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Abstract
AIM
To investigate the anticancer effect of a recombinant 
adenovirus-mediated p53 (rAd-p53) combined with 
5-fluorouracil (5-FU) in human colon cancer resistant to 
5-FU in vivo  and the mechanism of rAd-p53 in reversal 

ORIGINAL ARTICLE

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.3748/wjg.v22.i32.7342

World J Gastroenterol  2016 August 28; 22(32): 7342-7352
 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)

© 2016 Baishideng Publishing Group Inc. All rights reserved.

7342 August 28, 2016|Volume 22|Issue 32|WJG|www.wjgnet.com

Basic Study

Synergistic anticancer effect of exogenous wild-type p53 
gene combined with 5-FU in human colon cancer resistant 
to 5-FU in vivo
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of 5-FU resistance.

METHODS
Nude mice bearing human colon cancer SW480/5-
FU (5-FU resistant) were randomly assigned to four 
groups (n  = 25 each): control group, 5-FU group, 
rAd-p53 group, and rAd-p53 + 5-FU group. At 24 h, 48 
h, 72 h, 120 h and 168 h after treatment, 5 mice were 
randomly selected from each group and sacrificed using 
an overdose of anesthetics. The tumors were removed 
and the protein expressions of p53, protein kinase C 
(PKC), permeability-glycoprotein (P-gp) and multidrug 
resistance-associated protein 1 (MRP1) (Western blot) 
and apoptosis (TUNEL) were determined.

RESULTS
The area ratios of tumor cell apoptosis were larger in 
the rAd/p53 + 5-FU group than that in the control, 5-FU 
and rAd/p53 groups (P  < 0.05), and were larger in the 
rAd/p53 group than that of the control group (P < 0.05) 
and the 5-FU group at more than 48 h (P < 0.05). The 
p53 expression was higher in the rAd/p53 and the rAd/
p53 + 5-FU groups than that of the control and 5-FU 
groups (P  < 0.05), and were higher in the rAd/p53 + 
5-FU group than that of the rAd/p53 group (P < 0.05). 
Overexpression of PKC, P-gp and MRP1 was observed 
in the 5-FU and control groups. In the rAd/p53 + 5-FU 
group, the expression of P-gp and MRP1 was lower 
that of the control and 5-FU groups (P < 0.05), and the 
expression of PKC was lower than that of the control, 
5-FU and rAd/p53 groups at more than 48 h (P < 0.05). 
In the rAd/p53 group, the expression of P-gp and MRP1 
was lower that of the control and 5-FU groups at more 
than 48 h (P  < 0.05), and the expression of PKC was 
lower than that of the control and 5-FU groups at more 
than 120 h (P  < 0.05).

CONCLUSION
5-FU combined with rAd-p53 has a synergistic anti
cancer effect in SW480/5-FU (5-FU resistance), which 
contributes to reversal of 5-FU resistance.

Key words: Human colon cancer; Multidrug resistance; 
5-Fluorouracil; Recombinant adenovirus-mediated p53; 
Xenografts in nude mice
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Core tip: To observe anticancer action of a recombinant 
adenovirus-mediated p53 (rAd-p53) combined with 
5-fluorouracil (5-FU) in human colon cancer with 
resistance to 5-FU in vivo to investigate the potential and 
mechanism of rAd-p53 in the reversal of resistance to 5-FU 
in human colon cancer. Our previous results revealed 
that exogenous wild-type p53  gene from rAd-p53 can 
decrease expression of PKC, P-gp and MRP1 in SW480/5-
FU (5-FU resistance) and promote apoptosis of tumor 
cell, which contributes to reversing 5-FU resistance in 
vivo . 5-FU can increase the expression of exogenous 
wild-type p53, so 5-FU combined with rAd-p53 has a 

synergistic anticancer effect for colon cancer of 5-FU 
resistance in vivo.
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com/1007-9327/full/v22/i32/7342.htm  DOI: http://dx.doi.
org/10.3748/wjg.v22.i32.7342

INTRODUCTION
Colorectal cancer (CRC) is one of the most common 
gastrointestinal cancers. In 2013, there were 1.6 
million incident cases of CRC worldwide, with 56% 
occurring in developing countries and 44% in deve­
loped countries, which caused 771000 deaths[1]. Most 
patients are usually at an advanced stage at the time 
of diagnosis.

To date, 5-fluorouracil (5-FU) remains a widely 
used chemotherapeutic drug in the treatment of 
advanced CRC; however, response rates are only 10% 
to 15%, due to severe side effects and resistance[2]. 
The anticancer efficacy of 5-FU is thought to be partly 
attributed to its ability to induce p53-dependent cell 
growth arrest and apoptosis; consequently, mutations 
or deletions of p53 can cause cells to become resistant 
to 5-FU[3-6]. Therefore, overcoming 5-FU resistance 
caused by mutations or deletions of p53 will be a key 
issue in the design of more effective individualized 
therapeutic strategies.

Gene replacement therapy for a mutated p53 
gene using a recombinant adenovirus-mediated p53 
(rAd-p53) gene reportedly increases apoptosis after 
administration[7-12]. Our previous results revealed that 
exogenous wild-type p53 (wt-p53) from rAd-p53 
increased tumor necrosis in human colon cancer 
SW480 (5-FU responsive) harboring mutant p53, 
and 5-FU combined with rAd-p53 had a synergistic 
anticancer effect in vivo[13]. Therefore, rAd-p53 may 
contribute to the reversal of resistance to 5-FU in colon 
cancer.

The present study determined the early therapeutic 
effectiveness of rAd-p53 alone or in combination with 
5-FU for the treatment of human colon cancer SW480/
5-FU (5-FU resistant) in a nude mouse model. The 
potential and mechanism of rAd-p53 in the reversal of 
resistance to 5-FU in human colon cancer in vivo was 
also investigated.

MATERIALS AND METHODS
The present study strictly complied with the recom­
mendations of the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health. 



The animal use protocol was reviewed and approved 
by the Institutional Animal Care and Use Committee 
(IACUC) of Sun Yat-sen University (2011-0702) and 
Guangzhou Medical University, Guangzhou, China.

Cell culture
The human colon cancer cell line SW480 was purchased 
from the Cell Bank of Sun Yat-sen University. The cells 
were cultured in RPMI 1640 with 10% fetal calf serum, 
100 U/mL penicillin and 100 µg/mL streptomycin, and 
grown at 37 ℃ in a 5% CO2 humidified atmosphere. 5-FU 
resistant SW480 (SW480/5-FU) cells were generated 
by continuous exposure to increasing concentrations of 
5-FU for more than 5 mo. SW480/5-FU cells were able 
to survive in 6 µg/mL of 5-FU. The IC50 of 5-FU, based 
on the results of a [3-(4,5-dimethylthiazol-2-yl)-2,5 
diphenyltetrazolium bromide (MTT)] assay, was 23.593 
µg/mL for parental cells (SW480) and 140.642 µg/mL 
for resistant cells (SW480/5-FU). The resistance index 
(RI) was 5.93. The IC50 of 5-FU in SW480 and SW480/
5-FU cells was assayed with MTT.

Animal model
BALB/c nude mice were purchased from the Animal 
Center of Sun Yat-sen University. A total of 100 4-wk-
old BALB/c nude mice, weighing 16-18 g regardless of 
sex, were subcutaneously implanted with SW480/5-
FU tissues in the rear flank to generate xenograft 
models as described previously[13,14]. All surgical pro­
cedures were performed under anesthesia induced 
by chloral hydrate (4.5% chloral hydrate, 2 mL/100 g 
body weight, intraperitoneal injection), and all efforts 
were made to minimize suffering. Mice were fed in a 
specific pathogen-free (SPF) laboratory. One month 
after implantation, the mice were randomly assigned 
to four groups (25 per group): control group (medical-
grade saline), 5-FU group, rAd-p53 group (Gendicine, 
SibionoGeneTech Co., Ltd, Shenzhen, China), and 
rAd-p53 + 5-FU group. The above-mentioned thera
peutic agents were administered by intratumoral 
injection. The dose of rAd-p53 administered was 1 × 
107 VIP/mm3 tumor for each group. The dose of 5-FU 
was 25 mg for tumors 0.5-0.9 cm, 50 mg for tumors 
1.0-1.4 cm, and 75 mg for tumors more than 1.5 cm[13].

Assessment of tumor response
At 24, 48, 72, 120 and 168 h after treatment, 5 
mice were randomly selected from each group and 
euthanized with an overdose of anesthetics. The 
tumors were removed and divided into equal halves. 
One half was immediately frozen at -30 ℃ for Western 
blot analysis. The other half was fixed in phosphate-
buffered saline (pH 7.3) containing 4% formaldehyde 
and 0.2% glutaraldehyde, embedded in paraffin, and 
sectioned for TUNEL assay.

Measurement of apoptosis
Pathological sections were stained using the TUNEL 

apoptosis in situ detection reagent kit (Keygen, 
Nanjing, China) according to the manufacturer’s instruc
tions. The area ratio of tumor cell apoptosis was calcu­
lated as the percentage of positively stained cell nuclei 
(dark brown) at magnification × 100. The average of 
the evaluations by the pathologists (Zhang & Xu) was 
used for analysis.

Western blot analysis
Western blot analysis was used to detect the protein 
expression of p53, protein kinase C (PKC), perme
ability-glycoprotein (P-gp) and multidrug resistance-
associated protein 1 (MRP1) as described in the 
instruction manual (Phototope®-HRP Western blot kit; 
Cell Signaling Technology, United States). Cell extracts 
were obtained from frozen tumor tissues (-30 ℃). 
Immunoblot analysis was performed using anti-p53 
monoclonal antibodies (Santa Cruz Biotech, United 
States), anti-PKC and multidrug resistance protein 1 
(MDR1) and MRP1 monoclonal antibodies (Santa Cruz 
Biotech). Subsequent protein detection was performed 
using an enhanced chemiluminescence (ECL) detection 
system (Hitachi, Japan).

The band intensities (IOD) of protein expression 
stated above were scanned into the computer and 
analyzed with Image-Pro Plus 6.0 software. The relative 
IOD (RIOD) of protein expression was calculated as the 
IOD of the protein in the control group and therapeutic 
groups at each time point divided by the corresponding 
IOD of GAPDH (internal control). 

Statistical analysis
The SPSS 13.1 statistical package (SPSS Inc., United 
States) was used for all calculations. The tumor 
responses of the entire sample set (ANOVA repeated 
data) and between groups (SNK test) were compared, 
and the correlations between parameters were 
evaluated with Pearson’s correlation at a significance 
level of 0.05. Data are presented as mean ± SD of a re­
presentative of at least three independently performed 
experiments.

RESULTS
Tumor cell IC50
The IC50 of 5-FU based on the results of the MTT 
assay was 23.593 µg/mL for parental cells (SW480) 
and 140.642 µg/mL for resistant cells (SW480/5-FU). 
The resistance index (RI) was 5.93.

Tumor cell apoptosis
Tumor cell apoptosis was detected in sections from the 
5-FU group and the control group at the observed time 
points (Figure 1); however, there were no significant 
differences in tumor cell apoptosis between the two 
groups (SNK test, P > 0.05; Table 1).

The area ratio of tumor cell apoptosis in the 
rAd-p53 + 5-FU group was significantly larger than 
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Protein expression
P53 expression: P53 protein showed weak expres
sion in the 5-FU group and the control group at the 
observed time points (Figure 2A). There were no 
significant differences in the RIOD of p53 expression 
between the two groups (SNK test, P > 0.05; Table 2). 
P53 expression level in the rAd-p53 and the rAd-p53 
+ 5-FU group was higher than that in the control and 
5-FU groups (SNK test, P < 0.05) and increased in a 
time-dependent manner (ANOVA, P < 0.05; Table 2), 
with peak expression at 120 h. P53 expression in the 

that in the control group, 5-FU group and the rAd-p53 
group (SNK test, P < 0.05; Table 1). The area ratio 
of tumor cell apoptosis in the rAd-p53 group was 
significantly larger than that in the control group (SNK 
test, P < 0.05). After > 48 h of treatment, the area 
ratio of tumor cell apoptosis in the rAd-p53 group was 
significantly larger than that in the 5-FU group (SNK 
test, P < 0.05).

The area ratio of tumor cell apoptosis in the 
rAd-p53 group and the rAd-p53 + 5-FU group tended 
to increase with time (ANOVA, P <0.05).
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A B

C D

Figure 1  Tumor cell apoptosis. Tumor cell apoptosis at 72 h (magnification × 400) in the control group (A), 5-FU group (B), rAd-p53 group (C) and rAd-p53 + 5-FU group (D).

Table 1  Tumor apoptosis ratios in experimental groups and control group (mean ± SD)

Group 24 h 48 h 72 h 120 h 168 h

Control 0.25 ± 0.02 0.28 ± 0.01 0.27 ± 0.02 0.29 ± 0.02 0.24 ± 0.04
5-FU 0.27 ± 0.03 0.31 ± 0.03 0.31 ± 0.05 0.30 ± 0.04 0.31 ± 0.02
rAd-p53 0.29 ± 0.02 0.35 ± 0.03 0.43 ± 0.08 0.42 ± 0.06 0.46 ± 0.06
5-FU + rAd-p53 0.33 ± 0.03 0.44 ± 0.08 0.58 ± 0.07 0.59 ± 0.05 0.62 ± 0.07
F 13.235 41.487 53.812 61.676 80.755
P value 0 0 0 0 0
P value > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
5-FU vs Control
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 vs Control
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs Control
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs rAd-p53
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs 5-FU
P value >0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 vs 5-FU

Xie Q et al . Anticancer effect of 5-FU and rAd-p53



7346 August 28, 2016|Volume 22|Issue 32|WJG|www.wjgnet.com

5-FU rAd-p53 5-FU + rAd-p53

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Th
e 

R
IO

D
 o

f 
p5

3 
ex

pr
es

si
on

Control

24 h

48 h

72 h

120 h

168 h

A

5-FU rAd-p53 5-FU + rAd-p53

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Th
e 

R
IO

D
 o

f 
PK

C 
ex

pr
es

si
on

Control

24 h

48 h

72 h

120 h

168 h

5-FU rAd-p53 5-FU + rAd-p53

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Th
e 

R
IO

D
 o

f 
P-

gp
 e

xp
re

ss
io

n

Control

24 h

48 h

72 h

120 h

168 h

5-FU rAd-p53 5-FU + rAd-p53

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Th
e 

R
IO

D
 o

f 
M

R
P1

 e
xp

re
ss

io
n

Control

24 h

48 h

72 h

120 h

168 h

Figure 2  Relative band intensities of p53 expression (A), protein kinase C expression (B), permeability-glycoprotein expression (C) and MRP1 expression (D) 
in the three experimental groups.
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rAd-p53 + 5-FU group was significantly higher than 
that in the rAd-p53 group (SNK test, P < 0.05; Table 2).

PKC, P-gp and MRP1 expression: Overexpression 
of PKC, P-gp and MRP1 was observed in the 5-FU 
group and the control group (Figure 2B-D). There were 
no significant differences in the RIOD of the expression 
of these proteins between the two groups (SNK test, P 
> 0.05; Tables 3-5).

At the observed time points, the expression of PKC, 
P-gp and MRP1 in the rAd/p53 + 5-FU group gradually 
decreased in a time-dependent manner (ANOVA, P < 
0.05; Tables 3-5). The expression of P-gp and MRP1 
was significantly lower than that in the control group 
and the 5-FU group (SNK test, P < 0.05). More than 
48 h after treatment, the expression of PKC in the 
rAd-p53 + 5-FU group was significantly lower than 
that in the control, 5-FU and rAd-p53 groups. 

In the rAd-p53 group, the expression of P-gp and 
MRP1 was significantly lower than that in the control 
group and the 5-FU group at > 48 h of treatment 
(SNK test, P < 0.05). The expression of PKC was 
significantly lower than that in the control group and 
the 5-FU group at > 120 h of treatment (SNK test, P < 
0.05).

Pearson’s correlation test
The RIOD of p53 expression was positively correlated 
with the area ratio of tumor cell apoptosis (the corre­
lation coefficient and P value were 0.545 and 0.000, 
respectively).

The RIOD of PKC, P-gp and MRP1 expression was 
negatively correlated with the area ratio of tumor cell 
apoptosis (correlation coefficients were -0.322, 0.012 
and -0.335 and P values were 0.009, -0.541 and 0.000, 
respectively).
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Table 2  Relative IOD of p53 expression in experimental groups and control group (mean ± SD)

Group 24 h 48 h 72 h 120 h 168 h

Control 0.099 ± 0.001 0.105 ± 0.003 0.101 ± 0.007 0.105 ± 0.015 0.103 ± 0.001
5-FU 0.108 ± 0.002 0.098 ± 0.028 0.096 ± 0.004 0.097 ± 0.047 0.096 ± 0.033
rAd-p53 0.187 ± 0.003 0.209 ± 0.014 0.627 ± 0.005 0.743 ± 0.012 0.713 ± 0.005
5-FU + rAd-p53 0.393 ± 0.004 0.461 ± 0.002 0.691 ± 0.018 0.822 ± 0.009 0.808 ± 0.027
F 221.565 270.392 3983.173 9639.595 3867.703
P value 0 0 0 0 0
P value > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
5-FU vs Control
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 vs Control
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs Control
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs rAd-p53
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs 5-FU
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 vs 5-FU

Table 3  Relative IOD of protein kinase C expression in experimental groups and control group (mean ± SD)

Group 24 h 48 h 72 h 120 h 168 h

Control 1.13 ± 0.08 1.21 ± 0.06 0.99 ± 0.13 1.26 ± 0.42 1.08 ± 0.20
5-FU 0.94 ± 0.21 1.12 ± 0.14 0.93 ± 0.14 1.08 ± 0.52 1.04 ± 0.26
rAd-p53 0.93 ± 0.42 0.91 ± 0.23 1.07 ± 0.13 0.57 ± 0.18 0.36 ± 0.09
5-FU + rAd-p53 1.23 ± 0.24 0.53 ± 0.09 0.45 ± 0.10 0.26 ± 0.06 0.08 ± 0.01
F 1.036 33.972 14.348 24.072 71.559
P value 0.427 0 0.01 0 0
P value > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
5-FU vs Control
P value > 0.05 < 0.05 > 0.05 < 0.05 < 0.05
rAd-p53 vs Control
P value > 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd/p53 + 5- FU vs Control
P value > 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs rAd-p53
P value > 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs 5-FU
P value > 0.05 < 0.05 > 0.05 < 0.05 < 0.05
rAd-p53 vs 5-FU

Xie Q et al . Anticancer effect of 5-FU and rAd-p53



The RIOD of p53 expression and the RIOD of 
PKC, P-gp and MRP1 expression showed a negative 
correlation (correlation coefficients were -0.366, 0.004 
and -0.406 and P values were 0.001, -0.488 and 0.000, 
respectively).

DISCUSSION
5-FU is still widely used as a major anticancer drug 
in the treatment of colon cancer[3]. However, a major 
impediment to the success of colon cancer chemo­
therapy is the development of cancer variants exhibiting 
multidrug resistance (MDR)[2-6,15,16].

MDR usually presents as cross-resistance to multiple 
chemotherapeutic drugs with different structures[16,17]. 
Anti-cancer drug resistance in colon cancer cells can be 
caused by various factors, including alterations in drug 
influx and efflux, enhancement of drug inactivation 

and mutation of the drug target induced by various 
proteins[18-21]. To date, multiple factors have been 
reported to lead to resistance to chemotherapeutic 
drugs[16-23]. P-gp, PKC and the multidrug resistance-
associated proteins (MRPs) contribute to chemotherapy 
resistance[17-23]. In our previous studies, overexpression 
of P-gp, PKC and MRP1 was observed in human colon 
cancer SW480/5-FU cells (5-FU resistant) and weak 
expression of these proteins was seen in parental 
human colon cancer SW480 cells (5-FU responsive)[14]. 

Various mechanisms contribute to MDR, including the 
overexpression of drug efflux pumps (pump resistance) 
and the up-regulation of cellular antiapoptotic defense 
systems (non-pump resistance)[23,24]. P-gp encoded by 
the MDR1 gene and MRPs belong to the ATP-binding 
cassette (ABC) superfamily. These transporter proteins 
(responsible for pump resistance) mediate the efflux of 
drugs in the MDR spectrum, such as anthracyclines, out 
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Table 4  Relative IOD of P-gp expression in experimental groups and control group (mean ± SD)

Group 24 h 48 h 72 h 120 h 168 h

Control 1.28 ± 0.20 1.32 ± 0.31 1.36 ± 0.40 1.29 ± 0.43 1.30 ± 0.56
5-FU 1.17 ± 0.37 1.13 ± 0.41 1.17 ± 0.39 1.27 ± 0.47 1.29 ± 0.56
rAd-p53 1.12 ± 0.31 0.69 ± 0.11 0.62 ± 0.02 0.36 ± 0.15 0.26 ± 0.06
5-FU + rAd-p53 0.86 ± 0.17 0.65 ± 0.21 0.59 ± 0.25 0.31 ± 0.01 0.10 ± 0.03
F 5.670 7.301 14.645 9.844 7.971
P value 0.022 0.011   0.001 0.005 0.009
P value > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
5-FU vs Control
P value > 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 vs Control
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs Control
P value < 0.05 > 0.05 > 0.05 > 0.05 > 0.05
rAd-p53 + 5-FU vs rAd-p53
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs 5-FU
P value > 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 vs 5-FU

Table 5  Relative IOD of MRP1 expression in experimental groups and control group (mean ± SD)

Group 24 h 48 h 72 h 120 h 168 h

Control 1.31 ± 0.36 1.33 ± 0.08 1.09 ± 0.24 1.22 ± 0.35 1.07 ± 0.22
5-FU 1.27 ± 0.10 1.31 ± 0.11 1.14 ± 0.16 1.20 ± 0.31 1.13 ± 0.14
rAd-p53 0.98 ± 0.09 0.74 ± 0.11 0.58 ± 0.18 0.87 ± 0.31 0.31 ± 0.08
5-FU + rAd-p53 0.71 ± 0.17 0.62 ± 0.02 0.51 ± 0.10 0.42 ± 0.08 0.13 ± 0.10
F 6.438 123.754 20.567 15.512 36.073
P value 0.016 0 0   0.001 0
P value > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
5-FU vs Control
P value > 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 vs Control
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs Control
P value > 0.05 < 0.05 > 0.05 < 0.05 > 0.05
rAd-p53 + 5-FU vs rAd-p53
P value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 + 5-FU vs 5-FU
P value > 0.05 < 0.05 < 0.05 < 0.05 < 0.05
rAd-p53 vs 5-FU
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of cells, thus reducing drug efficacy[24]. Generally, there 
are two approaches used to reverse ABC superfamily-
mediated MDR: blocking its drug-pump function and 
inhibiting its expression[25-27]. 

PKC is one of the signaling enzymes that is 
positively regulated by reactive oxygen species (ROS) 
and plays a crucial role in a variety of pathophy­
siological states, including tumor progression. PKC 
contains multiple cysteine residues that can be 
activated by ROS oxidatively[28,29]. PKC represents a 
family of serine/threonine kinases that are involved 
in the regulation of cell growth, cell death and stress 
responsiveness[30]. Generally, the PKCs are classified 
into three subfamilies based on their structural and 
activation characteristics: the conventional or classic 
(α, βI, βⅡ, and γ), the novel or non-classic (δ, ε, η 
and θ), and the atypical PKC isoenzymes (ζ, ι and 
λ)[30]. Different PKC isoenzymes may exert similar 
or opposite cellular effects by differential coupling of 
signaling pathways[31]. Cancer cells survive by evading 
apoptosis or promoting proliferation, invasion and 
metastasis. PKC may act as a downstream effector 
of the signaling protein phosphatidylinositol 3-kinase 
(PI3K). The PI3K-mediated signaling cascade regulates 
cell proliferation, cell survival, differentiation and 
apoptosis[32-34]. Phosphorylation of the regulatory 
subunit p85a is linked to increased survival of cancer 
cells. The p85 subunit regulates the catalytic subunit 
p110 by stabilization and inactivation of its kinase 
activity in the basal state as well as by recruitment 
of PI3K to phospho-tyrosine residues of the activated 
receptors[34,35].

PKCα and PKCβ may promote ABCB1 function 
by phosphorylation[18,33,34]. Notably, the effects 
of PKC signaling on ABCB1 phosphorylation and 
function appear to be cell type-dependent. In ovarian 
carcinoma cells, antisense oligomers directed against 
PKCα and PKCβ reversed ABCB1-mediated drug 
resistance[36]. In contrast, PKCβ was not detectable in 
some reports, and siRNAs targeting PKCα interfered 
with PKC signaling, but not with ABCB1 function[18]. 
Moreover, p53 was shown to suppress PKCα-mediated 
ABCB1 activation in leiomyosarcoma, fibrosarcoma, 
and osteosarcoma cells[18,34].

Mutations or deletions of suppressor gene p53 
are the most common genetic abnormalities that 
occur during cancerogenesis in the majority of human 
neoplasms. The p53 gene, localized on the short arm 
of chromosome 17 (17p13), encodes nucleic phospho­
proteins, and affects several cell functions (induction of 
many genes, regulation of the cell cycle and apoptosis 
control)[37]. Under the condition of p53 gene mutation, 
cancer cells remain intact and survive[38]. 

 Evasion from chemotherapy-induced apoptosis 
due to p53 loss strongly contributes to drug resis
tance[3-6,16,38]. Wild-type p53 is a key tumor suppressor 
in preventing tumorigenesis and cancer progression; 
however, mutant p53, detected in over 50% of all 
human tumors and in approximately 70% of colo­

rectal cancers[39-43], promotes tumor progression and 
resistance to therapies[3-6,38,44], and such mutants have 
become the most common prognostic indicators for 
both tumor recurrence and cancer death[40,43,45,46]. 
Prevention of p53 mutation to restore wild-type p53 
activity is an attractive anticancer therapy to reverse 
5-FU resistance in colon cancer.

 Infection with Ad-p53 can significantly down-
regulate MDR1 transcription and P-gp expression 
in breast cancer cell lines and reverse resistance to 
adriamycin[47]. Treatment with rAd-p53 alone, oxaliplatin 
alone or combined treatment led to a decrease in Bcl-2 
expression and an increase in Bax expression in gastric 
cancer cells, and induced apoptosis of gastric cancer 
cells, which was accompanied by increased expression 
of caspase-3[12]. Therefore, rAd-p53 may enhance the 
sensitivity of gastric cancer cells to chemotherapy by 
promoting apoptosis. In the present study, exogenous 
wild-type p53 gene from rAd-p53 decreased the 
expression of PKC, P-gp and MRP1 and promoted 
apoptosis of colon carcinoma cells in nude mice 
implanted with human colon carcinoma SW480/5-FU 
(5-FU resistant), which contributed to the reversal of 
5-FU resistance.

The antimetabolite, 5-FU, is an analogue of uracil 
with a fluorine atom at the C5 position of the pyrimidine 
ring. 5-FU is converted in cells to different active meta­
bolites, including fluorodeoxyuridine monophosphate 
(FdUMP), fluorodeoxyuridine triphosphate (FdUTP) and 
fluorouridine triphosphate (FUTP). These metabolites 
have been implicated in both global RNA metabolism 
due to incorporation of the ribonucleotide FUMP into 
RNA, and DNA metabolism due to thymidylate synthase 
(TS) inhibition or direct incorporation of FdUMP into DNA, 
leading to a wide range of biological effects which can 
act as triggers for apoptotic cell death[3,4,15,16]. Therefore, 
5-FU can be regarded as a genotoxic agent.

P53 protein in the production of wild-type p53 
expression plays a key role in cell cycle regulation and 
in the cellular response to cytotoxic stress and DNA 
damage[48-51]. P53 protein is maintained at low levels 
by MDM2, an E3-ligase that binds p53 and promotes 
its degradation[52-54]. DNA damage and other stresses, 
including gamma and UV irradiation, chemotherapeutic 
agents, hypoxia, heat or alterations in intracellular 
nucleotide pools, disrupt p53-MDM2 binding, causing 
p53 levels to increase[49-51,55]. Wild-type p53 is induced 
in response to a host of genotoxic and environmental 
stresses, a host of target genes are then transcrip­
tionally activated, including p21, GADD45, Bax and 
Bcl-2. Induction of p21, in turn, leads to cell cycle 
arrest at both G1 and G2 checkpoints. This function 
is thought to be essential in preserving the integrity 
of the cellular genome in response to treatment 
with cytotoxic agents. In addition to mediating cell 
cycle arrest, p53 is a potent inducer of apoptosis and 
programmed cell death[49-51].

Increased p53 protein in response to genotoxic 
stress also occurs in cancer cells[56-59]. Treatment of 
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human colon cancer RKO cells and tetraploid cancer 
cells with 5-FU resulted in a significant increase in 
the levels of the endogenous p53 protein family 
in vitro and enhanced tumor suppression[59]. The 
p53 protein family forms an interacting network of 
proteins[60]. Cancer cell responses to 5-FU treatment 
are determined by the total activity of the entire p53 
family rather than p53 alone[60]. Suppressor p53 is 
one of the molecular targets of 5-FU. With regard to 
5-FU, translational regulation is an important process 
for controlling endogenous p53 expression[59-61]. Our 
previous study demonstrated that the expression of 
exogenous wild-type p53 gene in colon cancer cells 
in nude mice bearing human colon carcinoma SW480 
(5-FU responsive) treated with rAd-p53 + 5-FU was 
significantly higher than that with rAd-p53 alone, 
and tumor necrosis was positively correlated with 
p53 expression in vivo[13]. 5-FU also increased the 
anticancer effect of rAd/p53 in vivo.

In the present study, p53 expression in colon 
cancer SW480/5-FU in the rAd/p53 group and rAd-p53 
+ 5-FU group was higher than in the control and 5-FU 
groups and increased in a time-dependent manner. 
P53 expression in the rAd-p53 + 5-FU group was 
significantly higher than in the rAd-p53 group. These 
results suggest that 5-FU increased the expression 
of exogenous wild-type p53 gene in colon cancer 
(resistant to 5-FU) in vivo. Exogenous wild-type p53 
is also induced in response to genotoxic stress in 
chemotherapy-resistant cancer cells.

In summary, exogenous wild-type p53 gene from 
rAd-p53 can decrease the expression of PKC, P-gp and 
MRP1 in SW480/5-FU (5-FU resistant) and promote 
apoptosis of tumor cells, which contributes to the 
reversal of 5-FU resistance in vivo. 5-FU can increase 
the expression of exogenous wild-type p53, thus 5-FU 
combined with rAd-p53 has a synergistic anticancer 
effect in colon cancer resistant to 5-FU in vivo. 
Therefore, the DNA-damaging agent 5-FU combined 
with exogenous wild-type p53 provides a potential 
therapeutic strategy and can enhance the sensitivity 
and reduce the toxicity of chemotherapy and improve 
the clinical efficacy of colon cancer chemotherapy.
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