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Abstract
Pancreatic ductal adenocarcinoma is a devastating 
disease with a poor prognosis regardless of stage. To 
date the mainstay of therapy for advanced disease 
has been chemotherapy with little incremental im
provements in outcome. Despite extensive research 
investigating new treatment options the current 
practices continue to utilise fluorouracil or gemcitabine 
containing combinations. The need for novel the
rapeutic approaches is mandated by the ongoing 
poor survival rates associated with this disease. One 
such approach may include manipulation of ribosome 
biogenesis and the nucleolar stress response, which has 
recently been applied to haematological malignancies 
such as lymphoma and prostate cancer with promising 
results. This review will focus on the current therapeutic 
options for pancreatic ductal adenocarcinoma and 
the complexities associated with developing novel 
treatments, with a particular emphasis on the role of 
the nucleolus as a treatment strategy.

Key words: ribosome biogenesis; nucleolar stress; 
rnA polymerase I; Pancreatic ductal adenocarcinoma; 
chemotherapy

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This manuscript is a review of the complexities 
involved in the treatment of advanced pancreatic ductal 
adenocarcinoma. It details the current approaches to 
therapy and the disease factors which have impacted 
on progress thus far. This review identifies the possible 
role of nucleolar stress as a treatment modality based 
on recent data from studies of haematological ma
lignancies and some other solid organ cancers and 
explains the basic science involved in this process.
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INTRODUCTION
Advanced pancreatic ductal adenocarcinoma (PDAC) 
remains a significant cause of mortality accounting for 
up to 4% of all cancer related deaths world-wide[1]. 
Of concern, despite treatment, the mortality rates 
remain high and essentially unchanged over the last 
two decades[2]. Furthermore, even in the setting of 
adjuvant therapy, 5 year survival rates remain poor 
at only 25%[2], while for metastatic disease it is 1%[3]. 
Such poor statistics are no doubt compounded by the 
fact that current backbones to treatment, fluorouracil 
or gemcitabine, have also remained unchanged over 
the last 10-20 years and continue to form the basis 
for new combination approaches[4]. As a consequence, 
there is an ongoing need for the development of im-
proved diagnostic techniques, treatment options and 
surveillance markers to improve the outcomes for this 
devastating disease.

In recent years, various studies have focused on 
trialling new chemotherapeutic drug combinations for 
the treatment of PDAC. The PRODIGY 4/ACCORD 11 
trial[5,6] demonstrated that FOLFIRINOX, a combination 
of fluorouracil, oxaliplatin and irinotecan, provided 
superior progression free survival (PFS), overall survival 
(OS) and response compared with gemcitabine alone 
for patients with metastatic disease. Unfortunately, 
however, the drawback was that many patients dis-
played significant toxicity associated with this multidrug 
approach including an higher incidence of grade 3 or 4 
neutropenia and thrombocytopenia[5].

Two years later, the MPACT trial compared the 
combination of gemcitabine and nab-paclitaxel against 
gemcitabine alone in a total of 842 patients and 
demonstrated a statistically significant improvement in 
median OS (8.7 mo vs 6.6 mo)[7] and was particularly 
interesting given that previous investigations comparing 
gemcitabine combinations against gemcitabine alone for 
PDAC had been negative. Importantly, this trial did not 
exclude more elderly patients unlike the ACCORD-11 
study which only incorporated patients with a mean 
age of 61 years[5]. In keeping with PDAC demographics, 
MPACT included patients with a mean age for men of 71 
and 75 for women[8]. Toxicities related to gemcitabine 
and nab-paclitaxel were overall very similar to those 
seen with FOLFIRINOX though there is a perception that 
FOLFIRINOX is best reserved for “fit” patients despite 
the two regimens never formally being compared.

More recently, the NAPOLI-1 study compared the 
effect of nanoliposomal irinotecan with or without 
fluorouracil and folinic acid as well as the combination 
of fluorouracil and folinic acid alone in patients with 

metastatic disease who progressed following a 
gemcitabine based approach[9]. In its nanoliposomal 
form, irinotecan has improved drug stability allowing 
its active metabolite, SN-38, to remain in circulation 
longer than free irinotecan, ultimately prolonging intra-
tumoral levels of the active drug[10,11]. The median 
OS was significantly improved for those receiving 
nanoliposomal irinotecan, fluorouracil plus folinic acid 
(6.1 mo vs 4.2 mo) compared with patients who did 
not receive nanoliposomal irinotecan. Similarly, the PFS 
noted for those receiving combination therapy with 
nanoliposomal irinotecan was significantly improved 
compared to fluorouracil and folinic acid alone at 3.1 
mo vs 1.5 mo. Differences between nanoliposomal 
irinotecan monotherapy and fluorouracil with folinic 
acid alone were not statistically significant[9]. Based on 
this study and others the FDA has approved the use of 
nanoliposomal irinotecan with fluorouracil and folinic 
acid for treatment of metastatic PDAC refractory to 
gemcitabine based therapy. Interestingly the toxicities 
seen with this newer regimen were relatively similar 
to those seen with FOLFIRINOX and gemcitabine with 
nab-paclitaxel including grade 3 or 4 toxicities in such 
domains as neutropenia, diarrhoea, vomiting and fatigue.

While new chemotherapy combinations have shown 
promise in the clinical setting, PDAC remains a difficult 
disease to manage due to multiple factors including 
patient age, medical co-morbidities and cancer related 
symptoms. As is often the case in advanced/metastatic 
malignancies, the art of medicine relies on achieving a 
balance between therapeutic gain, drug induced side 
effects and quality of life. To this end, novel approaches 
that are non, or at least minimally genotoxic are of 
particular interest. The potential advantages observed 
with targeted therapies in reducing systemic side 
effects and improving outcomes for other malignancies 
have gained interest in the realm of PDAC and will be 
briefly discussed in this review with a particular focus 
on the emerging role of nucleolar stress pathway and 
ribosome biogenesis as a potential treatment option 
given its promising results in the management of 
haematological malignancies and prostate cancer[12-14]. 

DISEASE COMPLEXITIES 
When evaluating the role of novel therapies, it is 
important to understand potential interactions with the 
disease in question, specifically focusing on disease 
factors that could impact on drug delivery, tolerability 
or dosing for example. PDAC is associated with multiple 
complexities which have precluded the development 
of novel approaches and therefore require due con-
sideration.

Patient factors
PDAC is a disease of the elderly, presenting on average 
at 71 years of age[3]. Up to 9% of patients present with 
localised disease however, the majority are diagnosed 
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with either locally advanced or metastatic disease at 
their first consultation[15]. Due its anatomical location 
the symptoms associated with PDAC tend to occur 
insidiously therefore contributing to the often delayed 
time to investigation and subsequent diagnosis[16]. 
Such patient factors have important implications on 
treatment decisions which may in part explain the 
limited use of FOLFIRINOX in many patients despite its 
improved median OS, PFS and objective response[5].

Given the advanced age and stage at diagnosis 
the traditional focus on clinical outcomes and survival 
for interventional studies of PDAC management have 
shifted with increasingly more importance being placed 
on patient reported outcomes such as pain manage-
ment and appetite. This is of particular importance for 
advanced PDAC given its poor prognosis[17]. Without 
acknowledging the impact the treatment may have on 
patient reported outcomes, therapeutic advancements 
may be futile, thus developing drugs that are minimally 
toxic would be beneficial, yet to date, therapeutic 
advancements have continued to cause very similar 
side effect profiles to one another.

Genetic basis of PDAC
Inherited predispositions to PDAC account for 5%-10% 
of cases[18]. In ongoing studies through the Australasian 
Pancreatic Cancer Genome Initiative, Humphris et al[19] 
described the manifestations of inherited PDAC 
as occurring in 3 distinct settings, hereditary tumour 
predisposition syndromes, hereditary pancreatitis and 
familial pancreatic cancers which were further defined 
as occurring in a kindred in whom at least 2 first 
degree relatives have PDAC without diagnostic criteria 
for an inherited cancer syndrome[19,20]. Interestingly 
some of the genes identified in hereditary forms of 
PDAC affect pathways involved in DNA repair such 
as BRCA1/2 and PALB2 which have been noted in 
more recent detailed sequencing/mutational studies 
presented by Waddell et al[21] and Bailey et al[22] in two 
separate comprehensive analyses. While inherited forms 
of cancer are of interest the vast majority of genetic/
metabolic pathway abnormalities are not inherited and 
form the basis of most PDAC cases.

Four major driver genes, KRAS, TP53, CDKN2A 
and SMAD4 have been identified in the development 
of PDAC[22], each sharing common oncogenic signalling 
pathways. KRAS mutations occur in > 90% of tumours 
and may represent the underlying insult to numerous 
subsequent events contributing to disease development. 
This mutation is widely accepted as a requirement for 
“reprogramming” pancreatic cell metabolism to facilitate 
the acidic environment needed for extracellular matrix 
breakdown and tumour invasion common to PDAC[23,24].

Of interest, the complex genetic and metabolic 
pathways associated with PDAC have identified 
various interactions and sites which can be utilised 
for therapeutic means. Among these include certain 
growth factor receptors such as epidermal growth factor 

receptor (EGFR) and vascular endothelial growth factor 
receptor which have important roles in the RAS/RAF 
pathway as outlined in figure 1. Furthermore it is now 
clear that drugs such as nab-paclitaxel have therapeutic 
actions against some of these pathways either directly 
or downstream accounting for their efficacy.

Recent data published in Nature by Waddell et al[21] 
reported the complex mutational landscape of PDAC, 
identifying multiple point mutations and structural 
variations in key genes. This data confirmed that KRAS 
abnormalities were almost ubiquitous while TP53 
lesions were noted in 74% of samples, closely followed 
by CDKN2A lesions (35%) and SMAD4 abnormalities 
(31%). Through their analysis, PDAC was sub classified 
into 4 subtypes based on the distribution of events 
such that samples fell into either stable, scattered, 
unstable or locally arranged groupings. Of interest, 
the same study established a relationship between 
mutational load and abnormalities affecting DNA 
maintenance genes, specifically BRCA[25] and PALB2[26]. 
It is not surprising that PDAC associated with either 
PALB2 or BRCA2 mutations should behave in a similar 
fashion given their roles in DNA damage and repair. 
PALB2 binds and co-localizes with BRCA2 in order 
to facilitate double stranded DNA damage. In cases 
where PDAC harbours BRCA2 mutations there is good 
evidence for improved response to platinum containing 
therapies unlike other forms of PDAC[21]. for PALB2 
mutant disease there have been a number of reports 
noting improved outcomes in response to platinum 
based therapies or mitomycin C when compared with 
gemcitabine[27,28] and there is potential for targeted 
treatment with poly ADP ribose polymerase (PARP) 
inhibitors especially in the setting of BRCA2 as seen in 
breast and ovarian cancers.

Further to the comprehensive studies of Waddell 
et al[21], Bailey et al[22] identified aggregates of point 
mutations in core molecular pathways affecting ce-
llular functions including DNA damage and repair 
pathways, cell cycle regulation, transforming growth 
factor beta (TGFβ) signalling, chromatin regulation 
and axonal guidance. Based on the expression of 32 
recurrently mutated genes found to aggregate into ten 
distinct pathways. From this analysis four subtypes 
were identified, comprising of, squamous, pancreatic 
progenitor, immunogenic and aberrantly differentiated 
endocrine and exocrine categories[22]. Similar to Waddell 
et al[21] the implications of these findings may potentially 
identify opportunities for therapeutic development. 
While these data have provided valuable insights into 
the complex molecular basis of PDAC many studies 
have previously attempted to manipulate some of these 
genes and/or pathways at various levels already and 
will be briefly discussed here.

Given the near ubiquitous nature of KRAS mutations 
in PDAC, targeting this gene and its associated pathways 
has been an area of interest however thus far this has 
not translated to clinically significant outcomes. In an 
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erlotinib in conjunction with gemcitabine, however this 
was only in the order of two weeks survival benefit 
and little mention of the related quality of life impact 
secondary to treatment was reported[34].

The JAK/STAT pathway has also been implicated as 
a regulator in the development of PDAC via its role in 
activating signalling cascades and gene transcription. 
Stimulated by oxidative stress, this pathway ultimately 
induces the production of inflammatory cytokines as 
well as cell proliferation, malignant transformation 
and inhibition of apoptosis in the pancreas[37,38]. This 
association with inflammation has prompted trials of 
the JAK-1/2 inhibitor ruxolotinib in combination with 
capecitabine for patients with metastatic PDAC after 
failure of first line therapy if patients expressed ele-
vated inflammatory markers as assessed by C-reactive 
protein[39]. In this phase Ⅱ randomised trial, 127 patients 
were treated with either ruxolotinib and capecitabine or 
capecitabine and placebo. However, interim analyses 
failed to demonstrate sufficient efficacy with ruxolotinib 
combination therapy and further investigations of this 
drug has been suspended[40].

Together this information provides us with a raft 
of data for potential therapeutic targets, whether 
via drivers, alterations in signalling pathways or 

effort to target as many known mutations/pathways as 
possible various studies have focused on novel therapies 
in combination with known chemotherapeutics in the 
hopes that treatment outcomes improve.

Selumetinib, an orally bioavailable selective MEK1/2 
inhibitor showed promise in preclinical studies but failed 
to demonstrate a survival advantage in the second 
line setting when compared with the oral equivalent 
to fluorouracil, capecitabine[29]. Similarly, attempts at 
targeting other known PDAC genes/pathways including 
P13K/Akt/mTOR have been clinically disappointing[30,31].

Her2/neu amplification is well characterised in a 
number of malignancies which have shown response 
when used as druggable targets in breast and gastric 
malignancies for example[32-34]. In PDAC, Her2/neu is 
amplified in up to 45% of cases[35], particularly in the 
advanced setting. Unfortunately, while initial pre-clinical 
studies indicated a potential role for Her-2 directed 
therapy specifically trastuzumab as a monotherapy 
or in combination with gemcitabine[36] it did not prove 
clinically advantageous. Similarly, investigations 
combining trastuzumab with capecitabine were disa-
ppointing[35]. In a related fashion EGFR which is known 
to co-express with Her2 has also been investigated 
with statistical gains noted for the EGFR inhibitor 

Figure 1  Schematic of major pathways associated with pancreatic ductal adenocarcinoma and site of action of current treatments. Multiple pathways and 
receptors are associated with the development of pancreatic ductal adenocarcinoma (PDAC) including epidermal growth factor receptors (EGFR), human epidermal 
growth factor receptor 2 (Her2), and vascular endothelial growth factor receptor (VEGFR). All of these have important roles in the RAS/RAF/MEK/ERK and AKT/
PI3K/mTOR pathways involved in cell growth. EGFR also has a role in the JAK/STAT pathway necessary for activation of signalling cascades and gene transcription. 
Transforming growth factor (TGF-β) is a multifunctional cytokine involved in various processes some of which are mediated by SMAD 4, a known mutation associated 
with development of PDAC. Current therapeutics target these processes at various sites.

Taxanes impair 
ras signalling and 

induce DnA 
damage

nabpaclitaxel able to 
penetrate stroma

Stroma; microenvironment

EGFr

Her2
VEGFr

 TGFβ

SMAD4
rAS/rAF/MEK/ErK
AKT/PI3K/mTOr

JAK

STAT

DnA damage and 
repair mechanisms

Gemcitabine induces 
DnA damage

5FU impairs DnA 
replication

Diwakarla c et al . Advanced pancreatic ductal adenocarcinoma



2280 April 7, 2017|Volume 23|Issue 13|WJG|www.wjgnet.com

susceptibility genes. For example in the case of PALB2 
mutation-associated disease there are multiple reports 
suggesting improved outcomes in response to platinum 
based therapy or mitomycin C when compared with 
gemcitabine[27,28] suggesting that a more comprehensive 
understanding of the genetic complexity of PDAC will 
assist in treatment decisions. Thus understanding the 
similarities and differences between the “poor” and 
“exceptional responders” may provide biomarkers 
to identify patients who might benefit from these 
treatments and improve outcomes[41].

Stromal microenvironment and drug delivery
PDAC is characterised by the surrounding cells, 
specifically activated fibroblasts, myofibroblasts 
and pancreatic stellate cells which contribute to the 
composition of the surrounding matrix, elements 
such as hyaluronan, growth factors (e.g., TGF-β) and 
secreted protein acidic rich in cysteine (SPARC)[42,43]. 
These result in a unique stromal microenvironment 
which may not only promote tumour initiation and 
progression but also create a barrier to drug delivery 
thus rendering PDAC relatively chemoresistant. 
Consequently, much effort has focused on ways to 
deplete or manipulate the stromal microenvironment 
and improve therapeutic outcomes.

SPARC is a glycoprotein believed to be involved 
in cancer development via its modulation of cell 
proliferation, progression, angiogenesis, migration, 
metastasis and apoptosis[44]. It’s normal role in cellular 
functions is thought to be multifactorial with effects 
on cell dispersion and chemosensitization as well as 
induction of apoptosis but also has antiangiogenic 
properties[45-48]. While the intricacies of SPARC and 
cancer are yet to be fully elucidated its potential to 
increase the invasive capacity of malignant cells and 
possible association with poor prognosis is recognised[7]. 
Of interest, SPARC methylation leading to pathogenesis 
correlates with both tobacco smoking and alcohol 
consumption, which are known associated modifiable 
risk factors for PDAC[49].

Interestingly gemcitabine has been reported to 
alter SPARC expression in a dose dependent manner in 
cell lines[50] however, there is also evidence to suggest 
that SPARC overexpression enhances PDAC cell 
chemosensitivity to gemcitabine[51]. In fact, SPARC may 
actually assist in the delivery of nab-paclitaxel to the 
tumour due to its affinity for albumin[52]. Nab-paclitaxel 
is formulated with human albumin at concentrations 
that closely resemble physiological albumin levels. This 
feature seems to enable nab-paclitaxel to penetrate 
the stromal environment and reach the tumour more 
efficiently[53]. Despite these studies however the role 
for SPARC within the stromal micro-environment and 
its implications on therapy remain controversial. For 
example data presented by Hidalgo et al[54] reported no 
clear association between SPARC levels and treatment 
efficacy with combination therapy using gemcitabine 
and nab-paclitaxel or gemcitabine alone in metastatic 

PDAC.
Growth factors such as TGF-β are produced by cells 

within the stromal microenvironment. Interestingly 
TGF-β levels correlate with tumour metastases and 
progression as well as poorer patient outcomes[55]. 
The specific role for TGF-β in this case is not clear but 
may involve regulation of cell cycle arrest, apoptosis, 
immune response and/or wound healing. Activated 
TGF-β signalling is mediated via SMADs, a known driver 
of PDAC, which is also reported to correlate with worse 
prognosis or disseminated disease[56,57].

Intriguingly TGF-β has been reported as a tumour 
suppressor in early stages of malignancy but a pro-
moter in established disease[58] further emphasising 
the complex nature of PDAC.

Despite the steady accumulation of knowledge from 
studies into genetic and molecular pathways, complex 
stromal characteristics and better drug delivery remains 
an ongoing issue further prompting investigations of 
novel approaches such as nucleolar stress pathways 
and ribosome biogenesis.

RIBOSOME BIOGENESIS
Ribosome biogenesis is a highly coordinated process 
which takes place within a dynamic compartment 
of the nucleus termed the nucleolus. Long before 
the functional role of the nucleolus was established, 
Pianese[59] noted that malignant cells were often 
characterised by enlarged, abnormal nucleoli. Since 
then, numerous studies have correlated morphological 
changes of the nucleoli with malignant disease.

It is now clear that the morphological changes 
affecting nucleoli in malignant cells reflects hype-
ractivated transcription of ribosomal RNA (rRNA) 
genes by RNA polymerase I (Pol I) yielding the 
47S rRNA precursor which is rapidly processed into 
mature 18, 5.8 and 28S rRNAs[60] while the 5S rRNA 
precursor is transcribed by RNA polymerase III (Pol 
III). These RNA’s together with ribosomal proteins 
(RPs) transcribed by RNA polymerase II (Pol II) 
are essential for ribosome assembly, central to the 
synthesis of cellular proteins[61,62]. Co-ordination of all 
three polymerases is necessary for the development of 
a functional mammalian ribosome (80S) composed of 
a small (40S) and large (60S) subunit[62,63].

During active cell division and proliferation ribosome 
biogenesis increases so as to maintain elevated cellular 
demands. It is not surprising that this process is a 
major consumer of cellular energy requiring vigilant 
regulation[64,65]. However, ribosome biogenesis is not 
only regulated by RNA polymerases, as depicted 
in figure 2, but also involves a number of tumour 
suppressors or oncoproteins[66] including c-myc, con-
sidered a “master regulator” of protein synthesis[67]. 
Conversely p53 has an important place in inhibiting 
ribosome biogenesis[68] and promoting cell cycle arrest, 
senescence or apoptosis. 
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In normal cells, levels of p53 protein are typically 
low[69], kept in check by various mechanisms including 
MDM2, an E3 ubiquitin ligase[62], as shown in figure 3, 
allowing cell division and proliferation.

Nucleolar stress
Disruptions in ribosome synthesis lead to nucleolar 
stress which in turn results in nucleolar disruption and 
the release of RP’s i.e., RPL5 and RPL1. These RPs 
are able to bind to MDM2 and interrupt its interaction 
with p53[60,70]. Similarly, the product of the CDKN2A 
gene, p14ARF, is also able to exert effects on MDM2[60]. 
Ultimately, these pathways lead to stabilisation of p53 
allowing it to act on various transcriptional targets 
and induce apoptosis, senescence and/or cell cycle 
arrest depicted in figure 3. Importantly one of the 
transcriptional targets for p53 is the MDM2 gene 
setting up an autologous feedback loop to maintain 
genomic and cellular homeostasis[62,71,72] keeping the 
process of cell death and proliferation in check.

When the above mentioned homeostatic mechanisms 
are impaired however, ribosome biogenesis becomes 
dysregulated and the balance between cell growth and 
arrest is compromised leading to unchecked cellular 
proliferation and malignant transformation. Activation of 
the nucleolar stress pathway may therefore provide a 
therapeutic strategy against aggressive malignancies. 

While p53 dependent nucleolar stress is well under-

stood, more recent research by Quin et al[73] has 
identified p53 independent mechanisms involving 
activation of ATM/ATR signalling which occurs without 
the induction of global DNA damage[73]. Evidently, 
ribosome biogenesis is a highly complex and finely 
balanced process involving multiple key effectors. 
Disruption of any of these components can mediate the 
nucleolar stress pathway and have detrimental effects 
on cell growth and proliferation. It is this feature along 
with the potential for reduced global DNA damage that 
makes targeting dysregulated ribosome biogenesis an 
attractive therapeutic option.

Therapeutic targeting of dysregulated ribosome 
biogenesis
Many regulators of ribosome biogenesis are also 
involved in malignant diseases including PDAC. for 
example, activation of RAS or PI3K pathways known to 
be involved in PDAC are critical for coordinating protein 
synthesising capacity (ribosome number) required for 
maintaining cellular growth and proliferation. Other 
genes and their products, such as c-myc and p53 
also have significant roles in ribosome biogenesis and 
malignancy when overexpressed or mutated. Attempts 
at targeting these various genes and pathways have 
been disappointing in the realm of PDAC but tackling 
dysregulated ribosome biogenesis have shown more 
promise.

Figure 2  Pathways involved in ribosome biogenesis. The first rate limiting step in ribosome biogenesis is the transcription of the rRNA genes by Pol I which forms 
a multiprotein transcription complex at the rDNA promotor[62]. Green arrows indicate up stream regulators which exert positive effects on the Pol I transcription complex 
including multiple pathways such as PI3K/AKT/mTOR, RAS/RAF/MEK and Myc which functions as the “master regulator” for cell growth[64]. The mature rRNAs 
together with ribosomal proteins assemble into the 40 and 60S ribosomal subunits, which then form the functional 80S ribosome[62]. Transcription of the rDNA repeat is 
negatively influenced by p53 (as shown by the red line) to ensure that cell growth/proliferation is tightly regulated.
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Pivotal studies conducted by Bywater et al[12], 
provided proof of principal for the benefits of targeting 
dysregulated ribosome biogenesis as demonstrated 
by CX5461, a novel small molecule Pol I inhibitor, 
investigated in the Eµ-Myc mouse model of Burkitt’s 
lymphoma. In this model, cells are highly proliferative 
and have elevated RNA levels, including rRNA, which 
correlates with accelerated Pol I transcription and cell 
growth. Pharmacological inhibition of Pol I transcription 
with CX5461 induced nucleolar stress leading to an 
increase in p53 levels resulting in apoptotic cell death 
of malignant cells. Most compelling however, CX5461 
did not kill non-malignant B cells representing a valuable 
therapeutic option in the management of susceptible 
malignancies[12].

In addition to the Bywater study, Devlin et al[13] 

demonstrated that combination therapy with CX5461 
and AKT-mTOR inhibitors worked synergistically 
leading to significantly extend survival in lymphoma 
bearing mice[61]. Importantly, the acute lymphoblastic 
leukaemia cells were more sensitive to rRNA synthesis 
inhibition compared with normal bone marrow cells[74] 
further emphasising the potential reduction in global 
toxicity underlying Pol I inhibition. Similarly, reduced 
global toxicity was noted by Hannan et al[75] review of 
lymphoma models in response to Pol I inhibition.

To date, the majority of studies of Pol I inhibitors 
have focussed on haematological malignancies, and as 
such CX-5461 is the subject of a phase I clinical trial 
at the Peter MacCallum Cancer Centre for treatment 
of patients with advanced haematological malignan-
cies (Australian New Zealand Clinical Trials Registry 

12613001061729). However, such studies are now 
being extended to various solid organ malignancies 
including metastatic/recurrent/locally advanced/
unresectable triple negative breast cancer which is 
currently recruiting through the Canadian Cancer Trials 
group (NCT02719977). This is a logical extension as 
there is preliminary data for efficacy of CX-5461 in 
solid tumours, with pre-clinical data suggesting a role 
in prostate cancer[14]. Similarly, studies in PDAC cell 
lines have also shown promise[76], as documented by 
Drygin et al[76] using MIA PaCa-2 cell lines. This study 
demonstrated a process of both autophagy and cell 
senescence in response to Pol I inhibition. In xenograft 
mouse models of human MIA PaCa-2 cells, treatment 
with CX5461 demonstrated significant tumour growth 
inhibition deemed at least comparable to xenograft 
models treated with gemcitabine and again shows 
promise.

CONCLUSION
Given the promising result for Pol I inhibition in the 
treatment of haematological malignancies and emer-
ging evidence of efficacy in various solid organ cancers 
the potential for targeting dysregulated ribosome 
biogenesis and manipulating the nucleolar stress 
pathway is tantalising, particularly for advanced PDAC 
given the slow progress in its treatment options so far. 
Whether this will be in the setting of combinations with 
already established chemotherapeutics or in more novel 
ways remains to be seen but the results from other 
malignancies are encouraging. Of particular note is the 

Figure 3  Effects on ribosome biogenesis under normal conditions and in response to nucleolar stress. Under normal conditions, p53 levels are kept at a 
minimum by MDM2. This allows normal cell growth and proliferation. With nucleolar stress, RPs L5 and L11 are able to bind to MDM2 as does p14ARF. This blocks 
the ability for MDM2 to inhibit p53. Similarly, p53 independent mechanisms also block ribosome biogenesis leading to cell cycle arrest, senescence or apoptosis.
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potential for less toxicity to healthy cells which thus 
far has been a major limitation in improving treatment 
outcomes for PDAC.
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