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Abstract
Brain metabolism is an energy intensive phenomenon 
involving a wide spectrum of chemical intermediaries. 
Various injury states have a detrimental effect on the 
biochemical processes involved in the homeostatic and 
electrophysiological properties of the brain. The bio
chemical markers of brain injury are a recent addition 

in the armamentarium of neuro-clinicians and are being 
increasingly used in the routine management of neuro-
pathological entities such as traumatic brain injury, 
stroke, subarachnoid haemorrhage and intracranial 
space occupying lesions. These markers are increasingly 
being used in assessing severity as well as in predicting 
the prognostic course of neuro-pathological lesions. 
S-100 protein, neuron specific enolase, creatinine pho
sphokinase isoenzyme BB and myelin basic protein are 
some of the biochemical markers which have been proven 
to have prognostic and clinical value in the brain injury. 
While S-100, glial fibrillary acidic protein and ubiquitin 
C terminal hydrolase are early biomarkers of neuronal 
injury and have the potential to aid in clinical decision-
making in the initial management of patients presenting 
with an acute neuronal crisis, the other biomarkers are of 
value in predicting long-term complications and prognosis 
in such patients. In recent times cerebral microdialysis 
has established itself as a novel way of monitoring brain 
tissue biochemical metabolites such as glucose, lactate, 
pyruvate, glutamate and glycerol while small non-coding 
RNAs have presented themselves as potential markers of 
brain injury for future.
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Core tip: The biochemical markers of brain injury are 
being increasingly used to assess the severity and 
prognosis in the injured brain. While S-100, glial fibrillary 
acidic protein and ubiquitin C terminal hydrolase have 
been used as early biomarkers to aid in clinical decision-
making and initial management, other biomarkers help 
in long-term prognosis. Cerebral microdialysis is a novel 
way of monitoring brain tissue biochemical metabolites 
and each component gives an idea about the severity 
and type of pathologic process in the brain. In addition, 
small non-coding RNAs have presented themselves as 
potential markers of brain injury for future research.
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INTRODUCTION
The brain is one of the most energy intensive organs of 
the body, utilizing around 60% of the available energy 
for the fulfillment of electrophysiological function, and the 
remaining 40% is expended in the homeostasis of the 
internal milieu of the brain cells[1]. Brain metabolism is an 
energy intensive phenomenon involving a wide spectrum 
of chemical intermediaries and their consequent usage in 
brain energy production.

The evolution of techniques to monitor brain meta­
bolism started in the late 19th century[2]. However, major 
strides in the understanding of the cerebral metabolic 
processes have happened only in the last 50 years and 
have greatly contributed to our understanding of the 
processes governing the myriad and complex activities 
of the central nervous system in general and the brain in 
particular. 

In this editorial we focus on the basics as well as 
perturbations of brain metabolism in the different clinical 
scenarios of neurological injury such as traumatic brain 
injury (TBI), stroke and subarachnoid hemorrhage (SAH). 
The aim of this review is also to discuss the means at 
our disposal to monitor such deviations and the practical 
clinical applications of such techniques[2].

BRAIN METABOLISM AND 
BIOCHEMISTRY 
As mentioned earlier, brain metabolism is peculiar for 
being a highly energy intensive process. Although it con­
tributes approximately (only) 2%-2.5% of the total body 
weight, it receives approximately 20% of the total blood 
supply and 25% of the total oxygen supply[3].

The biochemical processes in the brain exhibit 
various peculiarities with ramifications in brain injury. 
First is the presence of a blood brain barrier formed by 
endothelial cell layers of the brain vessels[4-6], which plays 
an important role in the maintenance of homeostasis in 
relation to the electrolytes and energy substrates such as 
glucose, glutamate and ketone bodies[7-9]. Nerve impulse 
propagation is the key function within the brain and is 
basically an amalgamation of electrical and chemical pro­
cesses. The electrical processes are responsible largely for 
impulse propagation within a neuron whereas chemical 
reactions influence signal transmission from one neuron 
to another as well as at the effector cells and axon ends 
in the synapse[10]. The synapses perform the critical 
function of transferring electrical impulses across the 
synaptic cleft or for further impulse propagation on 
to another neuron or muscle for a particular desired 

action. Impulse transmission through a synaptic cleft is a 
complex biochemical process involving neurotransmitters 
like glutamate and γ-aminobutyric acid as well as the 
activation of various ion channels. Sodium and potassium 
are the major ions involved in the generation of action 
potentials, especially in the process of hyperpolarization 
and depolarization of neurons[11-14]. The enormity of the 
biochemical processes involved in the signal transduction 
of neural impulse can be gauged from the fact that while 
a single neuron has 1000 to 20000 synapses, there are 
around 90 billion neurons in an adult human brain[15]. 
Brain injured states such as stroke and head injury have a 
detrimental effect on the biochemical processes involved 
in the aforesaid homeostatic and electrophysiological 
properties of the brain.

BIOCHEMISTRY OF THE INJURED BRAIN 
The biochemical basis of brain injury can be explained on 
the basis of either one or a combination of the following 
broad pathological mechanisms[16]: Ischemia; traumatic 
brain injury; epileptogenesis.

Ischemic brain injury
Ischemia and resultant hypoxia lead to the derangement 
of energy intensive processes critical to homeostasis 
in the brain. Dysfunctional ATP dependent ion pumps 
result in consequent disequilibrium in sodium, calcium 
and potassium ion homeostasis, culminating in the re­
lease of excitatory amino acids such as glutamate[17,18]. 
Glutamate plays a pivotal role in the ensuing excito­
toxicity by activating α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid, N-methyl-D-aspartic acid (NMDA) 
and metabolic receptors. Calcium, free radicals and 
phospholipase activation also contribute significantly in 
the cellular damage of the brain.

An important aspect of ischemic injury in the brain is 
the nature of ischemia. Global ischemia of the brain follows 
events such as cardiac arrest, whereas focal ischemic 
changes are seen after events such as episode of stroke. 
In focal ischemia there exists a penumbra region which is 
responsive to brain resuscitation measures albeit within 
a critical time frame of a few minutes. In the scenario of 
ongoing global ischemia, the severity of brain damage 
is dependent on the time until re-establishment of brain 
circulation as well as the differential susceptibility of the 
various regions of the brain to hypoxia[19,20].

Traumatic brain injury
Primary injury following trauma to the brain consists 
of direct concussional neuronal damage, herniation of 
important structures as well as ischemic injury because 
of damage to blood vessels. Reversal of primary injury is 
impossible. However, amelioration of secondary effects is 
possible. The biochemical processes detailed previously 
play a pathologic role in traumatic brain injury and calcium 
is an important ion implicated in traumatic brain injury at 
the cellular level[21,22].
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Epileptogenic injury
Epilepsy is defined as sudden and excessive electrical 
discharge from neurons and occurs from a plethora of 
causes such as electrolyte and metabolic perturbations, 
temperature disturbances, and structural insults such 
as tumors, trauma and infections. The mechanism of 
epileptiform damage resembles ischemia and involves 
the previously detailed sequences culminating in gluta­
mate excitotoxicoty and NMDA and metabotropic nerve 
activation[23,24].

The ongoing process of cellular injury in the injured 
brain leaves in its wake a multitude of biochemical 
markers. An ideal marker for injury should be specific to 
the brain, pick up brain injury within a reasonable and 
defined time frame and exhibit low variation with age and 
sex[25,26]. However, the search for such a marker remains 
elusive till date. 

BIOCHEMICAL MARKERS OF BRAIN 
INJURY
The biochemical markers of brain injury are a recent 
addition in the armamentarium of neuro-clinicians and 
are being increasingly used in the routine management of 
neuro-pathological entities such as traumatic brain injury, 
stroke, SAH, and intracranial space occupying lesions. 
The use of such markers in the brain via-a-vis their use 
in the heart had been limited by various factors such as 
the heterogeneity of different cell types in the brain, the 
differential integrity of the blood brain barrier as well as 
the multimodal mechanisms contributing to neuronal 
death. However, they are recently being increasingly used 
in assessing severity as well as in predicting the prognostic 
course of neuropathological lesions. S-100 protein, 
neuron specific enolase (NSE), creatinine phosphokinase 
isoenzyme BB (CPK-BB) and myelin basic protein (MBP) 
are some of the biochemical markers which have been 
proven to have prognostic and clinical value in the brain 
injury and are dealt henceforth in a detailed perspective.

S-100 PROTEIN
S-100 is a calcium binding protein with a molecular weight 
of 21 kDa and is present in two isoforms - “α” (25%) 
and “β” (75%). While S-100 “α” protein is found in 
melanocytes, S-100 β isoform is found predominantly 
in glial cells and Schwann cells of the peripheral nervous 
system and central nervous system. Although the β isoform 
is found in adipocytes and chondrocytes, the concentration 
of S-100 β in non-neural tissue (100-200 ng/mg of soluble 
brain protein) is minimal as compared with glial and Sch­
wann cells (3500 ng/mg of brain protein)[26,27].

S-100 β protein is metabolized and excreted by the 
kidneys, has a t1/2 of 2 h and a mean serum level of 0.050 
± 0.081 g/L[28]. S-100 β protein levels have been found 
to increase especially following brain tissue injury in 
various experimental models[29].

S-100 β in head injury: Elevated levels of S-100 β 
have been found in patients after minor and major head 
injury[26,30-36]. In patients with mild head injury (GCS 
13-15) where initial computed tomography (CT) scans of 
their brain do not exhibit any abnormality, S-100 β levels 
have been found to be high, especially in the golden hour 
following trauma[26]. Elevated levels of S-100 β in serum 
following head injury have also been associated with 
impaired cognition score[37].

In severe head injury an increased serum S 100 β 
level of > 2 g/L just after and during evolution of TBI 
has been found to be associated with a high mortality 
rate. Persistent elevations of S-100 β have shown an 
association with ongoing secondary brain damage following 
the primary insult. S-100 β has exhibited correlations with 
CT pathologies, with lower values being more common in 
diffuse type Ⅰ and type Ⅱ injuries. As a marker of clinical 
outcome following TBI, S-100 β has shown promising 
results[33-36,38-42].

Hence S-100 β in TBI can be concluded to be of 
clinical utility in assessing the extent of primary and 
secondary brain injury. It also has a role in predicting the 
time course of recovery and probability of an improved 
clinical outcome.

S-100 β protein in SAH: Plasma concentration of S-100 
β in patients with SAH has shown a correlation with the 
severity of hemorrhagic affliction in the early phase of the 
disease as well as with the incidence of delayed cerebral 
ischemic events. There is also evidence correlating S-100 
β levels with the severity of long-term neurological impair­
ment as well as Glasgow outcome scores. Similar results 
have been observed with ventricular cerebrospinal 
fluid (CSF) S-100 β concentrations. There is significant 
evidence to suggest that S-100 β in CSF may show a 
superior correlation with CT and single-photon emission 
CT findings in addition to being predictive for outcome in 
patients with cerebral aneurysm[43-46].

NSE
As an isoenzyme of enolase enzyme involved in gly­
colysis, NSE was thought to be a relevant marker of 
neuronal injury[47]. However, it has also concurrently 
evolved as a marker for neuro-endocrine malignancies 
such as small cell lung cancer and neuroblastoma and 
hence it specificity for neural tissues is doubtful[48]. Serum 
levels are in the range of 5-12 ng/mL and CSF levels 
normally are less than 2 ng/mL[49].

NSE in TBI: In experimental model studies on cortical 
contusion, the highest concentration of NSE was ob­
served at around 7.5 h following injury. This coincides 
with the primary mechanism of injury to the brain paren­
chyma and could be explained on the basis of extrusion 
of the cytoplasmic protein into the CSF from damaged 
neural and glial tissue. A secondary peak in the NSE 
levels was observed at around 1.5 d and in all probability 
reflects secondary ischemic damage to the contused 
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brain[29]. An experimental TBI model in rats clearly 
demonstrated that CSF NSE is a more accurate motor of 
ongoing neuronal damage than serum NSE levels[50].

There have been a plethora of studies on the correla­
tion of serum and CSF NSE levels with head injury as well 
as their prediction of long-term outcome[33,37,39,40,51-54]. 
Serum NSE levels showed a significant correlation with 
an identifiable contusion on CT scan and also predicted 
the incidence of long-term mortality and persistent vege­
tative state in patients with TBI[51].

NSE in SAH
NSE in SAH patients had been found to be an excellent 
predictor of delayed cerebral ischemic events and poor 
perioperative outcome. However, the correlation of serum 
NSE levels with the clinical grade of SAH patients at 
the time of admission is a contentious issue with various 
studies giving different levels[55-57].

NSE in stroke 
Experimental studies in cerebral ischemia models and 
animal studies have unequivocally demonstrated that 
NSE levels in CSF correlate with the degree of severity 
of cerebral ischemia. In addition they have been found 
to be increased before irreversible brain cell damage, 
hence offering the promise of being used as a marker of 
guidance of cerebro-protective measures in stroke[58-60]. 
In human studies examining the correlation of CSF with 
serum NSE levels, NSE has been found to have a positive 
correlation with infarct size and volume[61-66]. In a study 
by Cunningham et al[67], serum NSE levels in patients 
with ischemic stroke were higher when compared with 
hemorrhagic stroke, and the highest levels in ischemia 
was observed at 48 to 96 h. NSE had also been found 
to correlate with and help in differentiation between 
reversible and irreversible brain damage in survivors 
of cardiac arrest[68-71]. In such patients, serum NSE 
levels post resuscitation care are a reliable predictor of 
neurologic outcome and they also aid in prognostication 
of such patients.

CPK-BB
Of the three isoenzymic forms of creatinine phospho­
kinase, the CPK-BB isoform is found in the brain[48]. CPK-
BB levels in various pathological entities of brain injury 
such as stroke, TBI, post cardiac arrest and SAH have 
shown a correlation with the extent of injury and have 
also shown to be able to predict outcome[72-78].

MBP
MBP originates from oligodendroglial cells and binds 
with myelin[79]. In TBI it is released into CSF and serves 
as a useful marker predicting the clinical course and 
outcome[52,80-84].

In addition there are various other proteins which 
are less established via-a-vis their role in predicting 
severity and outcome in the brain injured states.

TAU PROTEIN
Tau is a protein arising from the microtubules, which offers 
theoretical promise as a marker of brain injury and has 
been especially studied in TBI states[85,86]. However, recent 
evidence has been very conflicting and the evidence on 
the diagnostic and prognostic value of tau protein and its 
correlation with abnormal CT findings in TBI has been 
very limited[87-90].

GLIAL FIBRILLARY ACIDIC PROTEIN 
As a major component of astroglia, glial fibrillary acidic 
protein (GFAP) offers the promise of exclusivity to the 
central nervous system[91-93]. There have been numerous 
studies in TBI sub-population such as severe or moderate 
TBI wherein GFAP concentration has shown a positive 
correlation with severity of injury, outcomes as well as CT 
and MRI findings[94-98]. In a study comparing GFAP and 
S-100 β, GFAP exhibited characteristics of being a more 
sensitive marker of neural injury. It also had higher value 
for predicting return to work via-a-vis S-100 β especially 
in patients with severe head injury[99]. 

UBIQUITIN C TERMINAL HYDROLASE 
Ubiquitin c terminal hydrolase (UCH-L1) is a neuron 
specific protein comprising 1%-5% of total brain protein, 
which has been implicated in neuron repair in pathological 
and degenerative conditions of the brain[100-102]. There is a 
release of UCH-L1 into CSF and blood in brain injury and 
elevated levels have exhibited a correlation with severity 
and outcome in TBI populations[103].

WHICH BIOMARKER TO CHOOSE AND 
WHEN?
The preceding discussion indicates that the different 
biomarkers in brain injury do not exactly fit into the “one 
size fits all” algorithm. Evidence in the field is an evolving 
process and it seems increasingly probable that neuro-
clinicians will rely more and more on a combination of 
different biomarkers as an aid in diagnosis, severity scor­
ing, prognostication and interventional decisions in brain 
injured patients[101,104]. S-100, GFAP and UCH-L1 are early 
biomarkers of neuronal injury and have the potential to aid 
in clinical decision-making in the initial management of 
patients presenting with an acute neuronal crisis such as 
stroke, TBI and SAH. The other biomarkers are of value 
in predicting long-term complications and prognosis in 
such patients.

INTRICACIES OF SAMPLE COLLECTION 
AND ANALYSIS
While CSF levels of biomarkers reflecting CNS injury are 
more accurate, in acute settings such as TBI and stroke, 
collection of blood samples represents a more convenient 
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and practical approach. In recent times there have 
been enormous strides in the field of standardization of 
methods by which samples are being collected for the 
measurement of the neuronal biomarkers[105,106]. Recently 
there have been attempts to isolate the aforementioned 
biomarkers from urine and saliva of patients to preclude 
non-invasiveness and ease collection[107].

LIMITATIONS
The widespread use of neuro-pathological markers is 
limited by variability and discrepancies in the values 
indicating significant levels of these biomarkers. The 
results of various studies paint a very inconsistent picture 
and this could be attributed to flaws and variation in 
study design as well as non-standardization of techniques 
in collection, handling and assay of such biomarkers. 
To summarize, the data till date on biomarkers of the 
injured brain can be described as a work in progress. 
There is a need for robust multicentric studies which will 
go a long way in the determination of reference points for 
guidance of care in patients presenting with neurological 
injury.

NEW DEVELOPMENTS
In addition to serum and CSF assays of biomarkers of 
brain injury, there has been a variety of neuro-chemical 
methods which have been of use in brain tissue bio­

chemistry. These methods have gradually progressed 
from analysis of post mortem samples to advent of 
newer and sophisticated methods such as cerebral 
microdialysis (CMD).

CMD was a modification of the push-pull cannula 
technique and was invented by Delgado et al[108] with 
subsequent modifications and popularization by Ludvig 
et al[109] and Ungerstedt et al[110]. It is a novel way of 
monitoring brain tissue biochemical metabolites such 
as glucose, lactate, pyruvate, glutamate and glycerol 
wherein the monitoring of each component gives an idea 
about the severity and type of pathologic process in the 
brain. Table 1 summarizes all the commonly used serum 
and CSF biomarkers of cerebral injury with their clinical 
implications[111-120]. Table 2 summarizes components 
monitored by cerebral microdialysis and their clinical 
implications[121-125].

CMD is being increasingly used as a research tool and 
as a component of multi-modality monitoring in the brain 
injured states such as TBI, SAH, brain tumors, stroke 
and epilepsy. Table 3 illustrates the clinical implications of 
cerebral microdialysis in various scenarios[126-151]. 

Proteomic analysis of potential new CSF biomarkers 
for TBI has not yet identified any such markers that 
can be used in clinically useful tests[152]. A number of 
proteomic studies on potential biomarkers of TBI in 
peripheral blood have been published. These studies 
have replicated the findings from targeted analyses 
of specific candidate biomarkers, but as yet none of 

Variable Normal levels (at a flow rate of 0.3 μL/min) Clinical implications

Lactate     2.9 ± 0.9 mmol/L Increased levels seen in ischemia and hyperglycolysis[121-123]

Pyruvate 166 ± 47 μmol/L Decreased levels seen in ischemia and hypoxic conditions[124,125]

L/P ratio Normal value-20 Value > 25 - metabolic crisis[124]

Type 1-lactate increased, pyruvate decreased, signifying ischemia
Type 2-raised LPR due to primarily decreased pyruvate level, seen in glycolysis failure or 

shunting of glucose to alternative metabolic pathways[125]

Glycerol 82 ± 4 μmol/L One of the constituents of the cell membranes
An increase in levels signifies cell damage[124]

Glutamate   16 ± 16 μmol/L Marker of excitotoxicity[124]

Glucose    1.7 ± 0.9 mmol/L Changes in blood flow or metabolism cause disproportionate changes in brain glucose
Affected by ischaemia, hyperaemia, hyperglycaemia, hypermetabolism and 

hypometabolism[124]

Table 2  The components monitored by cerebral microdialysis and their clinical implications

Structure effected Findings in brain injury

Cerebro spinal fluid Blood/serum
Tau protein Axon Levels peak 4-8 d after injury[111,112] Elevated levels in hypoxic injury[113,114]

Myelin basic protein Axon Precise measurement difficult[115] Elevated levels in brain injury[116]

γ-enolase Neuron Confounded by blood contaminated CSF[117] Serum levels are very sensitive to lysis of RBC in blood 
contaminated CSF[117], elevated levels in brain injury[116]

S-100 β Astrolglial cells Elevated levels but less sensitive[108] Confounded by release from extracerebral tissue[118]

GFAP Astroglial cells Elevated levels but less sensitive[107,108] Serum levels correlate with changes in brain imaging[119], no 
extracerebral sources detected[120]

UCH-L1 Neuron NA Only one pilot study[98]

Table 1  Serum and cerebrospinal fluid biomarkers of cerebral injury

GFAP: Glial fibrillary acidic protein; UCH-L1: Ubiquitin c terminal hydrolase; NA: Not available; CSF: Cerebrospinal fluid; RBC: Red blood cell.
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the novel biomarker profiles identified in these studies 
as being associated with TBI has been validated in 
independent studies using unrelated, non-proteomic 
or genomic techniques[153]. Exciting preliminary data 
on the expression profiles of small non-coding RNAs 
in peripheral blood mononuclear cells from military 
personnel exposed to mild TBI have been reported; three 
small RNAs seem to be primarily associated with mild 
TBI, but the results require replication[154].

CONCLUSION
To conclude, biochemical markers of brain injury have 
witnessed major developments in acquisition and pro­
cessing of samples, with cerebral microdialysis and 
expression of non-coding RNAs being the most recent 
modality to analyze such changes. Use of such biomarkers, 
while not as popular as their cardiac counterparts, is slowly 
but surely being established both in the realms of basic 
research as well as in management, severity scoring and 
prognostication of patients with neurological injury. There 
is abundant potential in the regular use of such biomarkers 
and efforts are underway to integrate such biomarkers 
into clinical practice in TBI, SAH and stroke.
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Table 3  Cerebral microdialysis implications in clinical scenarios

CMD: Cerebral microdialysis; SAH: Subarachnoid hemorrhage; ICU: Intensive care unit.
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