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Abstract
AIM
To understand the underlying metabolic changes in 
human liver disease we have applied nuclear magnetic 
resonance (NMR) metabolomics analysis to human liver 
tissue.

METHODS
We have carried out pilot study using 1H-NMR to derive 
metabolomic signatures from human liver from patients 
with steatosis, nonalcoholic steatohepatitis (NASH) or 
alcohol-related liver damage (ARLD) to identify species 
that can predict outcome and discriminate between 
alcohol and metabolic-induced liver injuries. 

RESULTS
Changes in branched chain amino acid homeostasis, 
tricarboxylic acid cycle and purine biosynthesis inter
mediates along with betaine were associated with the 
development of cirrhosis in both ARLD and nonalcoholic 
fatty liver disease. Species such as propylene glycol and 
as yet unidentified moieties that allowed discrimination 
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between NASH and ARLD samples were also detected 
using our approach.

CONCLUSION
Our high throughput, non-destructive technique for 
multiple analyte quantification in human liver specimens 
has potential for identification of biomarkers with 
prognostic and diagnostic significance.

Key words: Human; liver; metabolomics; steatosis; 
nuclear magnetic resonance; alcohol

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: We have for the first time performed a com
parative analysis of 1H-NMR spectra from human liver 
derived from patients with different, but histologically 
similar etiologies, and steatotic donor tissue. In 
agreement with the fibrotic and inflammatory picture 
in the diseased livers, analytes relating to energy 
and protein metabolism and ketone body production 
were altered compared to the donor samples. More 
importantly, novel combinations of markers that may 
have diagnostic or prognostic significance were also 
identified by this approach.

Schofield Z, Reed MAC, Newsome PN, Adams DH, Günther 
UL, Lalor PF. Changes in human hepatic metabolism in steatosis 
and cirrhosis. World J Gastroenterol 2017; 23(15): 2685-2695  
Available from: URL: http://www.wjgnet.com/1007-9327/full/
v23/i15/2685.htm  DOI: http://dx.doi.org/10.3748/wjg.v23.
i15.2685

INTRODUCTION
Rising rates of obesity have led to a dramatic increase 
in nonalcoholic fatty liver disease ( NAFLD), a mani­
festation of the metabolic syndrome that occurs 
as a spectrum from fatty liver (steatosis) through 
inflammation (NASH) to cirrhosis and primary liver 
cancer. European prevalence of NAFLD is between 
15%-44% in adults[1] and the prevalence in children 
is also rising. Although only 10% of patients with 
steatosis progress to cirrhosis, this still represents 
a major cause of liver disease, with risk increasing 
dramatically in patients with type 2 diabetes mellitus. 
Urgent strategies are required to reduce the burden of 
fatty liver disease but there are currently no licensed 
therapies[2], and robust markers that can accurately 
identify patients at risk of progression from steatosis 
to NASH are yet to be fully described[2]. NASH is 
histologically indistinguishable from alcohol-induced 
liver disease but occurs in the absence of significant 
alcohol consumption[3]. Here, development of fatty 
liver disease in common with cardiovascular disease 
is driven by poor diet, physical inactivity, insulin resi­
stance and central adiposity but detailed description 

of the mechanistic triggers for NAFLD is lacking 
in part because of the overlap with cardiovascular 
disease. However it is clear from human studies 
that the transition from steatosis to steatohepatitis 
is accompanied by changes in the plasma lipidomic 
profile[4] and that crosstalk between the tricarboxylic 
acid (TCA) cycle and branched chain amino acids[5], 
along with oxidative stress in hepatocytes exacerbates 
the injury.

Many groups have turned to metabolic analysis of 
diseased livers to identify potential mechanistic drivers 
or diagnostic markers and to inform future personalized 
medicine strategies[6]. Metabolomics assesses the 
small molecule composition and biochemical changes 
in tissue, induced as a consequence of pathoge­
nic processes and has been applied to a variety of 
human metabolic disease states[7]. Studies of human 
liver disease commonly analyze serological marker 
profiles, yielding valid evidence for changes in lipid 
and lipoprotein metabolism[8] in the periphery but 
being limited by potential extrahepatic contribution to 
the metabolic signature. Rodent models of fatty liver 
disease are also available permitting hepatic analysis[7], 
but many require specific genetic manipulations and 
those which recreate the full spectrum of advanced 
disease (e.g., presence of fibrosis, inflammation and 
steatosis) may not reproduce the systemic picture 
seen in human patients with NASH such as systemic 
insulin resistance. Thus promising drug candidates 
identified based upon evidence from rodent models of 
fatty liver injury have not proven effective in human 
systems[2]. Many metabolomic studies thus far have 
focused on NAFLD or obesity rather than NASH[5,9], 
and development of new therapies for NASH is 
further hampered by the requirement for histological 
endpoints in clinical trials. We have addressed these 
issues by performing a metabolomics analysis of 
human liver tissue with steatosis, NASH and alcohol-
related damage (ARLD) by 1H-NMR. This provides 
a high throughput, non-destructive and sensitive 
technique for multiple analyte quantification with 
an often better reproducibility (and hence greater 
accuracy) than mass-spectrophotometric studies[10] 
and has the potential to identify species which can 
discriminate between alcohol-induced and metabolic 
liver injuries that are hard to separate histologically. 
Herein we report that an nuclear magnetic resonance 
(NMR) metabolomics approach allows us to discriminate 
human metabolic signature changes that accompany 
development of cirrhosis in both alcoholic and metabolic 
liver injury. More importantly we have identified key 
species that permit discrimination between these two 
etiologies.

MATERIALS AND METHODS
Patient liver samples
Human liver samples from patients in the Birmingham 
liver transplantation programme were used throughout 
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this study, and all samples were collected with informed 
written patient consent and local ethics committee 
approval (06/Q2702/61). Samples were anonymized 
to ensure no sensitive information was available to the 
researchers. Material was collected within one hour of 
removal and fresh liver tissue was either immediately 
snap frozen in liquid nitrogen for NMR analysis or 
formalin fixed and embedded in paraffin for histological 
analysis. We used three types of tissue, firstly 
normal “Donor” material from healthy livers deemed 
unsuitable for liver transplantation primarily as a 
consequence of presence of steatosis. These samples 
therefore are classed as steatotic. We also used “NASH” 
or “ARLD” livers collected from patients undergoing liver 
transplantation. These patients had fulfilled criteria for 
inclusion onto the transplantation list. Here diagnosis of 
NASH was defined as presence of histological features 
of steatosis, lobular inflammation and hepatocyte 
ballooning in the absence of a history of alcohol excess 

(> 14 units/wk) and exclusion of other viral/metabolic 
or autoimmune etiologies. ARLD patients were defined 
on the basis of chronic liver damage in the context of 
excessive alcohol intake in the absence of other viral 
or autoimmune causes. Tissue was collected from 
n = 16 donors, n = 5 alcoholic patients and n = 14 
NASH patients. Detailed demographic information for 
donors of explanted cirrhotic liver is supplied in Table 1. 
Steatotic donor livers rejected for transplantation were 
used as our steatotic donor liver group. Demographic 
information for these samples is much more limited 
as such samples do not come with full biochemical 
characterisation.

Histology
Paraffin-embedded samples were cut into 5 µm sections 
and stained using Haematoxylin and Eosin and Van 
Gieson stains using standard protocols for assessment 
of tissue morphology, steatosis and fibrosis respectively. 
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Table 1  Patient demographics for samples used for 1H-NMR analysis of whole liver tissue

Group Age Sex Height (cm) Weight (kg) BMI ALT (IU/L) AST (IU/L) Bilirubin (μmol/L)

ARLD 40 F 162      86.7 33   21 -     3
ARLD 49 M 188 104    29.4   33   66   37
ARLD 54 M 179 101    31.5   14 - 135
ARLD 65 F 162   71    27.1   19 -   75
ARLD 49 M 183   66    19.7   43   59   30
mean   52 ± 9.12 172.75 ± 12.1 90.68 ± 17.3   30.25 ± 5.21 21.75 ± 11.7 66 ± 4.94 62.5 ± 51.1
NASH 60 M 173 110    36.8   29   66   40
NASH 61 M 175 106    34.6   45 126   17
NASH 51 M 178 112    35.3   25   32   30
NASH 51 F 158   57    22.8   12   46 191
NASH 50 F 157   64 26   32   74 145
NASH 49 F 162   86    32.8   54   72   97
NASH 60 M 175   95 31   33   87   90
NASH 52 M 170 113    39.1   37   47   66
NASH 47 M 169 109    38.2   34   51   19
NASH 70 F 164   82    30.5   28   32   13
NASH 44 M 165 101    37.1   36   62 109
NASH 52 M 173 103    34.4   24   37   44
NASH 60 M 179 123    32.1   22   41   27
NASH 61 M 178   97    30.6   18   34   50
mean 55 ± 7.1 169.7 ± 7.4     97 ± 18.9 32.95 ± 4.6   30.6 ± 10.8 58 ± 26.2    67 ± 53.2
Donor - - - - - - - -
Donor - - - - - 119 -   14
Donor - - - - -   11 -   14
Donor - - - - - - - -
Donor 77 M 176   80    25.8   55 -   18
Donor 74 F - - - - - -
Donor - - - - - - - -
Donor - - - - -     9 -   11
Donor 39 M 176      68.7    22.2   63 126   15
Donor - - - - - - - -
Donor 46 M 171      51.3      17.54   30 N/A   23
Donor - - - - - - - -
Donor - - - - - - - -
Donor - - - - - - - -
Donor - - - - - - - -
Donor 55 F 163      56.1    21.1   48   97     7

Demographics of our patients at time of transplantation surgery - indicates data unavailable. In particular for most organ donors, constraints of our 
ethical approval process meant we were unable to access anonymized clinical demographic information from deceased donors. Thus we only have data 
for selected steatotic donor liver samples. BMI: Body mass index; ALT: Alanine aminotransferase; AST: Aspartate transaminase; NASH: Nonalcoholic 
steatohepatitis; ARLD: Alcohol-related liver damage.

Schofield Z et al . Metabolism in human cirrhosis



2688 April 21, 2017|Volume 23|Issue 15|WJG|www.wjgnet.com

was picked for each metabolite in the first spectrum 
and peaks were picked in the other spectra in an 
automated manner using in-house subroutines of 
MetaboLab. Three classes were defined: donor (9 
spectra), NASH (6) and ARLD (5). The mean and 
standard deviations for each class were calculated. For 
each metabolite, the unpaired t-test (Welch’s t-test) 
was used (using ttest2u from the PLSTOOLBOX for 
Matlab by Eigenvector Research Inc, Washington, 
United States) with a 5% cut-off (p value < 0.05) 
to test the null hypothesis that the relative peak 
intensities for pairs of the different classes have the 
same mean, variances not assumed to be equal. 

RESULTS
In order to determine differences in metabolic 
signatures in liver tissue during NASH, we compared 
NMR profiles with those from “donor” steatotic liver 
and importantly from tissue collected from patients 
with ARLD, which is histologically indistinguishable 
from NASH[3,15]. The donor tissue samples all showed 
extensive macrovesicular steatosis throughout the 
lobule (Figure 1A), and some cases exhibited areas of 
localised inflammation (see arrows Figure 1A). Table 1 
shows the available biochemical and demographic data 
for our patient groups and confirms that the patients 
in the ARLD and NASH groups were age matched (52 
± 9.12 years vs 55 ± 7.16 years respectively) and 
their BMI was not significantly different at time of 
transplant (30.25 ± 5.21 vs 32.95 ± 4.6 respectively, 
Table 1). Both diseased groups had extensive bridging 
fibrosis and inflammatory infiltrate in the liver (Figure 
1B and C). Areas of steatosis were occasionally 
noted in the NASH and ARLD samples (see arrows 
Figure 1B and C) but were not present in all livers. 
Given the extensive fibrosis and resistant texture 
of our liver specimens we were keen to confirm the 
reproducibility of our extraction technique on tougher, 
cirrhotic specimens compared to the softer donor 
tissue. Figure 2 shows representative 1D 1H-NMR 
spectra from our samples and illustrates that the polar 
extracts such as the branched chain amino acids were 
extremely consistent within each of the three groups, 
yielding a clear separation for a panel of metabolites 
between donor and NASH groups, albeit with different 
concentrations of species present between tissue 
types. Reproducibility of our analytical workflow was 
confirmed by performing independent repeat analysis 
using the same patient samples on separate occasions 
(see Supplemental Figure 2).

Key findings from the 1D proton-NMR are 
summarised in Figure 3 and confirm that many key 
metabolites were significantly different between the 
patient groups (see analysis in Supplemental Table 
1). In agreement with the histological picture of 
steatosis in the donor samples and a more fibrotic 
and inflammatory picture in the NASH livers, analytes 

Representative images were captured using a Zeiss 
Axioscope microscope and Axiovision software.

Sample preparation for NMR
Tissue samples were stored in a freezer at -80 ℃ 
before being prepared for NMR analysis according 
to previously described methodology[11] with the 
addition of a tissue digestion step using a gentleMACS 
homogeniser (Miltenyi, United Kingdom). All solvents 
(HPLC grade Methanol and Chloroform, Sigma Aldrich) 
were kept on ice at -4 ℃. Liver samples (approximately 
89 mg or approximately 5 mm3) were added to 
gentleMACS M-Tubes in methanol (8 μL/mg) and 
purified water (2 μL/mg) and homogenised using a 
gentleMACS dissociator.  Samples were decanted into 
5 mL glass vials. Fresh chloroform (8 μL/mg) and 
water (4 μL/mg) were added and samples vortexed 
for 30 s. The mixture was left to stand on ice before 
centrifugation (5 min at 2500 rpm followed by another 
5 min at 3000 rpm). The polar layer of the resultant 
multiphasic solution was carefully pipetted into a sterile 
Eppendorf tube (100 μL) and air dried using a vacuum 
concentrator for an hour. All layers were stored at 
-80 ℃ for future analysis. 

NMR data collection
All data collection was carried out using a Bruker 
600MHz Avance III spectrometer using a 1.7 mm 
cryoprobe. To acquire 1D 1H-NMR spectra dried polar 
metabolites were re-suspended in sodium phosphate 
buffer in 90% H2O and 10% D2O (0.1 mol/L, pH 7.09) 
containing 3-trimethylsilyl-2,2,3,3,d4-propoinate 
(TMSP) as an internal chemical shift standard. 1D-1H-
NOESY spectra were collected at 298 K with a 12 ppm 
spectral width, 32k data points and 256 scans. 

NMR data analysis
Spectra were processed using NMRlab and Metabolab 
programmes[12,13] within Matlab, version R2015b 
(MathWorks, Massachusetts, United States). Briefly, 
the first data point was multiplied by 0.5, a line-
broadening window function was applied and the 
data were zero-filled to 32768 points prior to Fourier 
transformation. All spectra were rephased manually 
after initial automated phase correction. Before analysis 
of the spectra, all spectra were aligned on TMSP, a 
spline baseline correction was applied, the water and 
TMSP regions were excluded and the total spectra area 
(TSA) of each spectrum was scaled to 1. However, 
scaling to the TMSP signal produced almost identical 
results as total spectra area scaling.

Resonances were assigned using Chenomx 8.1 
(Alberta, Canada, 2015). Calibration was carried out 
manually using alanine as a reference peak (δ = 1.46 
ppm). The human metabolome database (HMBD)[14] 
was used to identify metabolites not covered by Chenomx.

Statistical analysis
In normalised 1H NMR spectra, one well-resolved peak 
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relating to energy and protein metabolism and 
ketone body production were altered compared to 
the donor samples. Whilst many metabolites were 
similarly altered in the NASH and ARLD cohorts 
compared to donor livers, there were key differences 
that discriminated NASH from ARLD livers. We were 
able to identify approximately 60 metabolites in 
NMR spectra of polar extracts, of which 16 were 
significantly altered between the groups, one of which 
could not be identified. The branched chain alpha 
amino acids leucine, valine and isoleucine were all 
increased in concentration in cirrhotic livers (NASH 
and ARLD) compared to donor tissue, but interestingly 
concentrations of alanine, glutamate and glycine 
were comparable in all livers. The amino acid betaine 
was particularly abundant in the alcoholic and NASH 
livers compared to steatotic samples. Other interme­

diates in the TCA cycle, succinate and fumarate were 
differentially regulated in disease with no change 
in fumarate levels across groups, but in contrast a 
significant elevation in succinate levels associated with 
both alcohol induced liver injury and NASH (Figure 3). 
As expected we found significant elevations in hepatic 
glucose concentrations in both NASH and ARLD, 
and we also noted significant elevations in hepatic 
lactate during cirrhosis, particularly in the NASH liver 
specimens. A modest but non-significant elevation in 
uracil levels present in cirrhosis was accompanied by a 
modest decrease in uridine levels. The common food 
additive propylene glycol was also increased in both 
cirrhotic groups and particularly the alcohol group, a 
pattern also evident for formate concentrations that 
were highest in alcoholic liver disease. Finally, an as 
yet unidentified metabolite with a signal at 7.685 ppm 

A

B

C

Figure 1  Histological staining of human liver tissue. Representative images of donor tissue (A), NASH tissue (B) and ARLD liver (C) stained using haematoxylin 
and eosin (left panel) or Van Gieson stain (right panel). Bar = 100 µm and images were captured at 10 × original magnification. Data are representative of 6-14 
samples in each group. Arrows in A indicate areas of localised inflammation present in our steatotic donor livers and arrows in B and C show steatotic hepatocytes. 
NASH: Nonalcoholic steatohepatitis; ARLD: Alcohol-related liver damage.
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was particularly valuable for differential comparisons 
between the cirrhotic samples with high levels in 
NASH livers and overlap with the donor specimens, 
but concentrations in ARLD being somewhat lower 
than the steatotic donors (Supplemental Figure 1). 
This contrasts with two other unidentified metabolites 
at 5.41 and 5.43 ppm that were significantly lower in 
ARLD livers.

We also compared metabolite levels between 
ARLD and NASH liver samples in comparison to 
steatotic livers (Figure 4). This analysis showed that 
the elevations in amino acids valine and isoleucine 
in NASH were more pronounced than seen in the 
ARLD specimens, and also showed the raised formate 
and glucose in alcoholic livers. However the most 
impressive differences were observed in two yet 
unidentified metabolites. We observed significant 
decreases in all three metabolites which were much 
reduced in concentration in ARLD livers with the 
metabolite at 5.43 also significantly reduced in NASH 
compared to the other patient groups. Again the peak 
at 7.68 ppm was significantly elevated in NASH livers 
relative to normal whilst it was reduced in ARLD livers. 
We also performed a correlation analysis on a small 
subsection of our cirrhotic patients from whom we had 
good biochemical data. Analysis of these 10 patients 
is shown in Figure 5 and shows that accumulation 
of analytes linked to impaired liver function such 
as glutamate and lactate, correlated with bilirubin 
concentration at time of transplant. The same was 
true for unknown metabolite 7.68 ppm. We also saw a 
trend for decreased hepatic aspartate levels with age.

DISCUSSION
We used an NMR metabolomics analysis to generate 
information on the metabolic picture of human liver 
tissue in the context of simple steatosis alone or in 
more advanced disease associated with both fibrosis 
and hepatic inflammation. NMR was chosen as the 

analytical tool for this study by virtue of its ability to 
rapidly and simply process small volumes of sample to 
yield unbiased, non-selective structural information on 
our analytes. Insulin resistance[16] and hyperglycaemia 
are characteristic of NAFLD[17] with elevated serum 
glucose lactate, and glutamate/glutamine levels 
characterising different stages in the progression 
to NASH[18]. One gas chromatography study has 
compared the lipid profile of steatotic and NASH 
livers[4] and highlighted changes in lipid and fatty acid 
homeostasis that accompany NAFLD and are echoed 
in our own results. We have confirmed evidence from 
several studies suggesting that glucose homeostasis 
and branched chain amino acid concentrations are 
modified in the liver and serum in NAFLD[9,17-19]. 
Previous NMR analysis of serum from patients with 
cirrhosis confirms significant changes in plasma amino 
acid concentrations, in particular in patients with 
encephalopathy[20]. We observed elevated hepatic 
concentrations of the alpha amino acids leucine, 
valine and isoleucine in accordance with the reported 
abnormal regulation of hepatic amino acid metabolism 
in cirrhosis[21,22] and lower BCAA oxidation observed 
in alcohol injury and cirrhosis[21]. Interestingly in liver 
disease one might expect characteristically low serum 
levels of some BCAA due to changes in protein and amino 
acid metabolism[23]. Diminished release of leucine from 
muscle is common[24] and studies suggest that improved 
glucose sensitivity in the fed state during cirrhosis may 
supress leucine oxidation in the periphery[25]. Indeed 
valine supplementation has been suggested to be 
beneficial in reduction of fibrosis in rodent models of 
liver cirrhosis[26], although administration to patients 
with cirrhosis results in higher serum levels than for 
control subjects[27]. 

Other amino acids were differentially regulated 
however, with glutamate unchanged in NASH and 
ARLD compared to steatotic livers. Previous data from 
NMR analysis of obese patients undergoing bariatric 
surgery has suggested that glutamate levels in the 
liver reduce as the severity of steatosis increases[9] 
whilst others, in agreement with our results, reported 
that liver levels are unchanged if steatosis is compared 
to NASH[17]. Thus it is likely that levels in all our patient 
groups vary compared to healthy liver, in part due 
to increased utilisation for glutathione generation, 
particularly in the context of endotoxemia which 
may accompany cirrhosis[28]. This may also fit with 
the reported reductions in serum glutamate seen in 
ARLD-related cirrhosis[29]. Importantly, some of our 
patients are given personalized nutritional support that 
can include both vitamin supplementation (Thiamine 
and Vitamin B strong) as well as high energy protein 
supplements such as “Fortisips” and “Forticreme” or 
“Ensure”. However these are not given to all patients 
and are most often used for those with significant 
sarcopenia and reduction in BMI. Thus we do not 
supplement in a manner that would explain changes in 
BCAA metabolism in all patients. Glycine is involved in 
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Figure 2  Representative 1H-NMR spectra. Representative fraction intensity 
traces from the branched chain amino acid region of the 1H-NMR data for 
normal (black) NASH (green) and ARLD (blue) livers showing consistency 
of separation between groups. NASH: Nonalcoholic steatohepatitis; ARLD: 
Alcohol-related liver damage.
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purine biosynthesis and collagen synthesis within the 
liver, so it is interesting to note the significant decrease 
in hepatic concentration, particularly in alcoholic liver 
disease where we see extensive fibrosis. Glycine is also 
an important component in one carbon metabolism 
and involved in the generation of S-adenosylmethionine 
(SAMe), a major methyl donor produced and consumed 
in the liver. The glycine methyltransferase enzyme is 
reportedly reduced in cirrhotic liver[30] and mice lacking 
this enzyme develop steatosis that progresses to 
steatohepatitis and cirrhosis[30]. Glycine also plays a role 
in liver regeneration[31] thereby confirming the important 
protective role of SAMe, conforming with our report of 
reduced levels in human cirrhotic liver and highlighting 
how reduced glycine levels can exacerbate injury. 

Our data showing dramatic increases in hepatic 
betaine levels in ARLD and NASH are also important in 
this context. Betaine is another metabolite previously 
linked to cirrhosis with serological levels having some 
merit in identification of HCC vs non-malignant liver 
conditions[32]. It is a breakdown product of choline and 
acts as a methyl donor in the generation of methionine 

and can reduce hepatic fat accumulation through 
inhibition of PPAR-α[33], and maintain SAMe levels. 
Early animal studies suggested there may be an anti-
steatotic benefit from dietary supplementation[34] 
leading to trials of betaine as a treatment strategy in 
NASH with some reports of histological and biochemical 
improvement after a year of therapy. However this 
initial data was not confirmed in larger, better designed 
studies[35] and it may be that once steatosis has 
progressed to fibrosis and steatohepatitis, levels of 
betaine increase in the liver as a protective mechanism 
and this overrides any additional benefit from dietary 
supplementation.

We also report that the TCA cycle intermediates, 
succinate and fumarate were differentially regulated 
in disease with no change in fumarate levels across 
groups, but in contrast a significant elevation in 
succinate levels associated with both alcohol induced 
liver injury and NASH. Plasma levels of succinate 
have been reported to increase in murine models of 
liver injury including administration of methionine 
choline-deficient diet and coupled with reduced fecal 
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Glucose                       5.41 ppm                   5.43 ppm                       Uracil                        Uridine                      Inosine
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Fumarate                       Histidine                    Tyrosine                  Phenylalanine                 Formate                       AMP
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Figure 3  Liver disease is associated with significant changes in energy and protein metabolism and ketone body production. Fraction intensity boxplots for 
indicated metabolites in normal liver (nl), ARLD (arld) and NASH (nash) liver samples. For each metabolite shown, an unpaired t-test (Welch's t-test) was calculated 
with a 5% cut-off to test the null hypothesis that the relative peak intensities for pairs of the different classes have the same mean, variances not assumed to be equal. 
The solid line indicates the median fractional intensity, and the box shows the interquartile range. Outlier samples are indicated by red crosses and statistical analyses 
are indicated in Supplemental Table 1. NASH: Nonalcoholic steatohepatitis; ARLD: Alcohol-related liver damage.
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excretion of succinate in insulin-resistant rats[7]. 
Increased succinate suggests malfunction of succinate 
dehydrogenase. Others also confirm that succinate 
levels are elevated in cirrhotic liver tissue compared 
to normal livers[36]. Importantly succinate is involved 
in profibrotic signalling to hepatic stellate cells[37] and 
so our reported hepatic elevations in the context 
of fibrogenesis in the ARLD and NASH samples fits 
with this picture. Other metabolites also reiterate the 
dysregulation of hepatic carbohydrate metabolism 
that characterises NASH. For example, lactate is 
used in the Cori cycle for synthesis of glucose, and 
taken up by healthy liver for this purpose. Reduced 
hepatic gluconeogenesis and accelerated glycolysis 
in the splanchnic region in acute liver failure lead to 
release of lactate. Lactate is also increased in cirrhosis 
where fasting levels correlate with portal pressure[38]. 
Furthermore a correlation between systemic lactate 
levels and bilirubin has been observed during living-
donor liver transplantation[39] and linked to liver function. 
This is in agreement with our elevated concentrations of 
lactate in NASH and ARLD and reduced gluconeogenesis 
in the context of cirrhosis, and our noted correlation 
between lactate and bilirubin levels. Interestingly 
the ability of hepatocytes to utilise lactate as fuel for 
gluconeogenesis has been reported to decrease with 
age[40] due to gradual impairment of mitochondrial 

function. Similarly we may be observing age related 
change in mitochondrial operation of the malate-
aspartate shuttle[41,42] and reduced export of aspartate 
which could explain our negative correlation between 
aspartate levels and age. Thus we may be observing 
increased utility of aspartate as fuel for gluconeogenesis 
in our older livers.

An intrinsic link between pyrimidine metabolism and 
fatty liver disease has been reported previously[43] with 
uridine having protective effects within the liver linked 
to mitochondrial respiration[43]. Excessive consumption 
or uridine as a protective mechanism in cirrhosis 
could explain our noted reduction in concentration 
in the chronically diseased livers. It is however also 
possible that pyrimidine synthesis is impaired. This 
might be consistent with increasing succinate levels, 
and accumulation of lactate, which may reflect a 
dysfunctional TCA cycle. Certainly disruptions in TCA 
cycle function have been reported in cirrhosis, linked 
to reduced intracellular ATP[44]. Formate is also made 
within hepatocytes during the folate cycle and used 
for pyrimidine synthesis. ARLD is often associated with 
a deficiency in folate, partly through reduced dietary 
intake in many alcoholics but also as a consequence of 
reduced liver uptake and urinary excretion[45]. This makes 
our increased intrahepatic formate levels harder to 
explain, but may suggest accumulation as a consequence 
of impaired pyrimidine synthesis in cirrhosis. Certainly in 
reduced folate situations, mitochondrial formate transport 
decreases, as does purine synthesis[46].

Whilst many of the metabolic changes discussed 
above have been reported in other studies, there are 
several interesting, novel observations in our analysis. 
Firstly we noted significant increases in hepatic 
propyleneglycol in both ARLD and NASH. This is a 
food additive often added to medicinal formulations 
such as paracetamol as a solubilizing agent[47]. Thus in­
creased levels may simply relate to pain relief or other 
medications taken by our cirrhotic patients. However 
it is interesting to note that propyleneglycol has been 
suggested to inhibit the function of CYP4502E1[48], 
and in this respect the notable increase in ARLD livers 
may be mechanistically significant. More importantly 
in the context of NASH, studies have suggested that 
dietary supplementation may be beneficial for the 
treatment of insulin resistance[49] and that glucose 
tolerance and skeletal muscle GLUT-4 translocation 
may improve after treatment. Interestingly, we 
have also identified high levels of an unidentified 
aromatic compound at 7.685 ppm in NASH but not 
in ARLD samples. Use of this metabolite either alone 
or in combination with BCAAs levels, would clearly 
discriminate between NASH and ARLD. This could 
potentially be a drug metabolite since patients with 
NASH are likely to be taking one or a combination of 
drugs to manage their metabolic syndrome (including 
Metformin, GLP-1 analogues, Glycazide, insulin, statins 
and blood pressure medications). The placement 
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Figure 4  Heat map comparing the alcohol-related liver damage and 
nonalcoholic steatohepatitis spectra with the donor spectra. The squares 
are coloured according to: log2 (mean fractional intensity of metabolite X in 
class Y/ mean fractional intensity of metabolite X in donor class) with blue 
indicating that metabolite X is higher in the class Y and red indicating that 
metabolite X is lower in the class Y. NASH: Nonalcoholic steatohepatitis; ARLD: 
Alcohol-related liver damage.
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of the peak suggests that it is unlikely to represent 
metformin. However the metabolite was found in all 
NASH samples and there is no drug that would have 
been administered to all patients. Also some patients 
with ARLD may be given drugs to treat diabetic com­
plications, but the metabolite was not present in any 
of these samples. A similarly good discrimination 
between NASH and ARLD would be possible based 
on unidentified metabolites at 5.41 and 5.43 ppm. 
These signals could potentially represent sugar species 
that increase in ARLD but not NASH. Further studies 
based on a larger number of samples need to be 
performed to identify these metabolites and to clarify 
whether they represent endogenous metabolites or 
represent a different metabolisation pattern for a 
therapeutic compound administered to pre-transplant 
patients. Similarly, future focussed serological analysis 
directed at the unknown species we have identified 
will aid assessment of potential diagnostic value. This 
is important as we would wish to develop diagnostic 
markers that could ultimately be measured in blood 
samples rather than tissue specimens. Recent evidence 
from patients with metabolic disturbance associa­
ted with polycystic ovary syndrome confirms that 
it is indeed possible to detect changes in circulating 
amino acids and carbohydrates in serum using an 
NMR approach[50]. In addition, give the important 
contribution of exercise to management of NAFLD[51] 
and links between skeletal muscle activity and hepatic 
metabolism[52,53] it would be important to assess the 
contribution of sarcopenia in advanced cirrhosis to the 

hepatic metabolome.
In conclusion, we have for the first time performed 

a comparative pilot study of 1H-NMR spectra from 
human liver derived from patients with different, but 
histologically similar etiologies and steatotic donor 
tissue. In agreement with the fibrotic and inflammatory 
picture in the diseased livers, analytes relating to energy 
and protein metabolism and ketone body production 
were altered compared to the donor samples. More 
importantly, novel combinations of markers that may 
have diagnostic or prognostic significance were also 
identified.

COMMENTS
Background
Robust markers that can accurately identify patients at risk of progression 
from steatosis to nonalcoholic steatohepatitis are lacking. To understand the 
underlying metabolic changes in human liver disease we have applied nuclear 
magnetic resonance (NMR) metabolomics analysis to human liver tissue.

Research frontiers
Metabolic analysis of human livers has the potential to identify mechanistic 
drivers or diagnostic markers of disease and thus to inform future personalized 
medicine strategies.

Innovations and breakthroughs
The authors have for the first time performed a comparative analysis of 1H-NMR 
spectra from human liver derived from patients with different, but histologically 
similar etiologies, and steatotic donor tissue. Importantly, novel combinations of 
markers that may have diagnostic or prognostic significance were identified by 
this approach.
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Figure 5  Correlation analysis illustrating relationship between key metabolites and demographic parameters in patients with cirrhosis. Data are from a 
smaller cohort of patients with cirrhosis relating to ARLD or NASH for whom our full demographic data was available. Dots indicate individual patient data (n = 10) 
and analyses shown are those with significant correlation (alpha < 0.05) for fraction intensity of metabolites vs bilirubin concentration or age. NASH: Nonalcoholic 
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Applications
The methodology that the authors have developed for generating NMR 
spectra from human liver tissue, and the molecular characterisation they 
have performed will be of interest to scientists and clinicians studying hepatic 
metabolism. Novel markers they may have prognostic potential.

Terminology
NMR - an analytical technique based on the magnetic properties of specific 
atomic nuclei that is used to determine the identity and structure of complex 
molecules.

Peer-review
This is a interesting study on an interesting topic. Recent results indicate that 
mitochondrial UCP3 activity affects metabolism well beyond fatty acid oxidation, 
regulating biochemical pathways associated with amino acid metabolism and 
redox status.
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