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Abstract
AIM: To evaluate quantitatively and qualitatively the 
different CD34+ cell subsets after priming by chemo-
therapy granulocyte colony-stimulating factor (± G-CSF) 
in patients with acute myeloid leukemia.

METHODS: Peripheral blood and bone marrow samples 

were harvested in 8 acute myeloid leukemia patients 
during and after induction chemotherapy. The CD34/
CD38 cell profile was analyzed by multi-parameter 
flow cytometry. Adhesion profile was made using CXC 
chemokine receptor 4 (CXCR4) (CD184), VLA-4 (CD49d/
CD29) and CD47.

RESULTS: Chemotherapy ± G-CSF mobilized immature 
cells (CD34+CD38− population), while the more mature 
cells (CD34+CD38low and CD34+CD38+ populations) de-
creased progressively after treatment. Circulating CD34+ 
cells tended to be more sensitive to chemotherapy 
after priming with G-CSF. CD34+ cell mobilization was 
correlated with a gradual increase in CXCR4 and CD47 
expression, suggesting a role in cell protection and the 
capacity of homing back to the marrow.

CONCLUSION: Chemotherapy ± G-CSF mobilizes into 
the circulation CD34+ bone marrow cells, of which, the 
immature CD34+CD38– cell population. Further manipu-
lations of these interactions may be a means with which 
to control the trafficking of leukemia stem cells to im-
prove patients’ outcomes.

© 2013 Baishideng. All rights reserved.
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Core tip: Timed sequential chemotherapy and priming 
with hematopoietic growth factors have been recently 
used in the treatment of acute myeloid leukemia in or-
der to mobilize more leukemic cells in the cell cycle and 
therefore improve the cytotoxic effect of chemotherapy. 
In this paper, we looked the impact of this type of 
treatment in a small series of patients on the mobiliza-
tion of different subsets of CD34+ cells involving “bulk” 
leukemic cells and more ‘‘immature’’ leukemic cells.
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INTRODUCTION
Acute myeloid leukemia (AML) is a heterogeneous clonal 
disorder that originates from leukemia stem cells (LSCs) 
with the ability to generate an excessive amount of  ma-
lignant myeloid blasts. Despite therapeutic advances in 
younger adults, relapses remain a major issue[1]. Chemo-
therapeutic regimens markedly reduce tumor burden, but 
only target the ‘‘bulk’’, non-clonogenic cells and spare 
LSCs, which allow for recrudescence of  leukemia[2]. In-
teractions of  the leukemic cells with the bone marrow 
(BM) microenvironment via specific receptor and adhe-
sion molecules, such as the CXC chemokine receptor 4 
(CXCR4)-stromal cell-derived factor-1 (SDF-1) axis, are 
in part responsible for chemotherapy resistance. AMLs 
with high CXCR4 cell surface expression and there-
fore a high tendency of  stromal protection have been 
shown to have a poor prognosis[3,4].

The cell cycle is a critical regulator of  the processes 
of  cell proliferation and growth. One strategy to increase 
the cytotoxicity of  cycle-dependent antileukemic agents 
is to enter more leukemic cells into the cell cycle. Timed 
sequential chemotherapy (TSC) is based on the findings 
that the initial cytoreductive drug induces the remaining 
malignant cell cohort to enter a proliferative state at a 
predictable time following drug administration[5]. Com-
bination with hematopoietic growth factors (HGFs) has 
also been developed to enhance the efficacy of  cytotoxic 
agents[6,7]. Granulocyte colony-stimulating factor (G-
CSF) stimulates very immature progenitors and cleaves 
SDF-1[8], inducing stem cell mobilization by decreas-
ing bone marrow SDF-1 and up-regulating its receptor 
CXCR4[9]. Such an approach could theoretically target the 
self-renewal machinery of  LSCs by inducing the quies-
cent LSCs into the cycle and circulation. However, a bet-
ter understanding of  those mechanisms is warranted.

Basically, low numbers of  immature hematopoietic 
cells are released into the peripheral blood (PB). Treat-
ments, including HGFs and/or TSC DNA-damaging 
agents, known as priming, can cause a marked increase 
in hematopoietic stem cell mobilization[10]. The aim of  
the present study was to investigate BM and PB leukemic 
blasts in the CD34 versus CD38 bidimensional space in 
order to evaluate quantitatively and qualitatively the dif-
ferent CD34+ cell subsets during and after priming by 
TSC ± G-CSF as induction chemotherapy in adult AML 
patients. 

MATERIALS AND METHODS
Patients and treatments
PB and BM samples were procured from a total of  8 
AML patients (Table 1). All studied patients were treated 
according to the Acute Leukemia French Association 
(ALFA)-0702 trial[11]. Diagnosis was morphologically 
proven according to the French-American-British clas-
sification[12]. The study protocol was approved by the 
Human Ethics Committee of  our institution and was 
conducted in accordance with the Declaration of  Hel-
sinki. All patients gave written informed consent prior 
to registration on the study. This trial was registered at 
www.clinicaltrials.gov as No. NCT00932412. All patients 
received TSC induction and 5 of  them were also primed 
by G-CSF (filgrastim). Morphological complete remis-
sion (CR)[13] and risk classification, based on cytogenetics 
and molecular marker analyses, were defined as previously 
described[7,14].

AML cells and flow cytometry analyses
PB and BM samples were harvested in all patients at dif-
ferent times: at diagnosis (T0), at the end of  the first se-
quence of  chemotherapy (4 d) (T4), at the beginning of  
the second sequence of  chemotherapy (8 d) (T8), at the 
end of  chemotherapy (10 d) (T10), during aplasia (15 d) 
(T15), and at the time of  cell recovery (between 28 and 
35 d) (TR).

Surface and intracellular antigen detection were 
performed by multi-parameter flow cytometry (MFC). 
Briefly, the CD34/CD38 cell profile was analyzed in one 
single tube by a multi-parameter combination using CD7, 
CD13, CD33, CD34, CD38, CD45 and CD19. Analyses 
were performed, using FACS Diva software (BD Biosci-
ence). Instrument set-up was routinely optimized by ana-
lyzing Calibrite beads- Rainbows 8 picks beads and CST 
beads system. Adhesion profile was made using CXCR4 
(CD184), VLA-4 (CD49d/CD29) and CD47. Cells were 
incubated with the appropriate combination of  MoAbs (1 
× 106 total cells per tube), washed and then analyzed by 
flow cytometry. The required minimal number of  CD34+ 
events was set at 20 and the total number of  events 
ranged from 100000 to 500000. Immunoglobulin G (IgG) 
isotype staining was used as a negative control for both 
CD38 and adhesion markers expression for ratio median 
fluorescence intensity (rMFI) evaluation. Discriminat-
ing the apoptotic/necrotic status of  each subpopulation 
was made possible by using fluorescein isothiocyanate 
(FITC)-labelled annexin V and propidium iodide (PI), as 
previously described[15].

The gating strategy was based on CD45low/SSC total 
blast and CD34+CD45low cell populations gated from 
total FSC/SSC viable cells. Three populations of  CD34+ 
cells were distinguished based on differential expression 
of  the CD34 and CD38 antigens[16]: A first cell popu-
lation, which expressed a great amount of  the CD34 
antigen, lack of  CD38 (CD34+CD38–) and often con-
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tained very few events requiring to be tightly clustered 
in a FSC/SSC and CD45/SSC plot; a second population 
characterized by a great amount of  the CD34 antigen 
and by a low density of  CD38 antigen (CD34+CD38low); 

and a third population characterized by a large density 
of  CD38 and CD34 antigens (CD34+CD38+). Figures 1 
and 2 are typical examples of  an analysis. CD38 was ex-
pressed as percent positively stained cells within CD34+ 
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  Pts Age
(yr)

Sex Cytogenetics CD34+

(%)1
FAB Molecular Biology2 WBC

(x 109/l)2
Risk-group G-CSF

priming
BM 15 d CR Consolidation 

and DFS

  1 59 M Normal 85 M5 Flt3-ITD neg CEBPA pos 55.1 Favorable intermediate Yes No blast Yes Chemotherapy 15+ mo
  2 35 M Normal 85 M2 Flt3-ITD neg CEBPA pos   4.8 Favorable intermediate Yes No blast Yes Chemotherapy 16+ mo
  3 56 F +8, del (20) (q11; q13) 93 M1 Flt3-ITD pos 12.6 Poor intermediate Yes ND Yes Chemotherapy 3 mo
  4 19 M Normal 67 M6 Flt3-ITD pos MLL pos 0.9 Unfavorable Yes ND Yes AlloSCT 6 mo
  5 55 M Normal 8 M1 Flt3-ITD pos NPM1 pos     147.3 Poor intermediate Yes ND Yes AlloSCT 14+ mo
  6 55 F Normal 3 M5 Flt3-ITD neg Evi-1 pos   3.7 Unfavorable No 5% blasts Yes AlloSCT 14+ mo
  7 44 M Complex 94 M0 Flt3-ITD neg NPM1 neg    1.4 Unfavorable No > 5% blasts No3 AlloSCT 11 mo
  8 45 F –7, +21 83 M4 Flt3-ITD neg NPM1 neg   2.4 Unfavorable No No blast Yes AlloSCT11+ mo

Table 1  Characteristics at diagnosis and outcome of the 8 acute myeloid leukemia patients

1Expression of CD34 by leukemic cells; 2Molecular biology and WBC count at diagnosis; 3Morphological complete remission was subsequently achieved 
by salvage therapy combining idarubicin with high-dose cytarabine. Patients prognosis was defined according to the following classification based on 
cytogenetics and molecular marker analyses. Karyotype abnormalities that involved core binding factor (CBF) leukemias [t (16; 16) (p13; q22), inv (16) 
(p13; q22), or t (8; 21) (q22; q22)] with or without other cytogenetic abnormalities were considered favorable cytogenetics. Monosomies or deletions of 
chromosomes 5 and 7; abnormalities of the long arm of chromosome 3 (or Evi-1 gene mutation); 11q23 abnormality (or MLL gene mutation); or complex 
cytogenetic abnormalities (defined as at least five unrelated cytogenetic clones) were considered unfavorable risk factors. Other cytogenetic abnormalities 
and cytogenetically normal (CN)-AML were designated intermediate risk factors. Intermediate-risk cytogenetics was further subdivided into a favorable 
intermediate risk group [CN-AML with nucleophosmin (NPM1) or CCAAT/enhancer-binding protein-(CEBPA) mutations and no FLT3-ITD] and a poor 
intermediate risk group (other patients). Induction chemotherapy consisting of a TSC including a first sequence combining daunorubicin, 60 mg/m2 
per day Ⅳ on 1–3 d, and cytarabine, 500 mg/m2 per day Ⅳ over the same period. The second sequence, administered after 4 d free interval, consisted of 
daunorubicin, 35 mg/m2 per day, Ⅳ on 8 d and 9 d, and cytarabine, 1000 mg/m2 per 12 h on 8–10 d. Five patients received G-CSF (filgrastim) priming 
(5 µg/Kg per day) on 1 to 10 d. Three patients were not primed with G-CSF. AlloSCT: Allogeneic stem cell transplantation; BM: Bone marrow; CR: 
Morphological complete remission; DFS: Disease-free survival; F: Female; FAB: French-American-British morphological classification; M: Male; neg: 
Negative; pos: Positive; Pts: Patients; WBC: White blood cell; G-CSF: Granulocyte Colony-Stimulating Factor.
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Figure 1  Multicolor flow cytometry (patient # 3): (left) Strategy used for gating the blast cell population and CD34+CD38 cell subpopulations (red: immature CD45low/

SSC blast cells, blue: CD34+ cells, green: lymphocytes, blue cyan: monocytes, violet: granulocytes, black: CD45+ cells (erythroblasts); CD34+ cells were separated 
into different stem cell fractions based on their CD38 antigen expression: A first cell population expressing a great amount of the CD34 antigen and lacked of CD38 
(CD34+CD38-), a second cell population characterized by a great amount of the CD34 antigen and by a low density of CD38 antigen (CD34+CD38low/), and a third cell 
population characterized by a large density of CD38 antigen and of CD34 antigen (CD34+CD38+); (right) The two density plots indicate CD45low/SSC blast cells (in 
red) and CD34+CD38 subpopulations (CD34+CD38- in orange, CD34+CD38low in green and CD34+CD38+ in blue).
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populations as well as intensity of  fluorescence signal 
quantified as rMFICD38 from CD34+ gated cells and 
from CD45low/SSC total blast cells. The adhesion mark-
ers CXCR4 and VLA4 were also expressed as rMFI. Re-
garding CD47 expression, a normalized rMFI was used 
and defined as followed: (median expression of  CD47 in 
blasts-median expression of  IgG1 in blasts)/(median ex-
pression of  CD47 in lymphocytes-median expression of  
IgG1 in lymphocytes).

Statistical analysis
Descriptive statistical values included median, mean ± 
SD and range. For most of  the analyses, BM cell samples 
from the 8 patients were pooled as well as all PB cell 
samples from the same 8 patients. Statistical significance 
was assessed using the ANOVA test, assuming equal vari-
ance for comparison of  2 groups. Correlations between 
the expressions of  cell surface antigens were given by the 
linear Pearson test.

RESULTS
Expression of CD34 during and after chemotherapy
At T0, the average proportion of  CD34+ cells in BM 
was 32.06% ± 28.96% (median, 21.47%) and 15.33% 
± 23.89% (2.84%) in PB. At T0, most CD34+ cells cor-

responded to the “bulk” leukemia cell population. The 
CD34+ cell population decreased progressively in BM 
(4.6% ± 9.54%; 0.31% at T15) corresponding to the 
decrease in leukemic blasts after chemotherapy, and in-
creased again lightly at the time of  cell recovery (1.25% 
± 0.84; 1.22%), corresponding mainly to the emergence 
of  normal progenitor cells. In PB, a nadir of  CD34+ cells 
was observed at T15 (0.51% ± 0.87%; 0.15%), while the 
percentage of  CD34+ cells remained low at TR (0.10% ± 
0.07%; 0.16%), confirming undetectable levels of  imma-
ture cells in PB. 

Expression of CD38 antigen on CD34+ cells
Three populations of  CD34+ cells were distinguished 
on differential expression of  the CD38 antigen. The 
CD34+CD38− population appeared in a restricted 
light-scattering region. When considering CD34 
and CD45 expressions, these cells projected initially 
mainly in the CD34+CD45low/+, and then appeared 
in the CD34+CD45−/low area after cell mobiliza-
tion. The CD34+CD38low cells were mainly found 
in the CD34+CD45low/+ area, but also involved the 
CD34+CD45−/low area. With respect to light-scattering 
properties, the cell population indicated by CD34+CD38+ 

was more heterogeneous but projected almost exclusively 
in the CD34+CD45low/+ area. At T0, the smallest popula-

October 26, 2013|Volume 5|Issue 4|WJSC|www.wjgnet.com

Figure 2  Characterization of the different stem cell fractions. A typical example of analysis (patient 3) performed at different times: at diagnosis (T0), at the end 
of the first sequence of chemotherapy (4 d) (T4), at the beginning of the second sequence of chemotherapy (8 d) (T8), at the end of chemotherapy (10 d) (T10), dur-
ing aplasia (15 d) (T15), and at the time of cell recovery (TR). CD34+ cells were separated into different stem cell fractions based on their CD38 antigen expression: 
A first cell population expressing a great amount of the CD34 antigen and lack of CD38 (CD34+CD38-); a second cell population characterized by a great amount of 
the CD34 antigen and by a low density of CD38 antigen (CD34+CD38low); and a third cell population characterized by a large density of CD38 antigen and of CD34 
antigen (CD34+CD38+).
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  Time CD34 vs CD38
 CD34+CD38-  CD34+CD38low  CD34+CD38+

  At diagnosis (T0)
  Median 7.32% 35.45% 56.74%
  Mean ± SD 15.40% ± 19.21% 32.35% ± 20.41% 53.81% ± 35.37%
  At 4 d (T4)
  Median 12.82% 39.15% 37.30%
  Mean ± SD 21.17% ± 22.68% 34.01% ± 23.08% 45.11% ± 37.48%
  At 8 d (T8)
  Median 15.99% 26.21% 36.81%
  Mean ± SD 30.14% ± 29.51% 30.28% ± 20.87% 39.06% ± 32.98% 
  At 10 d  (T10)
  Median 41.35% 22.99% 18.90%
  Mean ± SD 48.18% ± 26.79% 27.86% ± 18.65% 24.29% ± 22.73%
  At 15 d (T15)
  Median 73.56% 26.18% 3.93%
  Mean ± SD 66.42% ± 20.18% 27.33% ± 9.26% 8.05% ± 12.24%
  At recovery (TR)
  Median 5.37% 32.76% 63.42%
  Mean ± SD 10.63% ± 13.81% 29.53% ± 11.23% 61.79% ± 18.39%

tion (CD34+CD38−) lacked the CD38 antigen, while the 
larger population (CD34+CD38+) expressed the greatest 
amount of  the CD38 antigen. The average proportions 
of  the CD34+CD38−, CD34+CD38low and CD34+CD38+ 

populations in BM and PB were 3.48% ± 5.66%, 12.62% 
± 7.31%, 84.65% ± 11.91%, 15.40% ± 19.21%, 32.35% 
± 20.41% and 53.81% ± 35.37%, respectively. Chemo-
therapy ± priming with G-CSF mobilized immature cells 
(CD34+CD38− population), while the more mature cells ex-
pressing CD38 (CD34+CD38low and CD34+CD38+ popula-
tions) decreased progressively after treatment. At T15, the 
average proportions of  the CD34+CD38−, CD34+CD38low 
and CD34+CD38+ cell populations in PB were 66.42% ± 
20.18%, 27.33% ± 9.26%, and 8.05% ± 12.24%, respec-
tively. In BM, the CD34+CD38− and CD34+CD38low pop-
ulations were increased at T15, while the CD34+CD38+ 

population was decreased: 22.02% ± 17.11%, 48.96% ± 
16.20%, and 29.91% ± 26.69%, respectively. Proportions 
of  CD34CD38 cell fractions returned to baseline at TR 
(Table 2).

Effect of priming with G-CSF on CD34+ cell populations
CD34+ cells in PB tended to be more sensitive to chemo-
therapy after priming with G-CSF (mean ± SD: 0.21% 
± 0.18%; median: 0.17% at T10) than without G-CSF 
(5.17% ± 8.47%; 0.31%). The evolution of  the three sub-
sets of  CD34+ cell populations over time were confirmed 
when considering the absolute number of  cells. The 
CD34+CD38+/low cell population, containing the leukemia 
bulky cell population, followed the evolution of  white 
blood cell count with a massive decrease during and after 
chemotherapy corresponding to cell lysis and a slight in-
crease at the time of  evaluation corresponding to cell re-
covery. At T15, the absolute number of  the more mature 
cell population (CD34+CD38+) tended to be lower after 
priming with G-CSF (5.1 × 106/l ± 4.1) than without 

G-CSF (19.3 × 106/l ± 15.2), suggesting a lytic impact of  
priming on leukemic cells. Reversely, the most immature 
subset (CD34+CD38−) increased progressively during 
and after chemotherapy corresponding to mobilization 
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BM

PB

CXCR4 rMFI at T0, T15 and TR

CD34+
CD34+CD38- CD34+CD38low CD34+CD38+

CD47 rMFI at T0, T15 and TR

CD34+ CD34+CD38- CD34+CD38low CD34+CD38+

 VLA-4 rMFI at T0, T15 and TR

CD34+ CD34+CD38- CD34+CD38low CD34+CD38+

Table 2  Circulating CD34+ cell subsets before, during and 
after intensive chemotherapy

TR: Time of cell recovery.
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Figure 3  Evolution of CXCR4, CD47, and VLA-4 ratio median fluorescence 
intensity on CD34+ cells and CD34+CD38 cell sub-populations in bone 
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with the highest absolute count for the CD34+CD38− cell 
subset in PB at T15 (179.4 × 106/l ± 79.7) and decreased 
thereafter suggesting partial lysis, migration to BM and/
or differentiation through the CD34+ CD38+ cell pool. 
When considering the CD34+CD38− population, the in-
crease in cell percentage between T0 and T15 was 24 fold 
higher after priming with G-CSF than without priming 
with G-CSF, suggesting a higher level of  cell mobilization.

Expression of CXCR4 and adhesion molecules on CD34+ 
cell subsets
Figure 3 summarizes the evolution of  CXCR4 (Figure 
3A), CD47 (Figure 3B) and VLA-4 (Figure 3C) rMFI on 
CD34+ cells and on CD34+ CD38 cell sub-populations 
in BM and PB during the induction course. CXCR4 
and CD47 rMFI on CD34+ BM and PB cells increased 
with chemotherapy ± priming by G-CSF, while VLA-4 
remained stable. The evolution of  CXCR4 and CD47 
expression was correlated in both BM (r = 0.64) and PB 
(r = 0.55). From T0 to T15, CD47 expression increased 
10 fold more on PB CD34+ cells than on BM cells with 
a mean expression of  280.2 vs 43.6, while increased 
expression of  CXCR4 was similar. When consider-
ing CD34+ cell subsets according to CD38 expression, 
CD47 significantly increased at T15 mainly in PB for the 
CD34+CD38− and CD34+CD38low populations, while 
mean rMFI did not change for the CD34+CD38+ popu-
lation. CXCR4 significantly increased at T15 in both PB 
and BM mainly for the CD34+CD38low cell population, 
while mean rMFI did not change for the CD34+CD38− 
and CD34+CD38+ populations.

Identification of apoptotic and necrotic cells
The fluorescence parameters allowed characterization 
of  necrotic (PI+ annexin V-FITC+ cells), apoptotic 

(PI− annexin V-FITC+ cells) and viable cells (PI− an-
nexin V-FITC− cells) (Table 3). The evolution over time 
of  mean proportions of  apoptotic and necrotic cells was 
similar in BM and PB for all cell subsets: a decrease of  vi-
able cells was noted after chemotherapy, while a massive 
increase in apoptotic and necrotic cell populations was 
observed (Figure 4). However, the percentage of  cells 
with apoptotic/necrotic status tended to be higher in 
PB. At T15, the percentage of  necrotic cells in both PB 
and BM was higher in the more mature cell populations 
(CD34+CD38lowand CD34+CD38+) than in the immature 
CD34+CD38− population. However, survival tended to 
be promoted by G-CSF, as indicated by a decrease of  an-
nexin V-FITC+ cells in patients primed with G-CSF. The 
percentage of  apoptotic cells did not differ among pa-
tients primed with G-CSF and those not primed: 51% ± 
21% vs 48% ± 21% in the whole CD34+ cell population. 
Although not statistically significant, the percentage of  
necrotic cells tended to be lower in patients primed with 
G-CSF: 12% ± 6% vs 27% ± 21% in the whole CD34+ 
cell population (P = 0.2).

DISCUSSION
The pursuit of  the best chemotherapy regimen for AML 
continues in an attempt to improve CR proportions and 
long-term survival. The LSC model has implications for 
the development of  new therapeutic strategies. LSCs 
respond to depletion of  the leukemia cell mass that oc-
curs when anti-proliferative drugs are administered. It is 
therefore suggested that one way to eliminate dormant 
LSCs is to find the window in which they cycle and then 
kill them[17]. Priming may modulate cell cycle kinetics of  
AML blasts and render them more susceptible to phase-
specific agents. This has been shown in vitro[18] and in vivo 
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  Cell population T0 (BM) T0 (PB) T15 (BM) T15 (PB) TR (BM) TR (PB)

  Immature cells
     Viable cells 75.5 ± 17.6 52.0 ± 21.2 18.5 ± 3.5 14.5 ± 12.0 37.0 ± 16.9 34.0 ± 14.1
     Apoptotic cells 17.5 ± 17.6 19.5 ± 21.9 33.0 ± 7.0 27.5 ± 23.3 34.5 ± 13.4 24.5 ± 7.7
     Necrotic cells   3.0 ± 1.4 28.0 ± 0.0 45.0 ± 11.3 54.0 ± 38.1 25.0 ± 2.8 38.5 ± 24.7
  CD34+ cells
     Viable cells 77.5 ± 20.5 59.5 ± 33.2 34.0 ± 19.7 24.5 ± 3.5 65.0 ± 25.4 29.0 ± 19.7
     Apoptotic cells 20.5 ± 20.5 34.5 ± 28.9 31.0 ± 29.6 38.0 ± 15.5 32.0 ± 22.6 44.0 ± 1.4
     Necrotic cells   2.5 ± 0.7   5.0 ± 2.8 35.0 ± 8.4 34.0 ± 21.2   3.0 ± 2.8 24.0 ± 19.7
  CD34+CD38- population
    Viable cells 68.0 ± 19.7 59.5 ± 34.6 52.5 ± 24.7 21.5 ± 10.6 51 32.5 ± 30.4
     Apoptotic cells 27.5 ± 24.7 38.0 ± 33.9 33.5 ± 23.3 60.0 ± 2.8 47 52.5 ± 16.2
     Necrotic cells   0.5 ± 0.7   2.0 ± 1.4 13.5 ± 2.1 18.0 ± 14.1   1 22.5 ± 0.7
CD34+CD38low population
     Viable cells 72.5 ± 26.1 48.0 ± 43.8 15.5 ± 6.3 15.0 ± 7.0 33.5 ± 2.1 30
     Apoptotic cells 25.5 ± 26.1 45.0 ± 38.1 34.5 ± 28.9 38.5 ± 20.5 54.0 ± 5.6 49
     Necrotic cells   2.0 ± 1.4   7.0 ± 5.6 49.5 ± 33.2 46.5 ± 27.5 12.5 ± 3.5 18
  CD34+CD38+ population
     Viable cells 78.0 ± 19.7 70.5 ± 30.4 21.5 ± 7.7 27.5 ± 6.3 67.0 ± 25.4 44.5 ± 36.0
     Apoptotic cells 19.0 ± 19.7 23.5 ± 27.5 26.0 ± 26.8 20.5 ± 20.5 31.0 ± 24.0 30.5 ± 0.7
     Necrotic cells   2.0 ± 0.0   5.0 ± 2.8 53.0 ± 18.3 42.0 ± 43.8   1.5 ± 0.7 28.0 ± 39.5

Table 3  Mean percentage of viable, apoptotic and necrotic cells in peripheral blood 
and bone marrow samples at T0, T15 and time of cell recovery

BM: Bone marrow; PB: Peripheral blood; TR: Time of cell recovery.
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in leukemic mice[19], and more recently in clinical trials for 
younger adults with AML[6,7].

Our study showed that CD34+ cells were significantly 
affected by chemotherapy in both BM and PB. How-
ever, treatment mainly impacted on the more mature 
cell populations, as demonstrated by the decrease of  the 
CD34+CD38+/low cell population corresponding to “bulk’’ 
leukemic blasts. LSCs represent only a small fraction of  
malignant cells[20] and are believed to be restricted to the 
Lin−CD34+CD38− fraction[21,22], which was insignificant 
at T0 in most of  our patients. However, this cell subset 
was able to proliferate and to egress from BM to PB after 
chemotherapy ± G-CSF, and partly differentiates through 
the more mature CD34+CD38+/low or CD34+CD38+ 
cell phenotypes, before returning to its initial value after 
leukocyte recovery. However, LSCs can arise from the 
malignant transformation of  a normal stem cell that has 
accumulated oncogenic insults over time, or from a more 
differentiated cell that develops the capability for contin-
ual self-renewal[23]. The phenotype of  LSCs is therefore 
heterogeneous and can vary even within a single sample. 
Some AML have LSCs exclusively in the CD34− frac-
tion[24]. Similarly, CD34+CD38+ fraction of  certain AML 
samples contains all or at least most LSCs[25]. Further-
more, CD38 is reversibly expressed on CD34+ repopulat-
ing cells between negative and low levels[26]. Character-
istics that are relevant to therapy may then differ based 
on the origin of  the malignant cell with sensitive AMLs 
derived from more differentiated stem cells and resistant 
AMLs derived from earlier stages.

Resistance may in part be provoked by cell adherence 
to the stromal environment. Inhibition of  the CXCR4-
SDF-1 axis induces mobilization of  cells into circulation 
and enhances anti-leukemic effects of  chemotherapy[27]. 
CXCR4 plays a dominant role in cell-trafficking, as con-
firmed here by up-regulation after CD34+ cells egress to 
the circulation. This was observed for all PB CD34+ cells. 
However, the more mature CD34+ cells mobilized earlier 
than immature CD34+ cells, suggesting different degrees 
of  sensitivity. CXCR4 expression favors the enrichment 
of  a non-cycling population of  AML cells, which repre-
sent dormant leukemia progenitors serving as a reservoir 
for minimal residual disease. G-CSF results in a decreased 

expression of  SDF-1 in the BM, resulting in premature 
release of  immature cells[9]. This was in accordance with 
our results showing an increased expression of  CXCR4 
on immature CD34+ cells after reaching the PB circula-
tion. The peak number of  labeled cells was shown after 
72 h preventing an early homing back to the BM[28]. 
CXCR4 may contribute to immature cell clearance from 
the blood observed after T15 by directing cells again to 
the BM.

Many other proteins, including the VLA-4 integrins, 
are regarded as essential for AML cell adhesion to stro-
mal cells and their protection from drug-induced apop-
tosis[29], but only slight variations in their expression level 
were noted during and after therapy, suggesting a minor 
involvement in immature CD34+ cell trafficking.

Mobilizing treatments cause CD47 to be transiently 
up-regulated on progenitors just prior to and during their 
migratory phase[30]. This was confirmed by our study, 
showing an increased expression of  CD47 most particu-
larly in the circulating CD34+CD38– cell subgroup after 
chemotherapy ± G-CSF. Overexpression of  CD47 on 
AML cells is known to increase their pathogenicity by al-
lowing them to evade macrophage phagocytosis[31,32]. This 
could explain the strong correlation found between the 
evolution of  CD47 expression and that of  CXCR4 on 
immature CD34+ cells.

Circulating CD34+ cells tended to be more sensitive 
to chemotherapy after priming with G-CSF. However, the 
impact of  priming mainly concerned the more mature 
CD34+ cells containing “bulk” leukemic cells, while it was 
limited on immature CD34+ cells susceptible to contain 
leukemia-initiating cells. All CD34+ annexin V+ cell popu-
lations were involved in the apoptotic/necrotic process, 
which concerned a larger proportion of  PB cells than 
BM cells. Cell survival seemed to be promoted by G-CSF, 
as indicated by a decrease in annexin V+ cells. At T15, the 
necrotic process involved preferentially the more mature 
cell subsets (CD34+CD38low and CD34+CD38+ popula-
tions), suggesting a higher protection of  CD34+CD38– 
cells from the action of  cytotoxic drugs.

Despite disappointing results regarding priming of  
the most immature CD34+ cells, our study represents a 
first step towards further explorations. Mobilization of  
LSCs is a concept that is presently being revisited by nov-
el targeted therapies. Inhibition of  CXCR4, based on the 
ability of  the CXCR4 antagonist plerixafor to push LSCs 
out of  their BM niches, induces the rapid mobilization 
of  stem cells from BM to PB[33], and has been shown to 
sensitize leukemic blasts to chemotherapy[27,34-36]. A mobi-
lization of  up to 80% leukemic cells, including the more 
primitive CD34+CD38– cell subset, was observed when 
HGF was followed by anti-CXCR4[37]. Accompanied by 
chemotherapy, this might lead to a better eradication of  
LSCs. From that perspective, plerixafor is currently being 
tested by French centers for the mobilization of  dormant 
LSCs. Consequently, new paradigms must be devised for 
evaluating the therapeutic agents. For instance, clinical 
trial design can use intermediate end points such as time 

Necrotic cells

Apoptotic cells

Viable cells

T0           T4              T8           T10           T15           TR

Figure 4  Kinetics of viable, apoptotic and necrotic cells in peripheral 
blood according to the different times of study (patient 8). Values were 
given comparatively to those observed at the time of diagnosis, assuming that 
the observed value at T0 corresponded to 100%.
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to progression following the administration of  an agent 
that can target LSCs.

COMMENTS
Background
Acute myeloid leukemia (AML) is a heterogeneous clonal disorder that origi-
nates from leukemia stem cells (LSCs) with the ability to generate an excessive 
amount of malignant myeloid blasts. Interactions of the leukemic cells with the 
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of stromal protection have been shown to have a poor prognosis.
Research frontiers
The cell cycle is a critical regulator of the processes of cell proliferation and 
growth. One strategy to increase the cytotoxicity of cycle-dependent antileuke-
mic agents is to enter more leukemic cells into cell cycle. Timed sequential che-
motherapy is based on the findings that the initial cytoreductive drug induces 
the remaining malignant cell cohort to enter a proliferative state at a predictable 
time following drug administration. Combination with hematopoietic growth 
factors (HGFs) has also been developed to enhance the efficacy of cytotoxic 
agents.
Innovations and breakthroughs
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LSCs is a concept that is presently being revisited by novel targeted therapies. 
Inhibition of CXCR4, based on the ability of the CXCR4 antagonist plerixafor to 
push LSCs out of their BM niches, induces the rapid mobilization of stem cells 
from BM to PB and has been shown to sensitize leukemic blasts to chemo-
therapy. A mobilization of up to 80% leukemic cells, including the more primi-
tive CD34+CD38– cell subset, was observed when HGF was followed by anti-
CXCR4. Accompanied by chemotherapy, this might lead to a better eradication 
of LSCs. From that perspective, plerixafor is currently being tested by French 
centers for the mobilization of dormant LSCs. Consequently, new paradigms 
must be devised for evaluating the therapeutic agents. For instance, clinical trial 
design can use intermediate end points such as time to progression following 
the administration of an agent that can target LSCs.
Applications
The study was to evaluate quantitatively and qualitatively the different CD34+ 
cell subsets after priming by chemotherapy and granulocyte colony-stimulating 
factor (± G-CSF) in patients with acute myeloid leukemia.
Peer review
The authors studied the mobilization of CD34+ bone marrow stem cells into the 
circulation in AML patients. The results show that CD34+ cells are more sensi-
tive to chemotherapy after priming with GM-CSF associated with an increase in 
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