
Abstract
The intestinal microbiome is a reservoir of microbial 
antigens and activated immune cells. The aims of 
this review were to describe the role of the intestinal 
microbiome in generating innate and adaptive immune 
responses, indicate how these responses contribute 
to the development of systemic immune-mediated 
diseases, and encourage investigations that improve 
the understanding and management of autoimmune 
hepatitis. Alterations in the composition of the intestinal 
microflora (dysbiosis) can disrupt intestinal and 
systemic immune tolerances for commensal bacteria. 
Toll-like receptors within the intestine can recognize 
microbe-associated molecular patterns and shape 
subsets of T helper lymphocytes that may cross-react 
with host antigens (molecular mimicry). Activated gut-
derived lymphocytes can migrate to lymph nodes, 
and gut-derived microbial antigens can translocate to 
extra-intestinal sites. Inflammasomes can form within 
hepatocytes and hepatic stellate cells, and they can 
drive the pro-inflammatory, immune-mediated, and 
fibrotic responses. Diet, designer probiotics, vitamin 
supplements, re-colonization methods, antibiotics, 
drugs that decrease intestinal permeability, and 
molecular interventions that block signaling pathways 
may emerge as adjunctive regimens that complement 
conventional immunosuppressive management. In 
conclusion, investigations of the intestinal microbiome 
are warranted in autoimmune hepatitis and promise to 
clarify pathogenic mechanisms and suggest alternative 
management strategies.
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been implicated in the pathogenesis of diverse systemic 
immune-mediated diseases. Dysbiosis, increased 
intestinal permeability, and molecular mimicry between 
microbial and self-antigens may initiate or sustain 
autoimmune hepatitis. Multiple drug, molecular, dietary, 
and probiotic interventions can modify the intestinal 
microbiome and attenuate the immune response. 
The role of the intestinal microbiome in autoimmune 
hepatitis warrants rigorous study, and new therapies 
may emerge that strengthen current treatment regimens.
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INTRODUCTION
Autoimmune hepatitis is a chronic immune-mediated 
inflammatory liver disease of uncertain cause[1,2]. 
Population-based epidemiological studies have indicated 
that it is a rare chronic liver disease with an annual 
incidence of 0.67-1.9 cases per 100000 persons 
and a point prevalence of 4-42.9 cases per 100000 
persons[3-8]. Prevalence varies widely by geographical 
region (Singapore, 4 per 100000[4]; Sweden, 10.7 per 
100000[9]; southern Israel, 11 per 100000[8]; Spain, 11.6 
per 100000[6]; Norway, 16.9 per 100000[3]; Netherlands, 
18.3 per 100000[10]; Denmark, 23.9 per 100000[11]; 
New Zealand, 24.5 per 100000[7]; and Alaska, 42.9 per 
100000[5]), and the incidence has been increasing in 
Denmark[11] and the Netherlands[10]. Rigorous epide-
miological studies have not been performed in the 
adult population of the United States, but studies 
in the children of Utah have indicated an overall 
incidence of 0.4 cases per 100000 and a prevalence 
of 3 cases per 100000[12]. The wide variability in the 
annual incidence and point prevalence of autoimmune 
hepatitis in different geographical regions and ethnic 
groups suggests that genetic and environmental factors 
contribute to its occurrence[2,13,14].

Genetic factors within[15-17] and outside[18-22] the 
major histocompatibility complex (MHC) have been 
implicated as susceptibility factors for autoimmune 
hepatitis. Cytochrome P450 2D6 (CYP2D6) and formi-
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minotransferase cylcodeaminase have been proposed 
as key antigenic targets in some patients[23-25], and 
homologies between peptide sequences in CYP2D6 and 
hepatitis C virus (HCV), herpes simplex virus (HSV), 
and cytomegalovirus (CMV) have suggested that 
molecular mimicry between foreign and self-antigens 
initiates and sustains the disease[2,23,26-28].

The principal target antigen in most white North 
American and northern European adults with auto-
immune hepatitis is unknown, and as yet unrecognized 
self-antigens or foreign antigens that resemble self-
antigens may trigger the disease or increase suscep-
tibility to it, possibly by skewing components of the 
innate and adaptive immune responses toward a pro-
inflammatory, autoreactive profile[2,29]. The commensal 
bacteria of the intestine and their metabolic by-
products constitute a reservoir of foreign antigens 
that can interact with mucosal immune cells and 
influence systemic immune responses[30-34]. The 
human microbiome has already been implicated in the 
occurrence of multiple systemic immune-mediated 
diseases, including type 1 diabetes[35-37], rheumatoid 
arthritis[38-41], multiple sclerosis[42], and inflammatory 
bowel disease[43-45], and its role in the inflammatory 
liver diseases is also being scrutinized[46-48].

Non-alcoholic steatohepatitis (NASH) may progress 
because of an influx of microbial products in the portal 
circulation, activation of toll-like receptors (TLRs) 4 
and 9, and subsequent release of pro-inflammatory 
cytokines, including tumor necrosis factor-alfa (TNF-α) 
and interleukin (IL)-1β[49-51]. Primary sclerosing cho-
langitis (PSC) expresses high levels of TLR4 and TRL9 
in biliary epithelial cells (BEC), produces IL-1β, IL-8, 
and interferon (IFN)-γ in response to lipopolysaccharide 
(LPS), and commonly manifests atypical perinuclear 
anti-neutrophil cytoplasmic antibodies (pANCA)[52-54]. 
These antibodies are directed against β-tubulin which 
cross-reacts with an antigen (FtsZ) present in all 
intestinal bacteria[53]. Germ-free mice develop histo-
logically more severe PSC than conventionally housed 
animals, and these findings suggest that commensal 
bacteria have a protective role against PSC[55].

Similarly, primary biliary cholangitis (PBC) expresses 
TLR4 in BEC and periportal hepatocytes, produces pro-
inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) 
in response to intestinal bacterial components [LPS, 
flagellin, and cytosine-phosphorothioate-guanine 
oligonucleotide (CpG)], manifests BEC-destructive 
LPS-stimulated natural killer cells, and produces 
antimitochondrial antibodies that target an antigen 
(pyruvate dehydrogenase complex-E2) which shares 
sequence homologies with intestinal Escherichia 
coli[56-62].

Autoimmune hepatitis may also be influenced by 
the intestinal microbiome. Concurrent features of 
PBC or PSC occur in 7%-18% of patients (“overlap 
syndromes”)[63,64]; atypical pANCA are present in 
49%-92% of individuals with autoimmune hepa-
titis[65-68]; and alterations in the composition of the 

intestinal microbiota (dysbiosis) have been found in 
experimental autoimmune hepatitis[69]. The structural 
proteins binding intestinal epithelial cells (zona 
occludens 1 and occludin) are reduced in patients 
with autoimmune hepatitis compared to healthy 
volunteers; plasma LPS levels are increased; and the 
numbers of intestinal anaerobes (Bifidobacterium 
and Lactobacillus) are decreased[70]. These findings 
support the concept that autoimmune hepatitis is 
associated with dysbiosis, increased permeability of 
the gastrointestinal mucosal barrier, and translocation 
of gut-derived microbial products into the systemic 
circulation.

The goals of this review are to describe the role 
of the intestinal microbiome in generating innate 
and adaptive immune responses, indicate how these 
responses may contribute to the development or 
maintenance of systemic autoimmune responses, and 
encourage investigations in autoimmune hepatitis that 
might improve understanding of its pathogenesis and 
results of its management.

LITERATURE SEARCH
Abstracts cited in PubMed were identified using the 
search words “intestinal microbiome”, “intestinal 
microbiome and autoimmunity”, and “intestinal 
microbiome and autoimmune hepatitis”. Key aspects 
of the abstracts judged pertinent to the review were 
noted, and full-length articles were selected from the 
abstracts. A secondary bibliography was developed 
from the references cited in the selected full-length 
articles, and additional PubMed searches were 
performed to expand the concepts developed in these 
articles. The discovery process involving abstract 
review and the acquisition of full-length articles was 
repeated, and a tertiary bibliography was developed 
after reviewing these selected articles. The number of 
abstracts cited by PubMed and reviewed for pertinence 
to this topic during the primary, secondary and tertiary 
searches exceeded 3800. Those judged most pertinent 
to the topic exceeded 200, and the number of full-
length articles reviewed was 66.

INTESTINAL MICROBIOME AND IMMUNE 
RESPONSES
The human intestinal tract contains 10-11 trillion 
bacteria comprising 500-1500 different species[47,71-76]. 
Actinobacteria, Firmicutes, Proteobacteria, and Bac
teroidetes are the four phyla that predominate[77-79], 
and a phylogenetic core of microbial species has been 
defined that is composed of 66 Operational Taxonomic 
Units (OTUs) present in most individuals[80]. Luminal 
microbiota have greater diversity, and they are more 
tightly clustered than mucosal microbiota[81]. Firmicutes 
and Actinobacteria are more abundant in the luminal 
populations, and Proteobacteria are more abundant in 
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2). Changes in the composition of the intestinal 
microbiome induced by antibiotics, genetic factors, or 
the disease (dysbiosis) may sustain or enhance the 
innate and adaptive immune responses by overcoming 
or circumventing normal tolerogenic responses to the 
commensal bacteria[32,114-116]. Bacterial components 
may act as antigens that stimulate the systemic 
immune response[30,31,34,47,48] or that prime immune cells 
within the intestine that subsequently access peripheral 
lymphoid tissue[39,117,118]. Molecular mimicry between 
microbial and host-derived antigens and promiscuous 
targeting by antigen-sensitized lymphocytes may 
then initiate or strengthen the autoreactive response 
in genetically-predisposed individuals[33,57,115]. Investi-
gations in cell cultures, animal models, and patients 
with diverse systemic immune-mediated diseases 
have justified these hypotheses and warranted their 
consideration in autoimmune hepatitis[46-48].

KEY REQUIREMENTS FOR A 
MICROBIOME-DERIVED SYSTEMIC 
IMMUNE RESPONSE
Activation of TLRs
TLRs are the key receptors within the intestine that 
recognize microbe-associated molecular patterns, 
pathogen-associated molecular patterns, and damage-
associated molecular patterns[34,47,48,119,120] (Table 1). 
They are instrumental in generating an innate immune 
response to pathogens and cellular distress signals, and 
they can shape subsets of T helper (Th) lymphocytes 
that recognize microbial components and have the 
potential to cross-react with host antigens[41,121,122]. 
Ten TLRs have been described in humans[123], and 
each responds preferentially to specific ligands which 
may be viral and bacterial proteins or endogenous 
ligands in the absence of infection[34,120]. All stimulated 
TLRs except TLR3 activate a signaling pathway that 
is dependent on the myeloid differentiation factor 88 
(MyD88)[124,125]. Signaling through the MyD88 pathway 
in turn activates nuclear factor-kappa B (NF-κB) 
and promotes the transcription of pro-inflammatory 
cytokines (TNF-α, IL-1β, and IL-6)[123,125,126].

TLRs can also influence the adaptive immune 
response[41] (Figure 2). TLRs expressed by dendritic 
cells and macrophages can upregulate class II 
molecules of the MHC and enhance antigen presen-
tation to CD4+ helper T lymphocytes[127] (Table 1). 
TLRs can also increase the expression of the co-
stimulatory molecules, CD80, CD86 and CD40, on 
the antigen presenting cells and thereby favor T 
lymphocyte activation and differentiation[41,127]. Kupffer 
cells express all TLRs except TLR5[128], and they are 
the primary cells within the liver that respond to 
TLR ligands. The production of pro-inflammatory 
cytokines, chemokines, and reactive oxygen species 
by the Kupffer cells promotes liver inflammation[129] 

the mucosal populations[81].
The composition of the microbiome is influenced by 

diverse environmental factors, including community 
sanitation levels and vaccination programs, and by 
host-related variables, including method of obstetrical 
delivery, age, genetic predisposition, dietary habits, 
personal hygiene, and antibiotic exposures. Changes 
in the intestinal microbiome tend to be slow from 
late childhood through adulthood with marked chan-
ges occurring mainly with advanced age[74,82-85]. The 
microbiome becomes less diverse and more variable 
over short intervals with aging, and the species of 
Bacteroides, Clostridium and Escherichia coli constitute 
a greater proportion of the microflora in individuals 
aged ≥ 65 years[82-84].

The intestinal microbiome varies in diverse ethnic 
groups[75,86-89], and this diversity may reflect genetic 
factors, demographic issues (age, gender, socioe-
conomic status), lifestyle features (alcohol use, 
smoking, adiposity), and long-term diet[90-92]. Disparities 
in the intestinal microbiota have been recognized 
between ethnic groups in the same country (rural 
versus urbanized)[88,89,93,94] and between countries (Africa 
versus Europe, cross-Europe, and cross-Asia)[87,88,91], 
and socioeconomic variations at individual and neighbor-
hood levels have been associated with many of these 
differences[88,95]. The nature of the long-term diet may 
be the critical element affected by the socioeconomic 
status[95]. 

Amongst the diversity within the intestinal micro-
biota, common functional and phylogenetic elements 
have also been described[89,96-99]. These common 
elements may be indispensable for the well-being 
of the individual as they can produce short-chain 
fatty acids, synthesize vitamins, and aid in digestion, 
metabolism and immune defense[89]. The functional 
and phylogenetic core components have been shared 
across heterogeneous healthy human populations, and 
they tend to co-exist[89].

The intestinal microbiome is essential for develop-
ment of the intestinal immune responses which in turn 
maintain tolerance of the microflora[41,100,101]. Germ-free 
mice have fewer CD4+ T lymphocytes in the lamina 
propria of the intestine, hypoplastic Peyer’s patches, 
less immunoglobulin A production, and disorganized 
zones of T and B lymphocytes in the spleen and 
lymph nodes compared to wild-type mice[102,103]. These 
immune deficiencies are corrected by the introduction 
of Bacteroides fragilis[104]. Colonization also induces 
the production by IL-10-secreting, regulatory T cells 
(Tregs), possibly in response to the secretion of 
polysaccharide A by the bacteria and direct activation 
of TLR2 on the Foxp3+ Tregs[105-108]. The introduction of 
Clostridium species induces similar changes[109,110].

Emerging evidence suggests that the intestinal 
microbiome can influence systemic immune responses 
by activating TLRs[34,47,48] and promoting the formation 
of inflammasomes within the liver[51,111-113] (Figure 
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and the innate and adaptive immune responses[41,127]. 
Hepatocytes, BEC, hepatic stellate cells (HSCs), and 
sinusoidal epithelial cells also express TLRs, but only 
HSCs express TLR1 through TLR9[48,130].

The cytokine profile shapes the subsets of T 
lymphocytes that constitute the immune-mediated 
response, and it is influenced by the particular TLRs 
that are activated by ligands within the microen-
vironment (Table 1). Activation of TLR4 and TLR9 
promotes the release of IL-12 and favors a type 1 
cytokine pathway that is pro-inflammatory[131]. TLR4 
also induces the secretion of IL-23 and promotes the 
expansion and survival of pro-inflammatory Th 17 
lymphocytes[132]. In contrast, activation of TLR2 favors 
the production of IL-10 and IL-13 which promotes an 
anti-inflammatory type 2 cytokine response[133].

LPS from gram-negative bacteria is the principal 
ligand activating TLR4[123,134], and un-methylated CpG 
sequences in bacterial and viral genomes activate 
TLR9[135] (Table 1). The viral proteins of HCV, CMV 
and HSV are key ligands that activate TLR2[34,136,137]. 
TLR2, TLR5, TLR7, and TLR8 are expressed by CD4+ 

T lymphocytes, and ligands that activate these TLRs 
(viral proteins[136], flagellin[138], and single-stranded 
ribonucleic acid[139]) can directly activate memory 
lymphocytes and stimulate their proliferation[140]. 
Naturally occurring Tregs express TLR2, TLR5 and 
TLR8, and they can also be activated directly by viral 
and bacterial components[141]. TLRs can also block 
the suppressive effect of Tregs by the recognition of 
microbial products that induce secretion of IL-6[142]. 
Pathogen-specific adaptive immune responses can be 
favored, and defense mechanisms can be strengthened. 
Microbial elements can thereby modulate the innate 
and adaptive immune responses through the TLRs and 
affect immune homeostasis indirectly by modulating 
the cytokine profile or directly by affecting immune cell 
proliferation.

TLR4 is a crucial signaling pathway by which HSCs 
increase the extracellular matrix[46] (Table 1). The 
production of chemokines and adhesion molecules 
is mediated by activated TLR4 in HSCs[46], and the 
chemo-attraction of inflammatory and immune cells 
to the liver stimulates the fibrotic process[143]. TLR4 
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Figure 2  Interactions between the intestinal microbiome and the liver. Dysbiosis can generate microbe-associated molecular patterns (MAMPs) that activate 
toll-like receptors (TRLs) in the intestine. Activated TLRs can stimulate the transcription factor, nuclear factor-kappa B (NF-κB), in macrophages and generate pro-
inflammatory cytokines. They can also increase the expression of the major histocompatibility complex on antigen presenting cells (APCs) and sensitize CD4 
lymphocytes to bacterial ligands. The activated lymphocytes can proliferate as T helper (Th) 1, Th2, and Th17 cells. The dysbiosis can also generate short chain fatty 
acids, endotoxin, lipopolysaccharide (LPS), and bacterial components that can serve as antigenic ligands. Tight junctions within the intestinal mucosa may weaken 
with the dysbiosis and allow paracellular translocation of lymphocytes, bacterial ligands and endotoxin. These gut-derived elements can then enter the portal vein and 
be delivered to the liver. The bacterial ligands within the liver can activate TLRs within hepatocytes, hepatic stellate cells, Kupffer cells, and sinusoidal epithelial cells 
and generate pro-inflammatory cytokines and reactive oxygen species (ROS) that can produce damage-associated molecular patterns (DAMPs) that activate TLRs 
in a self-amplification loop (upper right corner blow-up). The hepatic TLRs can also contribute to the sensitization of CD4 lymphocytes to bacterial ligands and self-
antigens that resemble bacterial ligands (molecular mimicry). Concurrently, the bacterial ligands and gut-derived endotoxin can activate the non-obese diabetes-like 
receptor (NLR) of inflammasomes within hepatocytes and hepatic stellate cells (upper left corner blow-up). The release of caspase 1 can generate interleukin (IL) 1β 
and IL-18 and promote tissue injury and the immune response. The net effect is to increase hepatic inflammation and liver damage and predispose to autoimmunity 
and hepatic fibrosis. 
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signaling also promotes activation of transforming 
growth factor-beta (TGF-β) by down-regulating pro-
duction of an endogenous inhibitor of the TGF-β 
receptor[144]. Furthermore, TLR4 signaling may down-
regulate microRNA molecules that suppress the 
transcription of collagen[46,145]. A polymorphism of the 
TLR4 gene may impair the response of TLR4 to LPS. 
The LPS-induced signaling pathway that activates NF-
κB may thereby be disrupted and the production of 
the pro-inflammatory cytokines, TNF-α and interferon-
beta, may be reduced[146]. In this fashion, a genetic 
variation may affect the response of TLR4 to microbial 
ligands and the propensity for progressive hepatic 
fibrosis.

The signaling pathway involving TLR4, MyD88, 
and NF-κB has been implicated in the progression of 
multiple liver diseases[54,58,144,147,148]. Concentrations of 
gut-derived endotoxins have been increased in animal 
models of hepatic fibrosis[149,150] and in the systemic 
and portal circulation of patients with cirrhosis[151,152]. 
Other TLRs may respond to different microbial ligands 
and influence the subsets of lymphocytes that orchest-
rate the autoreactive response. TLR signaling pathways 
have not been evaluated in autoimmune hepatitis.

Stimulation of inflammasomes
Inflammasomes are protein complexes that form 

within the cytoplasm of diverse cells, including ma-
crophages, hepatocytes, and HSCs, in response 
to stimuli associated with cellular stress, damage 
or infection[112,153,154] (Table 1). By releasing pro-
inflammatory cytokines IL-1β and IL-18, they drive the 
inflammatory response to tissue injury and influence 
cell death, inflammatory activity, and fibrosis[111,113] 
(Figure 2). TLRs and inflammasomes have separate 
routes of activation[112,155], but cooperation between 
them is pivotal in promoting communication between 
the intestinal microbiota and the systemic immune 
response[34]. Factors that increase the expression of 
inflammasomes, such as saturated fatty acids and 
bacterial endotoxin, may increase activation of TLR4 
and promote hepatic fibrosis[50].

Inflammasomes consist of a sensor protein that 
is within the family of non-obese diabetes (NOD)-like 
receptors (NLRs), an adaptor molecule (apoptosis-
associated speck-like CARD-domain containing 
protein), and pro-caspase 1[156] (Table 1). The infla-
mmasomes can sense microbial products[157] and 
metabolic stress[112], activate pro-caspase 1[158,159], 
trigger the release of pro-inflammatory cytokines[153], 
and shape the innate[112] and adaptive immune res-
ponses[160]. The expression of NLRP3 is upregulated in 
hepatocytes after stimulation with LPS, and Kupffer 
cells and sinusoidal epithelial cells also express high 
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Table 1  Key Requirements for gut-derived systemic immune response

Key requirement Features Mechanisms

Activation of TLRs Intestinal receptors responsive to MAMPs and DAMPS[34,47,48,120] Increases pro-inflammatory cytokines[126]

Signaling dependent on MyD88[124,125] Upregulates class II MHC[127]

Activates NF-κB[123,125,126] Increases co-stimulatory molecules[41,127]

Favors T lymphocyte activation[41] Promotes pathogen-specific responses[142]

Modulates actions of Tregs[141,142] LPS activates TLR4[123,134]

Present in hepatocytes, HSCs, Kupffer cells, sinusoidal epithelial cells, BEC[48] Sequences in bacteria activate TLR9[135]

TLR4 in HSCs promote fibrosis[46,144]

Implicated in other liver diseases[58,148]

Stimulation of 
inflammasomes

Protein complexes that release pro-inflammatory IL-1β and IL-18[111-113] Upregulated in hepatocytes by LPS[113]

NLRs sense microbial products[156] Activates pro-caspase 1[156]

Upregulated in Kupffer cells, hepatocytes, and sinusoidal epithelial cells[113] Promotes hepatic fibrosis[50]

Activation by highly diverse ligands[112] Shapes innate and adaptive immunity[112,160]

Implicated in NAFLD[51]

Activation separate from TLRs[112,155]

Emergence of dysbiosis Microflora differ from commensals[116] Can activate TLRs and NLRs[116,173]

Dysbiosis varies in specific diseases[116] Genetic factors may affect composition[177]

Less bacterial diversity common[170] Gender-related compositional differences[179]

Antibiotics most frequent basis[165,175] May affect gender-related autoimmunity[180]

Uncertain cause or effect of disease[116] Present in AIH and experimental NASH[47,69]

Molecular mimicry Microbial and self-homologies[33,185] pANCA react with bacterial antigen[53]

Cross-reacting antibodies[53,57,184] AMA cross-reacts with Escherichia coli[56,57]

Promiscuous activity of effectors[186] Increasingly distant homologues targeted[187]

Epitope spread[187]

Breech of intestinal 
mucosal barrier

Gut-derived products enter system[195] Gut-derived lymphocytes in lymph nodes[118]

Translocation prime basis[46,195] Microbial components in peripheral blood[195]

Active transport also possible[230] Activates TLRs and NLRs[123,130]

Implicated in NASH and diabetes[197,198]

AMA: Antimitochondrial antibodies; BEC: Biliary epithelial cells; DAMPS: Damage-associated molecular patterns; HSCs: Hepatic stellate cells; IL: 
Interleukin; LPS: Lipopolysaccharide; MAMPs: Microbe-associated molecular patterns; MHC: Major histocompatibility complex; MyD88: Myeloid 
differentiation factor 88; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; NF-κB: Nuclear factor kappa B; NLRs: Non-
obese diabetes-like receptors; pANCA: Atypical perinuclear anti-neutrophil cytoplasm antibodies; TLRs: Toll-like receptors; Tregs: Regulatory T cells. 
Superscripted numbers in brackets are references.
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levels of NLRP1 and NLRP3[113].
The structural diversity of the ligands that activate 

NLRP3 is greater than the structural motifs that 
activate the TLRs, and the inflammasomes may be 
responsive to a broader range of activation signals 
than the TLRs[161] (Table 1). Together the TLRs and 
NLRs provide receptors for signaling pathways that 
can respond to diverse endogenous and exogenous 
danger signals, including microbial components, and 
they each can generate pro-inflammatory responses 
that sustain and enhance the innate and adaptive 
immune responses to liver injury. TLRs may also have 
a counter-regulatory effect on the inflammasomes[34]. 
Chronic stimulation of the TLRs by LPS induces the 
production of IL-10 and reduces the activation of 
NLRP3[162]. Furthermore, activation of TLR2 or TLR4 
can increase the autophagy of hepatocytes, the 
degradation of NLRP3, and the suppression of IL-1β 
production[163]. Inflammasomes have not been charac-
terized in autoimmune hepatitis, and their interactions 
with TLRs have not been defined in this disease.

Emergence of immunogenic intestinal microbiota 
(dysbiosis) 
Systemic inflammatory and immune-mediated diseases 
have been associated with intestinal microbiomes that 
distinguish them from normal or other disease-specific 
populations[116] (Table 1). The intestinal microbiota have 
differed in patients with rheumatoid arthritis compared 
to patients with fibromyalgia[164]. Decreased diversity in 
the microbiome has been associated with an increased 
risk of type 1 diabetes[165], the occurrence of atopic 
diseases, including asthma[166-169], and the presence of 
Crohn’s disease[170]. Patients with multiple sclerosis have 
reduced numbers of Clostridia and Bacteroides species 
compared to normal individuals[42], and patients with 
type 1 diabetes have more colonies of Bacteroides[37,171]. 
Compositional shifts in the intestinal microbiota, par-
ticularly the relative frequencies of certain bacterial 
taxa, have been associated with the phenotype and 
genotype of inflammatory bowel disease[172].

These findings have suggested that alterations in 
the composition of the intestinal microflora (dysbiosis) 
may disrupt intestinal and systemic immune tolerances 
and contribute to immune-mediated diseases[114,116]. 
Depletion of the commensal bacteria may allow 
intestinal populations of pathogenic or immunogenic 
organisms to proliferate and generate ligands that 
activate TLRs and NLRs[116,173] (Figure 2). The major 
uncertainty has been whether the dysbiosis has been a 
cause or an effect of the disease.

Antibiotics are the principal agents promoting 
dysbiosis, and their use has been implicated in 
creating the dysbiosis associated with the occurrence 
of atopic diseases[167,168,174], asthma[166], type 1 
diabetes[165], and celiac disease[175]. Twin studies have 
also indicated that genetic factors can shape the 

intestinal microbiome[176,177], and immune-mediated 
diseases with genetic predispositions have manifested 
dysbiosis[30,47,116]. Importantly, the contribution of the 
8.1 ancestral haplotype, which includes the DRB1 
alleles commonly associated with systemic auto-
immune diseases including autoimmune hepatitis, is 
probably small[178], and dysbiosis rather than genetic 
factors has been implicated in the occurrence of 
experimental NASH[51].

The composition of the intestinal microflora may also 
influence the gender bias for autoimmune disease[179-181] 
(Table 1). Colonization by commensal microbes early 
in the life of NOD mice raises serum testosterone 
levels and protects male mice from developing type 
1 diabetes[179]. Furthermore, the transfer of the 
intestinal microbiota from mature male NOD mice 
to immature female NOD mice alters the intestinal 
microbiome of the females and protects them from 
developing diabetes[179]. Blockade of the androgen 
receptor attenuates the microbiome-specific changes 
in the female mice and supports the concept that the 
commensal bacteria of the intestine can affect the 
propensity for autoimmune disease in genetically-
susceptible animals by altering sex hormone levels or 
receptor sensitivities[179].

Gender may also influence the composition of 
the intestinal microbiota and in turn the propensity 
to develop autoimmune disease[180] (Table 1). The 
intestinal microbiota differ in male and female NOD 
mice, and this difference disappears after male 
castration. Furthermore, the greater frequency of 
female NOD mice to develop type 1 diabetes compared 
to male NOD mice is lost in germ-free animals[180]. 
These findings suggest that the intestinal microbiome 
can influence sex hormone levels[179] and also be 
influenced by them[180], possibly in a self-amplification 
loop.

The increased female propensity for autoimmune 
disease may relate to estrogenic effects that modu-
late the autoreactive response directly by affecting 
the pro- and anti-inflammatory cytokine pathways of 
lymphocyte differentiation[182] and indirectly by altering 
the intestinal microbiome to favor the translocation of 
sensitizing microbial antigens[180]. Imbalances between 
blood estrogen and progesterone levels have affected 
the immune response during and immediately after 
pregnancy[182], and the treatment of peripheral blood 
mononuclear cells with 17-β estradiol has increased 
their response to immunogens and the expression 
of TLR8[183]. The relationship between sex hormone 
levels and the intestinal microbiome during pregnancy, 
menses, and menopause remains uncertain and 
important to clarify. 

Multiple factors can promote dysbiosis, and a patho-
genic or circumstantial relationship with autoimmune 
disease has not been established. Nevertheless, the 
association of dysbiosis with diverse systemic immune-
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mediated diseases[116], its recognition in autoimmune 
hepatitis[69,70], its possible genetic associations[176,177], 
and its gender bias[179-181] suggest that dysbiosis may 
constitute an important antigenic or hormonal reservoir 
that can promote the autoreactive response in diverse 
systemic immune diseases, including autoimmune 
hepatitis.

Molecular homologies between microbial and self-
antigens
Epitopes can be shared between microbial components 
and self-antigens, and this molecular mimicry can 
result in cross-reacting antibodies or the activation 
of T lymphocytes in genetically-predisposed indi-
viduals[33,184,185] (Figure 2). The reactive T lymphocytes 
can in turn exhibit promiscuous activity[186] and 
target epitopes that are distant homologues to the 
initial antigenic trigger (epitope spread)[187] (Table 1). 
Bacterial components have generated autoantibodies 
found in systemic autoimmune diseases, such as 
systemic lupus erythematosus (SLE)[188] and the 
antiphospholipid syndrome[189], and they have been 
implicated in the progression of SLE[190] and the 
exacerbation of Sjogren’s syndrome, possibly through 
the activation of memory lymphocytes[33,188,191]. The 
atypical pANCA found in PSC and autoimmune hepa-
titis target an antigen (β-tubulin) that cross-reacts 
with a bacterial antigen[53], and the antibodies to 
pyruvate dehydrogenase complex-E2 found in PBC 
cross-react with intestinal Escherichia coli[56,57]. The 
principal mechanism by which the intestinal microbiota 
may sustain or extend the autoreactive response is 
molecular mimicry, and experimental animal models of 
autoimmune hepatitis should evaluate this hypothesis.

Breech of the intestinal mucosal barrier
Interactions between the intestinal microenvironment 
and the systemic immune response imply that the 
natural barrier between the intestinal and systemic 
domains can be breeched (Table 2). There is ample 
evidence to justify this supposition, but the actual 
mechanisms are uncertain. Reactive T lymphocytes 
expressing intestinal receptors can be found in the 
pancreatic islets and lymph nodes of patients and mice 
with type 1 diabetes[117,118,192,193], and lymphocytes 
originating in the gut mucosa have been implicated 
in the autoreactive response in experimental auto-
immune encephalomyelitis[194]. Furthermore, microbial 
components have been detected in the plasma of 
patients with cirrhosis[151,152] and portal circulation of 
animals with non-alcoholic fatty liver disease[51].

The migration of gut-derived bacteria and bacterial 
products from the intestinal lumen to the liver, 
mesenteric lymph nodes, and other extra-intestinal 
sites may occur by translocation[195] (Figure 2). 
Translocation implies that intestinal permeability has 
been increased, possibly because tight junctions within 
the intestinal mucosa have been weakened or the 
intestinal barrier has been overwhelmed by bacterial 
overgrowth[46,195-197]. The translocated bacterial products, 
including LPS and unmethylated CpG, can then be 
delivered to the liver via the portal vein and activate 
TLRs and NLRs[123,130]. Dysbiosis and a “leaky gut” have 
been implicated in the development of NASH, diabetes, 
and the metabolic syndrome[197,198].

Bacteria produce short chain fatty acids (acetic 
acid, butyric acid, and propionic acid) which can affect 
the tight junctions within the intestinal mucosa[197,199,200] 
(Table 2). Butyrate, which is the conjugate base of 

Table 2  Microbial mechanisms for breeching intestinal barrier

Microbial Effect Features Mechanisms

Translocation Migration of gut-derived products[195,224] Gut-derived SCFA affect tight junctions[200]

   Tight junctions weakened[218] Butyrate strengthens intestinal barrier[203]

   Increased intestinal permeability[195,218]    Induces mucin synthesis[201,203]

   Paracellular migration[37,224]    Reduces bacterial translocation[204]

Consequences[192]    Increases peripheral Tregs[205]

   LPS and CpG delivered to liver[123,130,195]    Inhibits NF-κB and inflammation[207]

   Activated immune cells translocate[118,193] Lactate strengthens intestinal barrier[37]

   Translocated microbial antigens activate peripheral immune cells[185]    Fermented to butyrate[215,216]

   TLRs and NLRs activated[123,130] Low butyrate- and lactate- producing bacteria 
associated with weak barrier[217,218]

Increased mucosal 
permeability

Intestinal epithelial cells bound together by junctional complex of proteins[222,223] TLRs affect molecular mediators[225,226]

   Occludin main component[222] Signaling pathways disrupted[223]

   Zona occludens couples cytoskeleton[222] Junctional binding proteins dissociated[224]

   Cingulin contacts cells[222] Paracellular migration routes formed[37,224]

   Actin and myosin anchor cells[222] E. coli and C. difficile key effectors[37]

   Intermediate filaments bind cells[222]

Signaling pathways seal junction[223]

Protein kinase C modulates occludin[222]

Active transport Bacterial antigens actively transported across intestinal barrier[230] M cells in Peyer’s patches capable of active 
transport[230]

Superscripted numbers in brackets are references. Cpg: Un-methylated cytosine-phosphorothioate-guanine oligonucleotide; LPS: Lipopolysaccharide; NF-
κB: Nuclear factor kappa B; NLRs: Non-obese diabetes-like receptors; SCFA: Short chain fatty acids; TLRs: Toll-like receptors; Tregs: Regulatory T cells.  
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butyric acid, induces mucin synthesis in the intestinal 
mucosa, strengthens tight junctions, and reduces 
bacterial transport across the stressed epithelium[201-204]. 
Butyrate may also have an anti-inflammatory effect by 
promoting the extra-thymic differentiation of peripheral 
Tregs[205,206] and inhibiting NF-κB and the transcription 
of pro-inflammatory cytokines[207]. Other short chain 
fatty acids (propionate) and bacterial by-products 
(succinate and acetate) do not induce the production 
of mucin and may increase gut permeability[37,202].

Sodium butyrate acts in part by modulating the 
beta-catenin-dependent Wnt signaling pathway within 
cells[208]. This pathway affects the transcription of genes 
that influence cell proliferation and differentiation. In 
colon carcinoma cell lines, the levels of beta-catenin 
transcriptional complexes within the cell influences 
its physiological response to butyrate. High levels of 
transcriptional complexes result in apoptosis of the cell 
and low levels result in the reversible limitation of cell 
growth after exposure to butyrate[208]. The ability of 
butyrate to modulate cell proliferation and apoptosis 
may in turn influence cell viability and function, and 
these effects may help maintain the integrity of the 
gastrointestinal mucosal barrier.

Butyrate can also modulate cell responses to 
stress of the endoplasmic reticulum by promoting 
the apoptosis of the cell or its preservation through 
autophagy[209-211]. Butyrate enhances the expression 
of peroxisome proliferator-activated receptor-gamma 
and the activation of caspases (especially caspase 
3) that induce apoptosis in colorectal cell lines[212]. It 
is also one of the short chain fatty acids, including 
propionate, that can induce autophagy in distressed 
cells and preserve their survival by generating energy 
and retarding the intrinsic (mitochondrial) pathway of 
apoptosis[213,214]. Gut-derived short chain fatty acids, 
such as butyrate and propionate, may be important 
moderators of intestinal mucosal cell proliferation and 
function, and they may contribute to the prevention 
of systemic autoimmune responses and progressive 
colorectal cancer[208].

Lactate, which is a bacterial byproduct of car-
bohydrate fermentation, also reduces intestinal 
permeability[203] (Table 2). Lactate is fermented mainly 
to butyrate by intestinal microflora[215]. The acetyl-
coenzyme A pathway is the major route of butyrate 
production from lactate, and the intestinal microflora 
have considerable variability in lactate consumption[215]. 
Furthermore, lactate-utilizing bacteria exhibit variable 
production of butyrate depending on the availability 
of other substrates[216]. Patients with type 1 diabetes 
have a lower proportion of butyrate- and lactate-
producing bacteria in their intestinal microbiome than 
case-control subjects, and the dysbiosis favoring 
increased intestinal permeability may contribute to the 
development of type 1 diabetes[217,218].

Intestinal epithelial cells are bound together by 

structural proteins[37,219-221] that are organized into 
a tripartite junctional complex consisting of a tight 
junction, adherens junction, and desmosome[222]. 
Occludin is the only known transmembrane protein 
with a domain in the paracellular space, and it is 
the principal component of the tight junction. Zona 
occludens 1 and 2 and cingulin are non-transmembrane 
proteins found in tight junctions at sites of cell-to-
cell contact[222]. They are bound to occludin, and 
they probably couple cells to the cytoskeleton[222,223]. 
Actin and myosin filaments anchor cells together by 
calcium-dependent adhesion molecules (E-cadherins) 
in an adherens junction, and intermediate filaments 
are anchored to desmosomes and help bind cells[222]. 
Multiple cellular signaling pathways affect the assembly 
and sealing of the junctions[223], and they are cell-type 
specific with protein kinase C modulating occludin and 
zona occludens 1[222].

Escherichia coli and Clostridia difficile can disso-
ciate the binding proteins and increase intestinal 
permeability by opening a paracellular route[37,224] 
(Table 2). The TLRs on the intestinal epithelial cells 
can modulate the integrity of the intestinal barrier, 
possibly by influencing the expression of molecular 
mediators that can affect the structure or function of 
the binding proteins[225,226]. Activation of TLR2 increases 
the phosphorylation of isoforms of protein kinase C, 
and this action has been associated with enhanced 
expression of zona occludens and the sealing of 
tight junctions[225]. Conversely, activation of TLR4 
reduces the expression of phosphorylated occludin 
and increases intercellular permeability[226]. Bacterial 
ligands derived from different microbial species may 
influence intestinal permeability through TLR signaling 
and the translocation of microbial products through a 
porous intestinal barrier may contribute to a systemic 
autoreactive response[227-229].

Another mechanism by which the microbiome 
may influence the systemic immune response is by 
the active transport of bacterial antigens across the 
mucosal barrier by M cells within Peyer’s patches[230]. 
Whereas immune cells can be activated in the intestine 
and migrate to the liver or peripheral lymph tissue by 
translocation, they may also be activated in the systemic 
circulation by translocated or actively transported 
bacterial components that are presented by antigen 
presenting cells and recognized as foreign antigens by 
circulating naïve CD4+ T helper lymphocytes[39,117,118,193].

IMPLICATIONS OF THE INTESTINAL 
MICROBIOME IN AUTOIMMUNE 
HEPATITIS
The intestinal microbiome has been implicated in the 
pathogenesis of diverse inflammatory liver diseases, 
including NASH, PSC and PBC[48,51,54,59,62], and the 
pathogenic pathways of autoimmune hepatitis have 
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been incompletely defined[2]. The principal target 
antigen remains unclear in most patients with auto-
immune hepatitis, and conventional corticosteroid 
therapies have been unable to consistently induce 
sustained treatment-free remissions[231,232]. Progressive 
hepatic fibrosis occurs in 25% of patients[233], and 
emerging drug therapies and molecular interventions 
can suppress the immune response but not eliminate 
the disease[234].

The intestinal microbiome is a reservoir of antigens 
and activated immune cells that could initiate, 
exacerbate, or perpetuate autoimmune hepatitis[30-34]; 
dysbiosis has been demonstrated in experimental 
and human autoimmune hepatitis[69,70]; atypical 
pANCA, manifested in most patients with autoimmune 
hepatitis, cross-react with an antigen found in intestinal 
bacteria[53]; and the permeability of the intestinal 
mucosal barrier has been increased in patients with 
the disease[70]. Investigations of the microbiome in 
autoimmune hepatitis may discover new antigens 
and suggest new therapies that might eliminate the 
primary antigen or the supplemental antigens that 
sustain or advance the disease.

EVALUATING THE INTESTINAL 
MICROBIOME IN AUTOIMMUNE 
HEPATITIS
Traditional stool culture techniques are limited in 
assessing the intestinal microbiome mainly because 
anaerobic organisms are difficult to culture[235] and 
some microbial species may elude detection by 
conventional protocols[235,236]. A common method for 
studying the diversity of the intestinal microflora has 
been to sequence the 16S ribosomal ribonucleic acid 
(rRNA) gene[235,237]. The 16S rRNA gene is present 
in all prokaryotic cells; it has highly variable regions 
interspersed with highly conserved regions; and 
its sequences are unique to the major groups of 
prokaryotic organisms[237]. These signature sequences 
can be used to reconstruct the phylogeny of the 
intestinal microbiome[236].

Primers are designed that are complementary 
to the universally conserved regions that flank the 
variable regions, and the bacterial species and their 
proportions in the microbiome are determined[237,238]. 
The variable regions are amplified by polymerase chain 
reaction (PCR), and the PCR products are purified for 
sequencing[81]. Sequencing results are compared to 
established annotated datasets[235]. The sequencing 
protocol misidentifies or omits a critical residue in 
only 1% of procedures[237]. Ambiguities resulting 
from the sequencing determinations are the most 
common errors, and they may reflect inadequacies 
in the available datasets[235,237]. Only known bacterial 
sequences or sequences closely homologous to known 

bacterial sequences can be analyzed[235].
Databases are available and they continue to evolve 

for analyses of 16S rRNA gene sequences[236,239]. 
Quantitative Insights Into Microbial Ecology (QIIME)[240] 
and Mothur, a comprehensive software package 
that integrates several algorithms from pre-existing 
software[241], are open-source tools that can be used 
to describe and compare microbial communities. Short 
16S rRNA sequences can be organized into OTUs, 
and a motif-based hierarchical method can analyze 
massive metagenomic datasets with high accuracy[242]. 
The Human Microbiome Project provides a catalogue 
of bacterial species, and it will help define the nature 
of the intestinal microbiome, the factors that affect 
its composition, distribution and evolution, and the 
relationship of the intestinal microflora to human 
health and disease[236,243,244].

Further advances in the techniques used to 
reconstruct the composition of the human intestinal 
microbiome include microarray technology, finger-
printing techniques such as determination of the 
terminal restriction fragment length polymorphisms, 
and next-generation sequencing (NGS)[79,245-247]. 
Microarray hybridization of deoxyribonucleic acid 
provides a high throughput platform that consists of 
several thousand probes that can detect nucleic acid 
sequences simultaneously[246-248]. Unknown microbial 
sequences and uncharacterized microbial populations 
are undetected by the microarray techniques, and 
uncertainties about the existence and importance 
of undiscovered microbial populations are the major 
limitations of this method[247,248].

The Human Gut Chip has 4441 probes that includes 
2442 probes specific for known microbes and 1919 
probes that are explorative for unknown microbes[247]. 
Probes with overlapping similarities are becoming 
more sensitive to microbial species that are less 
abundant[249], and probes with explorative designs are 
being coupled to probes with microbial specificity in an 
effort to identify microorganisms with uncharacterized 
sequences[247,250]. Essential for the design of useful 
explorative probes is the correct anticipation of 
genetic variations within the microbial community and 
the construction of probes with high sensitivity and 
specificity[249].

Currently, intestinal ecosystems are being studied 
mainly by 16S rRNA sequencing[236]. This technique is 
useful in identifying the microbial species that constitute 
the intestinal microbiome, determining the evolution 
and transition of the microbial community (phylogeny) 
and quantitating the microbial diversity[236]. The 
challenge is to define the functions of the microbiome, 
and whole genome sequencing (WGS) may provide 
these insights[236,251]. Array-based NGS can analyze the 
whole genome, exons, and regions of interest, and it 
may emerge as the lens by which to understand the 
function of the microflora[79].
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DEVELOPING TREATMENT STRATEGIES 
TO INVESTIGATE
The intestinal microbiome can be manipulated by dietary 
adjustments[37,90,252], probiotic preparations[197,253,254], 
supplements of vitamin A and retinoic acid[255,256], 
antibiotics[169,257], intestinal re-colonization[33,107,109,110], 
pharmacological agents that decrease intestinal 
permeability[258-260], molecular interventions that block 
TLR signaling and the production of pro-inflammatory 
cytokines[261], molecular interventions (polysaccharide 
A) that stimulate anti-inflammatory responses[105,262], 
and short chain fatty acids that modulate signaling 
pathways that affect gene expression, intestinal barrier 
integrity, and inflammatory responses[200] (Table 3).

Antibiotics (tetracycline and minocycline) have 
reduced disease activity in rheumatoid arthritis, 
especially in seropositive patients with disease of 
short duration[257]. Probiotic supplements containing 
Bifidobacterium bifidum have promoted the expansion 
of Tregs in cell cultures[253], and probiotics enriched 
with strains of Lactobacillus alone or in combination 
with retinoic acid have prevented the development of 
type 1 diabetes in NOD mice[254,263]. Gelatin tannate 
has been used in a murine model of acute colitis to 
protect the mucosal barrier, alter the composition of 

the microbiota, and decrease inflammatory activity[259]. 
Gelatin tannate has also been evaluated in LPS-
stimulated cell cultures, and it has inhibited the 
expression of the intercellular adhesion molecule-1 and 
reduced the production of IL-8 and TNF-α in a dose-
dependent fashion[260]. Oligodeoxynucleotides designed 
to block TLR7 signaling have improved tests and 
reduced activity in a murine model of lupus nephritis 
and lung injury[261]; polysaccharide A has induced 
IL-10 producing Tregs in experimental autoimmune 
encephalitis[105,262]; and short chain fatty acids have 
modulated intestinal signaling pathways, inhibited 
histone deacetylases, regulated gene expression, and 
increased the integrity of the intestinal barrier[200,264].

Manipulations of the intestinal microbiota have also 
shown promise in animal models and patients with 
liver disease. In rats with carbon tetrachloride-induced 
cirrhosis, antibiotic therapy and probiotic supplements 
have decreased systemic endotoxin levels and 
improved liver tests[265], and in rats with ischemic/re-
perfusion liver injury, probiotic supplements with 
Lactobacillus have reduced the production of pro-
inflammatory, pro-fibrotic cytokines and improved 
liver tests[266] (Table 3). The intestinal microbiota have 
been implicated in the pathogenesis of PSC[267,268], 
and a small randomized clinical trial has indicated 
that treatment with vancomycin or metronidazole can 

Table 3  Treatment considerations for investigation of gut-derived immune responses

Treatment Consideration Nature Findings

Dietary adjustments Animal protein, saturated fats[90] Bacteroides, Firmicutes (including Clostridia), 
and Prevotella favored by 

different dietary regimens[37,90]
High carbohydrate diets[90]

Low fat high fiber diet[90]

Probiotic preparations Bifidobacterium bifidum[253] Expands Tregs in cell culture[278]

Lactobacillus strains[254,263,266] Prevents diabetes in NOD mice[263]

Lactobacillus rhamnosus[276] Improves liver tests in rat model[266]

Anaerostipes caccae[277] Increases tight junction proteins[276]

Consumes lactate and produces butyrate[277]

Vitamin A and retinoic acid Retinoic acid supplement[255] Restores Lactobacilli in lupus model[255]

Dietary vitamin A[256] Regulates cytokines in lupus model[256]

Induces IL-10-producing Tregs[279]

Antibiotics Tetracycline, minocycline[257] Reduces activity in RA[257]

Vancomycin, metronidazole[269] Improves tests and pruritus in PSC[269]

Re-colonization Bacteroides fragilis[107] Induces Tregs in colitis model[107,109,110]

Fecal transplantation Clostridia species[109,110]

Intestinal barrier protectors Gelatin tannate[258-260] Enhances mucus barrier[258,259]

Reduces activity in murine colitis[259]

Alters composition of microbiota[259]

Limits inflammatory effects of LPS[260]

Inhibits IL-8 and TNF-α in LPS cells[260]

TLR inhibitors Oligodeoxynucleotides blocking TLR7 signaling[261] Improves tests and reduces activity in murine model 
of lupus nephritis[261]

Improves autoimmune lung injury[261]

Molecular interventions Polysaccharide A[105,262] Induces IL-10 producing Tregs[105,262]

Protects against EAE in mice[105]

Short chain fatty acids Acetate, propionate, butyrate[200] Modulates gut signaling pathways[200]

Inhibits histone deacetylases[200,264]

Regulates gene expression[200]

Enhances gut integrity[200]

Superscripted numbers in brackets are references. EAE: Experimental autoimmune encephalitis; IL: Interleukin; LPS: Lipopolysaccharide; NOD: Non-obese 
diabetes; PSC: Primary sclerosing cholangitis; RA: Rheumatoid arthritis; TLR: Toll-like receptor; TNF-α: Tumor necrosis factor-alpha; Tregs: Regulatory T 
cells.
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improve serum alkaline phosphatase and bilirubin 
levels and decrease pruritus[269]. Clarification of the role 
of the intestinal microbiome in autoimmune hepatitis 
is necessary to direct investigational strategies that 
would help develop ancillary interventions to improve 
the outcome of this disease.

Manipulations of the intestinal microbiota, especially 
with antibiotics, may have adverse consequences which 
must be defined in animal and human studies and 
counter-balanced against potential benefits (Table 3). 
The intestinal microbiome performs important digestive 
and detoxification functions, produces nutrients and 
short chain fatty acids that can affect intestinal integrity, 
defends against invading pathogens, and influences 
the innate and adaptive immune responses within 
and outside the intestine[30,270,271]. Dysbiosis associated 
with antibiotics, especially in early age, may perturb 
immune tolerance for the microflora and predispose 
to other immune-mediated diseases (asthma, celiac 
disease, and type 1 diabetes)[165,166,175,272]. Antibiotic 
manipulations may also favor the emergence of drug-
resistant pathogenic or immunogenic microflora[169]. 
The optimal nature and duration of the manipulations 
that might impact on the intestinal microbiome are 
uncertain, and the durability of the responses are 
unclear. Much work needs to be done to establish 
microbiome manipulation as a way forward in auto-
immune hepatitis, but observations already made 
in diverse systemic immune-mediated diseases and 
the unmet needs in the management of autoimmune 
hepatitis justify rigorous evaluation of this possibility.

OVERVIEW
Dysbiosis has already been described in experimental 
and human autoimmune hepatitis[69,70]; antibodies 
reactive to antigens homologous to bacterial antigens 
(atypical pANCA) have been commonly present 
in patients with the disease[53,65]; and increased 
permeability of the intestinal mucosal barrier has 
been demonstrated[70]. The intestinal microbiome is 
an available source of immune stimulatory antigens, 
products, and immune cells that already have been 
implicated in multiple systemic immune-mediated 
(rheumatoid arthritis, diabetes, multiple sclerosis, 
inflammatory bowel disease)[35,38,40-43] and chronic liver 
diseases (NASH, PBC)[51,54]. The role of the intestinal 
microbiome in the occurrence and behavior of auto-
immune hepatitis warrants rigorous evaluation.

The sequencing of the 16S rRNA gene can be used 
to characterize the intestinal microbial population and 
determine disease-specific dysbioses[236]. Microarrays 
comprised of thousands of microbial probes can be 
applied to enhance comprehension of the “pathological” 
components of the intestinal microbiome[247,249]. WGS 
and NGS of genomic regions specific for the disease 
can define the disease-related metagenome[79], and 
associations between gut-derived micro-organisms and 

the immune-mediated mechanisms of autoimmune 
hepatitis can then be evaluated in experimental models.

Adjunctive forms of therapy may emerge to com-
plement current immunosuppressive regimens. 
Individual bacterial species within the microbiome 
may be manipulated by diet, designer probiotics, re-
colonization methods, antibiotics, selected vitamin 
supplements, and pharmacological agents that 
decrease intestinal permeability[236]. Molecular 
interventions that block TLR signaling or modulate 
signaling pathways may also evolve to reduce pro-
inflammatory cytokine production, limit unfavorable 
gene expression, and strengthen the integrity of the 
intestinal barrier[200,261].

Major obstacles to the performance of these 
studies are the limited number of publicly available 
tools to analyze the microbial metagenome, especially 
in translational settings[239], the multiplicity of envi-
ronmental factors (diet, antibiotics, sanitation) that 
can affect variations of the microbiome among 
communities and between individuals[273,274], and 
uncertainties about the roles of luminal and mucosal 
microbiota in directing the immune response[81,275].
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