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Abstract
AIM
To evaluate the effects of asymmetric dimethylarginine 
(ADMA) in renal arteries from portal hypertensive and 
cirrhotic rats. 

METHODS
Rat renal arteries from Sham (n  = 15), pre-hepatic 
portal hypertension (PPVL; n  = 15) and bile duct 
ligation and excision-induced cirrhosis (BDL; n  = 15) 
were precontracted with norepinephrine, and additional 
contractions were induced with ADMA (10-6-10-3 mol/L), 
an endogenous inhibitor of nitric oxide (NO) synthase. 
Concentration-response curves to acetylcholine (1 × 
10-9-3 × 10-6 mol/L) were determined in precontracted 
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renal artery segments with norepinephrine in the 
absence and in the presence of ADMA. Kidneys were 
collected to determine the protein expression and 
activity of dimethylarginine dimethylaminohydrolase 
(DDAH), an enzyme that catabolizes ADMA. 

RESULTS
In renal arteries precontracted with norepinephrine, 
ADMA caused endothelium-dependent contractions. 
The pD2 values to ADMA were similar in the Sham and 
PPVL groups (4.20 ± 0.08 and 4.11 ± 0.09, P  > 0.05, 
respectively), but were lower than those of the BDL 
group (4.79 ± 0.16, P  < 0.05). Acetylcholine-induced 
endothelium-dependent relaxation that did not differ, 
in terms of pD2 and maximal relaxation, among the 
3 groups studied. Treatment with ADMA (3 × 10-4 
mol/L) inhibited acetylcholine-induced relaxation in 
the 3 groups, but the inhibition was higher (P  < 0.05) 
in the BDL group compared with that for the Sham 
and PPVL groups. The mRNA and protein expression 
of DDAH-1 were similar in kidneys from the three 
groups. Conversely, DDAH-2 expression was increased 
(P  < 0.05) in PPVL and further enhanced (P  < 0.05) 
in the BDL group. However, renal DDAH activity was 
significantly decreased in the BDL group. 

CONCLUSION
Cirrhosis increased the inhibitory effect of ADMA on 
basal- and induced-release of NO in renal arteries, and 
decreased DDAH activity in the kidney.

Key words: portal hypertension; cirrhosis; nitric oxide; 
asymmetric dimethylarginine; nitric oxide inhibitors; 
dimethylarginine dimethylaminohydrolase
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Core tip: Cirrhosis is associated with renal dysfunction 
and renal vasoconstriction. This constriction leads to 
decreased renal blood flow and glomerular filtration. 
Decreased nitric oxide (NO) bioavailability is involved 
in these effects. Although plasma levels of asymmetric 
dimethylarginine (ADMA), an endogenous inhibitor of 
NO synthase, are increased in cirrhosis, the effects 
of ADMA on renal arteries under this pathological 
condition are unknown. Therefore, the present work 
studied the effects of ADMA on basal- and stimulated-
NO release in renal arteries from portal hypertensive 
and cirrhotic rats and the renal expression and activity 
of dimethylarginine dimethylaminohydrolase, an 
enzyme that catabolizes ADMA. 
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INTRODUCTION
The progression of cirrhosis is frequently associated 
with an impairment in renal function manifested by 
the appearance of sodium and water retention and 
the accumulation of fluid within the interstitial tissue 
and peritoneal cavity[1]. As the disease develops, 
vasoconstriction of the renal vascular bed commonly 
results in a reduced glomerular filtration rate and 
eventually in renal failure[2]. The mechanisms leading 
to renal dysfunction in cirrhosis involve the activation 
of the vasoconstrictor and sodium-retaining systems in 
an attempt to preserve the tubular function[1].

In the kidney, nitric oxide (NO) has numerous 
physiological roles including the regulation of renal 
hemodynamics[3,4]. Studies using NO synthase (NOS) 
inhibitors have demonstrated that NO plays a signi
ficant role in maintaining normal vascular tone in the 
renal vascular bed[4,5]. Basal release of NO from the 
vessel wall has been described in humans[6,7] and in 
human renal artery[8]. In the kidney, the basal release 
of NO induces a substantially lower vascular resistance 
compared to other organs[4,5].

The plasma levels of NG,NG-asymmetric dimethy
larginine (ADMA), an endogenous NOS inhibitor[9], 
are significantly increased in various pathological 
conditions, including end-stage chronic renal failure[10,11], 
cirrhosis[12-14] and hepatorenal syndrome[15]. In human 
renal artery, ADMA induces a progressive inhibition of 
NO synthesis and a diminished response to endothelium-
mediated relaxation[8]. In spite of the increased ADMA 
plasma levels in patients with cirrhosis and hepato
renal syndrome, the role of ADMA in renal dysfunction 
associated to cirrhosis has almost been overlooked, 
and no attempt has been made to determine the 
effects of ADMA on the vascular tone of renal arteries 
during portal hypertension and cirrhosis.

Dimethylarginine dimethylaminohydrolase (DDAHs) 
degrade ADMA to citrulline and dimethylamine, whereas 
NG-nitro-L-arginine methyl ester (L-NAME), another 
inhibitor of NOS, is not degraded by DDAHs[16,17]. DDAHs 
are expressed as type 1 and 2 isoforms[18] and are widely 
distributed in various organs and tissues, including the 
kidney and renal vascular bed[18-20].

The present study hypothesized that one mecha
nism involved in the renal vasoconstriction associated 
with cirrhosis could be the elevated levels of ADMA 
in cirrhosis that may decrease basal- and induced-
release of NO by the endothelium of renal vessels. To 
verify this, the present study investigated the effects of 
ADMA and L-NAME on both the basal, as well as the 
stimulated release of NO in the renal arteries of rats 
with pre-hepatic portal hypertension without cirrhosis 
and in rats with portal hypertension and secondary 
biliary cirrhosis induced by ligation and excision of the 
bile duct. Furthermore, it assessed the effects of portal 
hypertension and cirrhosis on the renal expression of 
DDAH-1, DDAH-2 and renal DDAH activity. 
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MATERIALS AND METHODS
Male Sprague-Dawley rats (200-250 g) were acquired 
from Charles River, and housed according to institutional 
guidelines (constant room temperature 22 ℃, 12 h 
light/dark cycle, 60% humidity, standard rat chow 
and water ad libitum). All protocols were approved by 
the Institutional Ethics Committee at the University 
of Valencia (No. UV20121124), and conformed to the 
Guide for the Care and Use of Laboratory Animals 
published in Directive 2010/63/EU of the European 
Parliament.

Rats were assigned to a sham-operated (Sham) 
group (n = 15), partial portal vein ligation (PPVL) 
group (n = 15) or bile duct ligation and excision (BDL) 
group (n = 15) in a random way. After induction of 
anesthesia by isoflurane (5%, by induction chamber), 
rats received isoflurane 2%-3% by mask. To assess 
the adequacy of anesthesia during the surgery, 
parameters such as responsiveness (e.g., no response 
to toe pinching), respiratory rate, and heart rate were 
monitored. Analgesia with Butorphanol was used 
pre-operatively for preemptive analgesia and post-
operatively every 4-12 h during the day of the surgery.

Surgical procedures
Surgical procedures were performed as described 
previously[21]. Briefly, pre-hepatic portal hypertension 
induced by partial portal vein ligation was performed 
by placing a 20-gauge needle on the portal vein. A 
non-absorbable surgical thread ligature was placed 
around the needle and portal vein, and the needle 
was then withdrawn. The studies were performed 
14-16 d after PPVL, when the hyperdynamic cir
culation accompanying portal hypertension was fully 
established. Secondary biliary cirrhosis was induced 
by bile duct ligation and excision. The bile duct was 
cut between a ligature close to the hilum of the liver 
and another one close to the duodenum. The studies 
were performed 28 d after BDL when secondary biliary 
cirrhosis had developed. For the sham operation, the 
duodenum, portal vein, and bile duct were exposed 
during laparotomy, and the abdomen was closed 15 
min later. 

On the day of the experiment, mean arterial pres
sure (MAP) and portal pressure (PP) measurements 
were performed while the rats were kept under 
isoflurane anesthesia, as previously described[21]. 
Briefly, MAP and PP were measured by catheterization 
of the right carotid artery and ileocolic vein, respectively. 
Pressure was transmitted through a Statham pressure 
transducer and recorded continuously. The external zero 
reference was placed at the midportion of the rat.

Biochemical analysis
Blood drawn from the carotid artery in the anesthetized 
rat was collected after hemodynamic assay. The plasma 
was separated and stored at -20 ℃ until total bilirubin 

and creatinine levels were assayed in an autoanalyzer, 
according to the manufacturer’s instructions.

Isolated rat renal artery preparation
The renal arteries were isolated and cleaned of 
connective tissue under a dissecting microscope. 
Segments (4 mm in length) of renal artery were cut 
for isometric recording of tension. Outside diameter of 
the rings was measured using an ocular micrometer 
within a Wild M8 zoom microscope (Heerbrugg, 
Switzerland) and ranged from 0.8 to 1.4 mm. In 
some experiments the endothelium was removed 
mechanically by inserting a roughened stainless-steel 
wire into the lumen and gently rolling the vessel ring 
on wet filter paper.

Two stainless-steel holders (100 µm in diameter) 
were introduced through the arterial lumen and 
placed in a 5 mL tissue bath containing modified 
Krebs-Henseleit solution of the following mmol/L 
composition: NaCl 115; KCl 4.6; KH2PO4 1.2; MgCl2 
1.2; CaCl2 2.5; NaHCO3 25; glucose 11.1; EDTA 0.01, 
pH 7.3-7.4. Indomethacin (10-5 mol/L) was added 
to the Krebs-Henseleit solution in order to block 
the cyclooxygenase-derived substances that could 
interfere with the effects of the NOS inhibitors. The 
solution was continuously gassed with 95% O2-5% 
CO2 while the temperature was maintained at 37 ℃ 
with a circulating water jacket and a heat pump. 
One holder was fixed to the organ bath wall and the 
other was connected to a strain gauge (model FT03; 
Grass Instruments Division of Astro-Med Inc, United 
States). Changes in isometric force were recorded by 
use of Chart v. 4.2.3 software and a MacLab/8e data 
acquisition system (ADInstruments, Australia). Once 
the optimal resting tension was reached (1 g), each 
ring was allowed to attain this steady level of tension 
during a 1-h accommodation period before testing. 
Following this, smooth muscle function was assessed 
by exposing the arterial rings to receptor-independent 
depolarizing agent KCl (60 mmol/L) until the con
traction reached a stable plateau. After washout and 
return to stable baseline, functional integrity of the 
endothelium was confirmed routinely by the presence 
of relaxation induced by acetylcholine (10-6 mol/L) 
during contraction obtained with norepinephrine (3 × 
10-7 to 1 × 10-6 mol/L). Arteries in which acetylcholine 
reversed the norepinephrine-induced tone by more 
than 70% were designated as endothelium intact and 
arteries in which acetylcholine caused less than 15% 
relaxation were designated as without endothelium.

To assess the effects of portal hypertension and 
cirrhosis on renal artery contractility, we performed in 
artery rings from each group cumulative concentration-
response curves to KCl (10-120 mmol/L), an agent 
that induces contraction by facilitating Ca2+ entry 
through voltage-dependent Ca2+ channels. 

The basal release of NO is revealed when endo
thelium-intact artery rings are precontracted and an 
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States, 1:200 dilution, overnight incubation at 4 ℃). 
After 4 washes with PBST, membranes were incubated 
for 1 h with a horseradish peroxidase-labeled antibody 
at a 1:2000 dilution in PBST containing 1% milk. After 
4 additional washes, the membranes were incubated 
with chemiluminescent reagent according to the 
manufacturer’s protocols (Inmuno-StarTM HRP Substrate 
Kit, Bio-Rad, United States), and the chemiluminescent 
signal was visualized by the LAS-1000 imaging system 
(Fujifilm, Japan). Densitometric analyses of Western 
blots were performed using Image Reader LAS-1000 
Pro v2.3 software. All membranes were reblogged 
using a monoclonal antibody anti β-actin (1:2500, 
Sigma-Aldrich, United States) as a loading control. Data 
were normalized to corresponding values of β-actin 
densitometry.

DDAH activity
DDAH activity was measured as described previ
ously by a colorimetric assay[23]. Kidney cortex was 
homogenized in 5 volumes of 0.1 mol/L sodium 
phosphate buffer (pH 6.5). Protein concentration 
of the homogenate was determined using the BCA 
protein assay (Thermo Fisher, United States) according 
to the manufacturer’s instructions. The final protein 
concentration of the homogenate was adjusted to 
20 mg/mL with sodium phosphate buffer. Then, 100 
µL of homogenate were preincubated with urease 
(100 U/mL) for 15 min at 37 ℃, and then incubated 
with 1 mmol/L ADMA for 60 min at 37 ℃. After de
proteinization with 0.5 mL of 4% sulfosalicylic acid, 
100 µL of supernatant was incubated with 100 µL of a 
mixture composed by one part of diacetyl monoxime 
(0.8% wt/v in 5% acetic acid) and two parts of 
antipyrine (0.5% wt/v in 50% sulfuric acid) at 90 ℃ 
for 1 h. Each sample was analyzed with a paired blank, 
in which ADMA was omitted. The amounts of L-citrulline 
formed were determined by spectrophotometry at 
466 nm. The DDAH activity was represented as µmol 
L-citrulline formatted/g protein/min at 37 ℃.

Statistical analysis
All values are expressed as mean ± SEM. The con
tractile effects were expressed as absolute tension 
(milligrams-force). Relaxation was expressed as 
a percentage of the norepinephrine-induced con
traction. The pD2 (negative logarithm of the molar 
concentration at which half-maximum response 
occurs) was determined from individual concentration-
response curves by non-linear regression analysis. 
Area under the concentration-response curve (AUC) 
was calculated from each individual concentration-
response curve to acetylcholine and was expressed as 
arbitrary units. The contribution of NO to the vascular 
relaxation induced by acetylcholine was calculated by 
subtracting from the AUC for acetylcholine the AUC 
for acetylcholine in the presence of L-NAME or ADMA. 
All n values are presented as the number of rats. 

additional contraction is induced by NOS inhibitor. This 
additional contraction provides a functional indication 
of NO release. Therefore, the ability of ADMA (10-6-10-3 
mol/L) or L-NAME (10-6-10-3 mol/L) to inhibit basal 
activity of NO was assessed from its enhancement of 
low-levels of contraction (approximately 200-300 mg) 
induced by norepinephrine (1 × 10-7-3 × 10-7 mol/L) in 
endothelium-containing renal artery rings. The ability 
of L-arginine (10-3 mol/L) to either protect against or 
reverse the enhancement by ADMA or L-NAME was 
also assessed. Additionally, the effects of both ADMA 
and L-NAME were examined on norepinephrine-induced 
tone in endothelium-denuded rings.

Concentration-response curves to acetylcholine (1 
× 10-9-3 × 10-6 mol/L), an endothelium-dependent 
vasorelaxant, were determined in precontracted 
segments with norepinephrine (3 × 10‑6 mol/L), in the 
absence and in the presence of ADMA (3 × 10-4 mol/L) 
or L-NAME (3 × 10-4 mol/L) that were added to the 
organ bath 20 min before starting the concentration-
response curve.

All substances and drugs were purchased from 
Sigma-Aldrich Chemical Co. (United States). Drugs 
were prepared and diluted in distilled water except for 
indomethacin, which was dissolved in absolute ethanol. 
Stock solutions of the drugs were freshly prepared 
every day.

Real Time PCR analyses
Samples of cortical tissue from the kidney of each 
rat were immediately collected into RNAlater RNA 
stabilization reagent (Thermo Fisher Scientific, United 
States) following the manufacturer's instructions. Total 
RNA was isolated and reverse transcribed as previously 
described[21]. Ready-to-use primers and probes from the 
Assay-on-demand service of Applied Biosystems were 
used for the quantification of DDAH-1 and DDAH-2 
(Rn00574200_m1 and Rn01525775_g1, respectively) 
and endogenous reference gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH, 4352338E). The 
qRT-PCR was carried out using the ABI Prism 7900HT 
Sequence Detection System (Applied Biosystems, 
United States). Samples were run in triplicate and fold 
changes were generated for each sample by calculating 
2-ΔΔCt[22].

Western blotting
Equal amounts of protein from renal cortical homo
genates (100 µg total protein) were resolved in 
SDS-PAGE on 12% gels and electroblotted onto poly
vinylidene difluoride membranes. After 1 h blocking 
with 5% milk in phosphate-buffered saline with 0.1% 
(v/v) Tween 20 (PBST), membranes were incubated 
in PBST containing 0.1% milk with a specific primary 
antibody: monoclonal goat anti-rat DDAH1 antibody 
(Santa Cruz Biotechnology, United States; 1:500 
dilution, overnight incubation at 4 ℃) or goat anti-rat 
DDAH2 antibody (Santa Cruz Biotechnology, United 
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One- or two-way analyses of variance (ANOVA) were 
performed followed by Bonferroni’s post-test. The level 
of statistical significance was P < 0.05. The statistical 
analysis was carried out using Prism 4 software 
(GraphPad Software Inc., United States).

RESULTS
Morphological features, hemodynamic and biochemical 
parameters 
Morphological characteristics, hemodynamic, and 
biochemical parameters of the Sham, PPVL, and BDL 
groups are summarized in Table 1. Both the PPVL and 
BDL groups led to the characteristic hemodynamic 
changes found in portal hypertension, with higher 
values in PP and lower MAP compared to the Sham 
rats, suggesting the presence of a hyperdynamic 
state. As expected, the PPVL and BDL groups exhibited 
higher spleen weights than did Sham rats. In the BDL 
group, the rats became visibly icteric by the 3rd wk 
following surgery, weight gain was decreased, and 
they had higher total bilirubin values than the Sham 
or PPVL rats. Creatinine concentrations were within 
the normal range in the three groups. The Sham rats 
displayed normal post-operative recovery. 

Effects of KCl
In the Sham group, KCl caused concentration-
dependent contractions with a pD2 of 1.49 ± 0.01 

and a maximal contraction of 1018 ± 83 mg (Figure 
1 and Table 2). In the PPVL group, neither maximal 
contraction nor pD2 values to KCl were affected (Figure 
1 and Table 2). In the renal artery rings of the BDL 
group, maximal contraction to KCl was decreased (P < 
0.05) compared to the Sham and PPVL groups (Figure 
1 and Table 2). There were no differences among 
groups in the sensitivity to KCl as demonstrated by 
similar pD2 values (Table 2).

Effects of NOS inhibitors on basal NO
At resting tension, the addition of L-NAME (10-6-10-3 
mol/L) or ADMA (10-6-10-3 mol/L) did not show 
significant changes in tension (results not shown). 
Following the induction of a low level of contraction 
(210 ± 50 mg) with norepinephrine (1 × 10-7-3 × 10-7 
mol/L), the addition of L-NAME (10-6-10-3 mol/L) or 
ADMA (10-6-10-3 mol/L) led to concentration-dependent 
increases in tension (Figure 2). The pD2 values for the 
concentration-response curves to L-NAME were similar 
in the Sham, PPVL and BDL groups (Table 3). The 
pD2 values for the ADMA curves were similar in Sham 
and PPVL, but were lower (P < 0.05) than those for 
the BDL group, suggesting an increased sensitivity 
to ADMA in renal arteries from cirrhotic rats. In the 
Sham, PPVL and BDL groups, pD2 values of the ADMA 
curves were lower (P < 0.05) than those for L-NAME, 
suggesting a decreased sensitivity to ADMA in all 
groups. The maximal responses to ADMA and L-NAME 
were similar in the Sham and PPVL groups (Figure 
2 and Table 3). Conversely, in the BDL group the 
maximal responses to both ADMA and L-NAME were 
reduced (P < 0.05) compared with those for Sham and 
PPVL rats. The contractile effect induced by ADMA and 
L-NAME was prevented or reverted by L-arginine 10-3 
mol/L, a precursor of NO synthesis, in all the groups 
studied (Figure 2).

Sham PPVL BDL

Body weight gain (g)   39 ± 6 35 ± 6   10 ± 8a,c

Spleen weight (g)      0.7± 0.1    1.3 ± 0.1a   1.4 ± 0.2a

Liver weight (g)   11.6 ± 0.6 10.9 ± 0.7   16.9 ± 0.7a,c

Mean arterial pressure (mmHg) 116 ± 9  95 ± 5a 92 ± 6a

Portal pressure (mmHg)     7 ± 1  17 ± 2a 19 ± 3a

Bilirubin (mg/dL)     0.12 ± 0.03   0.15 ± 0.03     9.91 ± 0.07a,c

Creatinine (mg/dL)     0.75 ± 0.07   0.73 ± 0.06  0.78 ± 0.06

aP < 0.05 vs Sham group and cP < 0.05 vs PPVL group. PPVL: Partial portal 
vein ligation; BDL: Bile duct ligation.

Table 1  Morphological characteristics, hemodynamic and 
biochemical parameters of the Sham, partial portal vein 
ligation, and bile duct ligation groups

Table 2  pD2 values and maximal responses of the con­
centration-response curves to KCl (10-120 mmol/L) in renal 
arteries from Sham, partial portal vein ligation and bile duct 
ligation groups

n pD2 Emax (mg)

Sham 8 1.49 ± 0.01 1018 ± 83
PPVL 8 1.46 ± 0.01   1050 ± 131
BDL 8 1.46 ± 0.01      762 ± 59a,c

pD2, - log M of KCl causing 50% of the maximal contraction; Emax, 
maximal contraction; n = number of rats; aP < 0.05 vs Sham group and cP < 
0.05 vs PPVL group.

Table 3  pD2 values and maximal responses of the con­
centration-response curves to NG-nitro-L-arginine methyl ester 
and asymmetric dimethylarginine in renal arteries from Sham, 
partial portal vein ligation, and bile duct ligation groups, after 
precontraction with norepinephrine

n pD2 Emax (mg)

Sham
   L-NAME 8 5.35 ± 0.17 370 ± 36
   ADMA 8  4.20 ± 0.08e 400 ± 26
PPVL
   L-NAME 8 5.30 ± 0.16 365 ± 30
   ADMA 8  4.11 ± 0.09e 388 ± 25
BDL
   L-NAME 8  5.24 ± 0.16    285 ± 29a,c

   ADMA 8      4.79 ± 0.16a,c,e    310 ± 27a,c

pD2, - log M of substance causing 50% of the maximal contraction; Emax, 
maximal contraction; n = number of rats; aP < 0.05 vs Sham group with 
the same treatment, cP < 0.05 vs PPVL group with the same treatment and 
eP < 0.05 vs L-NAME treatment in the same group. ADMA: Asymmetric 
dimethylarginine; L-NAME: NG-nitro-L-arginine methyl ester.
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Effects of NOS inhibitors on acetylcholine-induced 
relaxation
In renal arteries from the Sham group, acetylcholine (1 
× 10-9-3 × 10-6 mol/L) caused endothelium-dependent 
relaxation (pD2 = 7.95 ± 0.08 and Emax = 93% ± 3%) 
in rings precontracted with norepinephrine (Figure 3A). 
The relaxation induced by acetylcholine did not differ, 
in terms of pD2 and maximal relaxation, among the 3 
groups studied (Figure 3A and Table 4). No relaxation 
was observed in response to acetylcholine in renal 
arteries without endothelium (Figure 3A). 

The relaxation induced by acetylcholine was 
inhibited by the treatment with L-NAME (3 × 10-4 
mol/L) in renal arteries from the three groups. In 
the Sham, PPVL and BDL groups, the inhibitions of 

maximal relaxations induced by acetylcholine in the 
presence of L-NAME were similar (P > 0.05) 69% ± 
4%, 73% ± 3%, and 71% ± 5%, respectively (Figure 
3A and Table 4). The pD2 values decreased (P < 0.05) 
likewise in the presence of L-NAME compared to those 
for the untreated segments, providing evidence that 

Table 4  pD2 and maximal response values for the 
concentration-response curves to acetylcholine in renal 
arteries from Sham, partial portal vein ligation, and bile 
duct ligation groups in the absence (Control) and in the 
presence of NG-nitro-L-arginine methyl ester or asymmetric 
dimethylarginine

Acetylcholine n pD2 Emax (%)

Sham
   Control 8 7.95 ± 0.08 93 ± 3
   L-NAME (3 × 10-4 mol/L) 8  7.13 ± 0.28a  24 ± 7a

   ADMA (3 × 10-4 mol/L) 8    7.27 ± 0.13a,c    60 ± 3a,c

PPVL
   Control 8 7.92 ± 0.08 94 ± 2
   L-NAME (3 × 10-4 mol/L) 8  7.24 ± 0.11a  21 ± 3a

   ADMA (3 × 10-4 mol/L) 8  7.18 ± 0.15a    65 ± 6a,c

BDL
   Control 8 7.91 ± 0.10 95 ± 3
   L-NAME (3 × 10-4 mol/L) 8  7.13 ± 0.35a  24 ± 8a

   ADMA (3 × 10-4 mol/L) 8  7.17 ± 0.22a     32 ± 6a,c,e

pD2, - log M of acetylcholine causing 50% of the maximal relaxation; 
Emax, maximal relaxation expressed as a percentage of the contraction 
in response to 3 × 10-6 mol/L norepinephrine; n = number of rats. aP < 
0.05 vs control group, cP < 0.05 vs L-NAME treated group and eP < 0.05 vs 
Sham and PPVL groups with the same treatment. ADMA: Asymmetric 
dimethylarginine; L-NAME: NG-nitro-L-arginine methyl ester.
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Figure 1  Effects of portal hypertension and cirrhosis on contractile effects 
induced by high extracellular concentrations of KCl in rat renal arteries. 
PPVL: Pre-hepatic portal hypertension; BDL: Bile duct ligation.
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Figure 2  Effects of nitric oxide synthase inhibitors on basal nitric oxide 
release in renal artery. Contractions induced by L-NAME (n = 8) and ADMA (n 
= 8) on rings of rat renal artery with endothelium from Sham, PPVL, and BDL 
groups in the absence and in the presence of L-arginine (L-arg, 10-3 mol/L, n 
= 6). Contractions were determined after evoking submaximal tone with 10-7-3 
× 10-7 mol/L norepinephrine. PPVL: Pre-hepatic portal hypertension; BDL: Bile 
duct ligation; ADMA: Asymmetric dimethylarginine; L-NAME: NG-nitro-L-arginine 
methyl ester.
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NO induced by acetylcholine is similar in the three 
groups. Treatment with ADMA (3 ×10-4 mol/L) inhibited 
acetylcholine-induced relaxation in the 3 groups, but 
the inhibition was higher (P < 0.05) in the BDL group 
compared with the Sham and PPVL groups (Figure 3A 
and Table 4). In renal arteries from the BDL group, 
ADMA induced a greater (P < 0.05) inhibition of 
maximal relaxation than it did in the Sham and PPVL 
groups, but sensitivity (evidenced by pD2 values) was 
unchanged (Figure 3A and Table 4). When areas under 
the curve (AUC) were analyzed, L-NAME inhibited the 
NO-mediated relaxation similarly in the 3 groups (Figure 
3B). Likewise, ADMA inhibited NO release in the Sham 
and PPVL groups; in BDL group the inhibitory effects of 
ADMA were increased (Figure 3B).

Expression of DDAHs
We performed real-time RT-PCR on kidneys from the 
Sham, PPVL, and BDL groups (n = 6 per group). The 
DDAH-1 mRNA expression was similar in kidneys from 

the three groups (Figure 4A). In contrast, the DDAH-2 
mRNA expression was increased (P < 0.05) in the 
PPVL compared to that for the Sham group, and in 
the BDL group, it was further enhanced (Figure 4B). 
The level of DDAH-2 mRNA expression in PPVL and 
BDL rats increased 1.33- and 1.64-fold, respectively. 
Densitometry analysis of Western blot confirmed that 
DDAH 1 was equally expressed in the kidney of the 
three groups (Figure 4C and E). Conversely, DDAH-2 
expression in kidney was increased in the PPVL group 
and further increased in the BDL group (Figure 4D and F).

DDAH activity
We determined the effects of portal hypertension and 
cirrhosis on renal DDAH activity in crude tissue lysates. 
Renal DDAH activity was increased, but not significantly 
(P > 0.05), in kidneys from the PPVL group. The DDAH 
activity in the BDL group, however, was significantly 
reduced (61% ± 7%, P < 0.05) compared to that for 
the Sham and PPVL groups (Figure 5).
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Figure 3  Effects of nitric oxide synthase inhibitors on acetylcholine-induced relaxation in renal artery. A: Concentration-response curves to acetylcholine 
on rings of rat renal artery from Sham, PPVL, and BDL groups in artery rings with endothelium (n = 8) and without endothelium (n = 6) and in artery rings with 
endothelium in the presence of L-NAME (3 × 10-4 mol/L; n = 8) or ADMA (3 × 10-4 mol/L; n = 8). Relaxation is expressed as a percentage of the contraction in response 
to norepinephrine; B: Difference between the areas under curves (AUCs) from artery rings with endothelium (Control) and treated with L-NAME or ADMA. aP < 0.05 vs 
L-NAME treated group and cP < 0.05 vs Sham and PPVL groups treated with ADMA. PPVL: Pre-hepatic portal hypertension; BDL: Bile duct ligation.
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DISCUSSION
The results of the present study demonstrate that both 
the basal- and induced-release of NO are inhibited by 
ADMA, with a higher effect in renal arteries from rats 
with secondary biliary cirrhosis. The increased effect of 
ADMA inhibiting NO synthesis together with decreased 
renal DDAH activity indicates that the accumulation 
of ADMA during cirrhosis could make the renal artery 
prone to vasoconstriction.

One finding of the present report demonstrates a 
decreased contraction in renal arteries from cirrhotic 
rats in response to a high extracellular K+ concentration, 
which causes the depolarization and subsequent 
opening of voltage-dependent Ca2+ channels. Vascular 
hypocontractility in cirrhosis is a multifactorial pheno
menon where several mechanisms have been iden

tified and contribute to impaired vasoconstriction. 
These include the overproduction of vasodilators and 
decreased responsiveness to vasoconstrictors. Although 
NO overproduction is widely accepted as main culprit 
of vasodilation in cirrhosis[24-26], several studies have 
shown that other factors besides NO are involved in the 
pathogenesis of vascular hypocontractility. It is known 
that in cirrhosis, a component of hypocontractility is 
found in isolated vessels, even though the endothelium 
is removed and NOS is pharmacologically inhibited[27-29]. 
It is noteworthy that the cirrhosis-impaired Rho kinase 
pathway results in decreased phosphorylation of Ca2+ 

sensitizing proteins, increased myosin light chain 
phosphatase activity and decreased Ca2+ sensitivity[30]. 
Although our results in vitro show a reduced con
traction of renal arteries during cirrhosis, the in vivo 
activation of vasoactive systems on renal circulation 
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Figure 4  DDAH1 and DDAH2 expression in kidneys from portal hypertensive and cirrhotic rats. A and B: DDAH1 and DDAH2 mRNA expression in kidney from 
Sham, PPVL, and BDL groups normalized to the expression of GAPDH, which was used as an endogenous reference gene; C and D: Immunoblot analysis in single 
kidney probed with antibodies against DDAH1, DDAH2 or b-actin, as indicated; E and F: Graphs show the results of densitometric analyses from pooled data, plotted 
as optical densitometry relative to the signal obtained by b-actin. Each data set represents the mean ± SEM derived from 6 independent experiments. aP < 0.05 vs 
Sham group and cP < 0.05 vs PPVL group. DDAH: Dimethylarginine dimethylaminohydrolase.
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during hyperdynamic circulation associated to portal 
hypertension and cirrhosis[1] could develop into an 
excessive contraction of renal artery.

The basal release of NO was determined indirectly 
by measuring the effects of ADMA and L-NAME in 
precontracted artery rings. We found that in renal 
arteries both NOS inhibitors markedly increased the 
vascular tone, suggesting an important basal NO 
synthesis. The contractile effects induced by NOS 
inhibitors were endothelium-dependent and reversed 
by L-arginine, the substrate for NO synthesis, thus 
demonstrating that ADMA and L-NAME increase arterial 
tone by inhibiting the basal release of endothelial NO.

The maximal contraction induced by NOS inhibitors 
in renal arteries from cirrhotic rats was lower than 
those in control or portal hypertensive rats. The hypo
contractility cannot be attributed to a lower basal 
release of NO, since the smooth muscle of renal arteries 
from cirrhotic rats showed hypocontractility in response 
to KCl. Therefore, differences in the level of contraction 
in response to NOS inhibitors would not reflect changes 
in basal NO generation.

That notwithstanding, we found a similar sensitivity 
to L-NAME in the three groups studied. Furthermore, 
when comparing the sensitivity of the two inhibitors, a 
decreased sensitivity to ADMA as compared with that 
for L-NAME was observed in the three groups. The 
concentration-response curve to ADMA was significantly 
displaced to the left for BDL, as compared to those for 
Sham and PPVL rats; this represents indirect evidence 
of a decreased ability of DDAH to catabolize ADMA. 
Interestingly, no significant differences in the contractile 
response to ADMA were observed between Sham 
and PPVL rats. Since BDL and PPVL rats had similar 
increases in portal pressure, and liver damage was only 
present in the BDL group, it is conceivable that in renal 
arteries the liver dysfunction is the main factor causing 
the altered responses to the ADMA.

Since DDAH is highly specific for the degradation 

of ADMA, but not L-NAME[16], these changes in ADMA 
sensitivity could be related to changes in DDAH activity. 
Another study addressing the localization of DDAH 
and NOS in the rat kidney has shown co-localization of 
the two enzymes[20]. Therefore, the close relationship 
between DDAH and NOS in the kidney supports the idea 
that DDAH regulates ADMA levels and NOS activity[19,31]. 
The increased sensitivity to ADMA in renal arteries 
from the BDL group offers a reasonable indication that 
decreased DDAH activity and the accumulation of ADMA 
occur in the vessel wall, enhancing the inhibitory effect 
on NO biosynthesis. 

Both ADMA and L-NAME inhibited acetylcholine-
induced relaxation in renal arteries indicating that 
NO pathways contribute to this effect. As expected, 
L-NAME markedly inhibited the relaxation induced by 
acetylcholine. Although it has been demonstrated that 
ADMA preferentially blocks basal NO release, but it has 
little effect on acetylcholine-induced relaxation[7,21,32], 
ADMA markedly inhibited the acetylcholine-induced 
relaxation in renal arteries from cirrhotic rats. It has 
been demonstrated that ADMA inhibits basal- and 
stimulated-release of NO in human renal arteries[8] 
and other arterial beds where acetylcholine-induced 
relaxation is mainly dependent on endothelial NO, such 
as the human middle cerebral artery[33] and internal 
mammary artery[34].

The present functional analyses in renal arteries 
from cirrhotic rats demonstrates for the first time that 
the increased ability of ADMA to inhibit NOS could be 
related, at least in part, to a lower activity of DDAH 
and a lesser degradation of ADMA. This reinforces the 
role of DDAH in controlling the NO bioavailability, and 
its impairment during cirrhosis might be a mechanism 
involved in the increased renal artery contraction 
during cirrhosis.

The study shows that the mRNA and protein ex
pressions of DDAH-1 were unchanged in kidneys from 
the PPVL and BDL groups, thus suggesting that portal 
hypertension and cirrhosis do not control renal DDAH-1 
expression. The present results confirm previous 
studies demonstrating unchanged levels of DDAH-1 
expression in kidneys from young cirrhotic rats[35]. 
In contrast, it has been demonstrated that there is a 
decreased hepatic DDAH-1 expression[36] and increased 
DDAH-1 expression in mesenteric arteries[21] from BDL 
rats. Although the mechanisms involved in this different 
regulation of DDAH-1 expression are not apparent, they 
could be related to the organ involved. 

The results of the present work suggest an asso
ciation between portal hypertension, cirrhosis and 
DDAH-2 expression. The kidneys of rats with portal 
hypertension exhibited a higher expression of DDAH-2 
than the kidneys of control rats, and those of the BDL 
group exhibited a further increase of DDAH-2. In this 
case, a similar pattern of expression has been shown 
in mesenteric arteries[21] and liver[36] from BDL rats. 
Surprisingly, DDAH-2 protein expression was unaltered 
in kidneys from young BDL rats[35], suggesting an age-
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Figure 5  Effects of portal hypertension and cirrhosis on renal dimethylar
ginine dimethylaminohydrolase activity. Bar graphs represent DDAH activity in 
kidney from Sham, PPVL, and BDL groups. Each data set represents the mean ± 
SEM derived from 6 independent experiments. aP < 0.05 vs Sham group and cP < 
0.05 vs PPVL group. DDAH: Dimethylarginine dimethylaminohydrolase.
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dependent regulation of the expression of DDAH-2 
induced by cirrhosis.

To determine whether the different patterns in 
DDAH protein expression were correlated with enzy
matic activity, in vitro ADMA degradation by DDAH was 
measured. Renal DDAH activity was unchanged in the 
PPVL group, but was significantly reduced in the BDL 
group, pointing out the liver dysfunction as a main 
factor responsible for the decreased DDAH activity as 
opposed to the portal hypertension and hyperdynamic 
circulation. These data confirm previous findings that 
demonstrate the inhibitory effect of cirrhosis in the 
renal DDAH activity in young rats[35]. 

There is a growing body of evidence that DDAH 
activity is inhibited by superoxide[37,38]. It has been 
demonstrated that ADMA can uncouple endothelial 
NOS and initiate superoxide generation by NOS[39]. 
This finding suggests that an increased concentration 
of ADMA during liver dysfunction[12,13,15] could be an 
initial point for further NOS uncoupling, increased 
superoxide and DDAH inhibition, therefore a further 
increase of ADMA, thereby initiating a feed-forward 
reaction. Accordingly, it has been hypothesized that 
there is a possible role for ADMA in the development 
of hepatorenal syndrome[40], a pathology characterized 
by an excessive vasoconstriction of renal circulation[1].

In cholestatic patients, a correlation between oxi
dative stress during obstructive jaundice and renal 
dysfunction has recently been established[41]. The levels 
of bilirubin were progressively increased from benign 
to malignant evolution[41] which is in concordance with 
pro-oxidant capacity of toxic bile acids[42]. Therefore, it 
is possible that the hyperbilirubinemia associated with 
the BDL model of cirrhosis could increase the oxidative 
stress in the kidney and inhibit renal DDAH. Renal 
dysfunction in cirrhosis is a common complication, 
characterized by marked renal artery contraction as 
a consequence of the activation of several vasoac
tive pathways[1]. Therefore, the increased inhibitory 
effects of ADMA on NO synthesis in renal arteries 
from BDL rats could be another factor contributing to 
the vasoconstriction associated with cirrhosis. DDAH 
activators or ADMA-reducing agents may be a potential 
therapeutic approach to managing the vascular renal 
dysfunction associated with cirrhosis.

In conclusion, both basal- and induced-NO release 
are inhibited in renal arteries by ADMA, an effect that 
is increased in cirrhotic rats. The results of the present 
study confirm that liver dysfunction is the main factor 
in the decreased renal DDAH activity and supports the 
notion that the vascular renal system is highly exposed 
to ADMA during cirrhosis. Furthermore, our data show 
an increased DDAH-2 expression, but a reduced DDAH 
activity in the kidney, associated with cirrhosis.

COMMENTS
Background
Increased renal vascular contraction is a major cause for the development 

of renal dysfunction in cirrhosis. Several observations have shown that nitric 
oxide (NO) inhibition is associated with decreased renal plasma flow and 
increased renal vascular resistance, suggesting that NO exerts a tonic relaxing 
effect on the renal circulation. Therefore, the kidney is highly vulnerable to the 
accumulation of asymmetric dimethylarginine (ADMA), an endogenous NO 
synthase inhibitor. The plasma levels of ADMA are significantly increased in 
cirrhosis and hepatorenal syndrome. No attempts, however, have been made to 
determine the effects of ADMA on the vascular tone of renal arteries from portal 
hypertensive and cirrhotic rats.

Research frontiers
Evidence indicates that in the BDL group dimethylarginine dimethylamino
hydrolase (DDAH) activity is reduced in kidneys and ADMA inhibits the basal 
and stimulated NO in renal arteries more efficiently. High levels of ADMA in 
the plasma of patients with cirrhosis and hepatorenal syndrome have been 
previously described and could be responsible, in part, for the contraction and 
decreased vasodilation of renal arteries during the development of cirrhosis.

Innovations and breakthroughs
This findings draw attention to the role of ADMA and DDAH in the renal vascular 
dysfunction associated with cirrhosis. Since the enhanced sensitivity to ADMA 
and inhibition of DDAH is observed in BDL rats but not in PPVL ones, these 
effects are related to liver dysfunction more than are the portal hypertension 
and hyperdynamic circulation. 

Applications
DDAH emerges as an important regulator of NO bioavailability in the renal 
artery. The DDAH activators or ADMA-reducing agents may be a potential 
therapeutic approach to managing the vascular renal dysfunction associated 
with cirrhosis. 

Terminology
Hepatorenal syndrome is defined as the development of renal failure in 
patients with severe liver disease, acute or chronic, in the absence of any other 
identifiable cause of renal pathology. 

Peer-review
ADMA is a new molecule that its value as a marker is being tested for 
many diseases and situations; cardiovascular diseases, statin usage, etc. 
The study is a well designed and conducted one. It may contribute to the 
pathophysiology and to the development strategies to prevent/treat of 
hepatorenal syndrome.
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