
from protein translocation domains[113]. The LTU2a 
nanoparticles used in an in vivo study by Hyun et al[50] 
were biodegradable spheres of 340 nm on average and 
were optimized for cellular uptake. It was confirmed 
that the nanoparticles were uninfluential in normal 
livers by assessing the changes of histology and gene 
expression in normal livers before and after nanoparticle 
treatment. The nanoparticles containing miR-378a-
3p mimic in particular showed a significant anti-
fibrotic effect at 3 wk after just a single intraperitoneal 
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injection. The nanoparticles gradually enhanced the 
level of miR-378a-3p in the damaged liver up to a 
similar level of miR-378a-3p in normal livers at 3 wk. 
The increased expression of miR-378a-3p paralleled 
with the decreased level of its target, Gli3. These 
findings suggest that the LTU2a nanoparticle is one of 
the best candidates for the miRNA-delivering material 
in clinical use; however, it is necessary to improve 
delivery systems for miRNA therapeutics in clinical use 
because optimal delivery systems should be designed 
for specific types of diseases.

CONCLUSION
Overcoming chronic liver disease is a significant 
challenge facing modern populations, and liver fibrosis 
is a prominent feature of chronic liver diseases[1]. 
Therefore, researchers have made several efforts to 
reverse or to prevent the progression of liver fibrosis. 
Hh signaling is a good target for this goal because it 

increases the proliferation and viability of activated 
HSCs, creating an Hh-enriched microenvironment in 
the damaged liver[14-17]. MiRNAs have been designated 
for therapeutic interventions because they regulate 
the gene expression of disease-associated signaling 
pathways[106-108]. Therefore, it is meaningful to 
investigate miRNAs associated with Hh signaling 
to ameliorate hepatic fibrosis by regulating HSC 
activation. 

In this review, we discussed previous findings 
regarding the miRNAs in liver fibrosis and focused on 
the interaction with the Hh signaling pathway. In the 
studies of the knockdown of the Dicer gene, it was 
observed that miRNAs and Hh signaling are closely 
related and that they influence each other in their 
expressions and functions. In addition, the direct or 
indirect interactions between certain miRNAs and Hh 
signaling have been shown in various animal models 
and human cases. Recent studies have demonstrated 
how miRNAs interact with Hh signaling in liver fibrosis 
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and that modulating the expression of Hh-targeting 
miRNAs reduces the activation of HSCs. We depicted 
the components of Hh signaling pathway and their 
interaction with miRNAs in Figure 1. 

The studies on the role of miRNAs in liver fibrosis 
were conducted during the past 5 years and are still 
in their infancy. To provide fundamental knowledge 
about the complex processes of liver fibrosis, the 
interactive roles of miRNAs with Hh should be further 
demonstrated in various models of liver fibrosis. 
Therefore, miRNAs that interact with Hh signaling 
could be useful biomarkers and novel therapeutic 
agents of personalized medicine for liver fibrosis.
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