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Abstract
Cell grafting has been considered a therapeutic approach 

for Parkinson’s disease (PD) since the 1980s. The 
classical motor symptoms of PD are caused by the loss 
of dopaminergic neurons in the substantia nigra pars 
compacta, leading to a decrement in dopamine release 
in the striatum. Consequently, the therapy of cell-
transplantation for PD consists in grafting dopamine-
producing cells directly into the brain to reestablish 
dopamine levels. Different cell sources have been shown 
to induce functional benefits on both animal models of 
PD and human patients. However, the observed motor 
improvements are highly variable between individual 
subjects, and the sources of this variability are not fully 
understood. The purpose of this review is to provide a 
general overview of the pioneering studies done in animal 
models of PD that established the basis for the first clinical 
trials in humans, and compare these with the latest 
findings to identify the most relevant aspects that remain 
unanswered to date. The main focus of the discussions 
presented here will be on the mechanisms associated with 
the survival and functionality of the transplants. These 
include the role of the dopamine released by the grafts 
and the capacity of the grafted cells to extend fibers 
and to integrate into the motor circuit. The complete 
understanding of these aspects will require extensive 
research on basic aspects of molecular and cellular 
physiology, together with neuronal network function, 
in order to uncover the real potential of cell grafting for 
treating PD. 

Key words: Parkinson’s disease; Cell replacement; Animal 
models; Nigrostriatal pathway; Striatum; Dopaminergic 
loss

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The first studies on cell transplantation for 
Parkinson’s disease were published during the early 80s. 
Since then, it has been shown that different cell types 
induce functional benefits but with high variability among 
subjects. Here, we first provide a general overview of 
the field during its early years. Then, we discuss some 
factors associated with the functionality of the graft based 
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on the latest findings, and highlight the importance of 
understanding basic aspects (e.g. , factors influencing graft 
integration) which ultimately could contribute to reducing 
the variability of the functional outcome-an important 
requirement for its application in the clinic.

Boronat-García A, Guerra-Crespo M, Drucker-Colín R. Historical 
perspective of cell transplantation in Parkinson’s disease. World 
J Transplant 2017; 7(3): 179-192  Available from: URL: http://
www.wjgnet.com/2220-3230/full/v7/i3/179.htm  DOI: http://
dx.doi.org/10.5500/wjt.v7.i3.179

INTRODUCTION
The transplantation of different tissues into the brain 
began as an experimental approach for understanding 
fundamental aspects of the development and function 
of the central nervous system. The first transplant in an 
animal model of Parkinson’s disease (PD) was performed 
in 1979 with the objective of determining whether grafted 
dopamine-producing cells were able to reduce the motor 
alterations in the animal model[1,2]. These and other 
initial reports of graft tissue survival in the brain, and its 
beneficial effects on a PD animal model, contributed to 
the beginning of cell grafting era in PD, including both 
basic and clinical research approaches. Nearly 40 years 
after the first studies in this field, there is continuing 
interest in the development of cell-replacement therapies 
for treating PD, with a particular focus on the search 
for optimal cell-sources for grafting. The objective of 
this review is to perform a general description and a 
critical evaluation of our current understanding of the 
mechanisms underlying the success of cell-replacement 
therapy in animal models of PD. We will mainly focus 
on the mechanisms underlying the functionality of the 
grafts when evaluated using pharmacological tests, and 
on the comparison of the results obtained principally with 
fetal ventral mesencephalic cells (FVM) and embryonic 
stem cells (ESCs)-derived midbrain dopaminergic neurons. 
Ultimately, the purpose of this review is to provide a 
perspective of what has been gained relative to the 
prevailing knowledge during the starting point of this 
research area: Basically, that in order to provide a 
long-term benefit in PD motor symptoms, functional 
integration of the transplanted cells into the host brain 
circuit is essential.

EARLY YEARS OF CELL GRAFTING INTO 
THE BRAIN
The earliest known report of neural tissue transplantation 
into the brain was conducted by Thompson[3] in 1890. 
He published a brief description of the transient survival 
of grafted cat cortical tissue into the brain of a dog, in 
a work entitled “Successful brain grafting”[3]. In 1907, 
in another attempt to prove that brain grafting was 
possible, Del Conte[4] implanted fetal cortex tissue into 

an adult mammalian brain, showing similar results to 
those reported by Thompson. In 1909 Ranson provided 
evidence that suggested that postnatal nervous tissue, 
the cervical ganglion obtained from 1-wk-old rats, 
survived when grafted into the adult cortex[5]. Later, in 
1917 Dunn found that rat neonatal cerebral cortex tissue 
transplanted into the adult rat brain was able to survive, 
grow, and even exhibited myelinated fibers[6]. Other 
studies were performed during the following years (e.g., 
Ref[7,8]), which together with those described thus far, 
constitute the earliest antecedents for cell transplantation. 

The functional consequences of brain transplants were 
not evaluated until 1979[1,2] using the 6-hydroxydopamine 
(6-OHDA) animal model of PD, which was developed 10 
years before[9]. This model allows the selective destruction 
of dopaminergic neurons in the substantia nigra pars 
compacta (SNpc) of only one hemisphere of a rat’s brain[9]. 
The motor asymmetry observed in this toxin-based model is 
characterized by a turning behavior contralateral or ipsilateral 
to the side of the lesion, and is induced by the systemic 
administration of dopaminergic agonists (amphetamine or 
apomorphine) (Figure 1A and B)[9,10]. These experimental 
approaches allowed to test the functional consequences 
of cell transplantation by grafting dopamine-producing 
cells[1,2,11]. The general assumption was that, since motor 
asymmetry is a consequence of a decrement in dopamine 
in the striatum, then that asymmetry could be reversed by 
grafting dopaminergic cells, as long as they release dopamine 
in the host (Figure 1C and D).

CELL GRAFTING IN PD: THE PIONEERING 
STUDIES (1979-1990)
FVM grafts in pre-clinical studies
Cells derived from FVM tissue were the first type of cells 
used for brain grafting in the 6-OHDA rat model of PD[1,2] 
(for a timeline of pre-clinical studies see Figure 2). This 
tissue was selected because it contains dopaminergic 
neurons[12]. In 1979 and 1980, two independent studies 
confirmed that FVM cells were able to survive (from few 
to approximately 4000 surviving grafted cells observed 
1-7 mo after transplantation), to extend projections 
into the host striatum after being grafted into the lateral 
ventricle (Figure 3)[1] or in a cavity at the surface of the 
striatum (Figure 3)[2], and to reduced circling behavior 
induced either by apomorphine[1] or amphetamine[2] by 
approximately 50%, when compared to measurements 
of motor asymmetry before transplantation. These results 
were encouraging as they were the first demonstration of 
a functional outcome induced by grafting exogenous cells 
in the brain. 

The mechanism underlying the functional effects of 
the grafts was proposed to be the dopamine released 
from FVM cells (Figure 1C and D). However, the first 
studies found that some animals with surviving grafts did 
not exhibit any improvement in turning behavior. Several 
authors using either the same cell type[13-19] or a different 
cell source[11,20] have replicated these observations, which 
has not received a complete explanation to date. However, 
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by that time, Björklund and Stenevi[2] proposed that fiber 
ingrowth from grafted cells into the striatum was, together 
with the release of dopamine, the determining factors for 
producing a reduction in circling behavior. Subsequently, 
a correlation between the reduction in amphetamine-
induced turning behavior and the degree of fiber ingrowth 
was reported[21]. The observations on the variability in 
the motor improvement in grafted animals with surviving 
transplants was also found to correlate with the degree of 
dopaminergic lesion[1,22] and graft survival[23].

One year after the first reports of cell grafting in an 
animal model of PD, evidence confirmed that dopamine was 
present in the lesioned striatum of FVM grafted animals[14]. 
Dopamine tissue-content was found to correlate with the 
reduction of circling behavior induced by amphetamine. It 
was also found that a restoration of at least 3% of normal 
dopamine levels in the striatum was sufficient to reduce 
the motor asymmetry[24]. However, these observations 
only demonstrated that mesencephalic transplants contain 
the neurotransmitter, but not that they release it. In 1983, 
Freed et al[25] provided more direct evidence for the role of 
dopamine on motor improvement in the 6-OHDA model 
of PD. The authors suggested that the graft can release 
dopamine spontaneously on a tonic basis, reversing the 
supersensitivity effect caused by dopaminergic denervation 
by directly quantifying the binding of dopamine to its 
receptors using a dopamine-receptor binding assay. A 
few years later, Zetterström et al[26], conducted a study 
using an in vivo dialysis assay, where they corroborated 
that mesencephalic transplants release dopamine 
spontaneously, and after amphetamine administration. 

One-year later, the same group observed that dopamine 
release was higher in animals with more surviving grafted 
cells and more fiber ingrowth, reaching about 85% of 
normal dopamine levels under basal conditions[23]. 

In addition to the reduction in turn number induced 
either by amphetamine or apomorphine, FVM grafts 
were shown to reduce some aspects of spontaneous 
abnormal behaviors observed in the PD animal model, 
such as sensorimotor orientation deficits and asymmetric 
limb use[15,27]. However, other studies failed to replicate 
these results[28,29].

Nowadays, FVM-derived cells remain as one of the 
most promising sources for cell grafting[30], and much 
more information has been obtained by using this cell 
source compared with other cell types. However, a major 
problem related to the use of FVM tissue as a source for 
cell grafting was the ethical concern due to the use of fetal-
derived tissue, which led to the search for alternative cell-
sources. 

Adrenal medulla grafts in pre-clinical studies: Dopamine 
vs neurotrophic effects
Chromaffin cells are neuroendocrine cells that synthesize 
and release catecholamines from the adrenal medulla 
(AM) into the bloodstream in response to sympathetic 
stimulation, triggering the fight-or-flight response. 
This cell source was chosen for use in cell replacement 
therapy mainly due to the capacity of chromaffin cells 
to produce dopamine (for review[31]). The first published 
report using AM tissue grafted in a PD animal model was 
conducted by Freed et al[11]. They demonstrated that AM 
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Figure 1  The 6-OHDA rat model of Parkinson’s disease. 
A-D: Schemes of a coronal representation of the rat brain. 
Dopaminergic fibers are depicted with brown shadowing, which 
is lacking in the 6-OHDA-lesioned hemisphere; A: Amphetamine 
(grey circles) administration promotes the release of dopamine (red 
squares) from the intact dopaminergic terminals of the striatum, 
disproportionally increasing dopamine concentration in the non-
lesioned side relative to the lesioned side, as the latter contains 
fewer (or none at all) dopaminergic terminals. The asymmetry 
in extracellular dopamine levels between both hemispheres 
induces the stereotypical behavior known as circling or turning 
behavior, ipsilateral to the lesioned side (curved arrow next to the 
rat); B: Apomorphine is a dopaminergic receptor agonist that can 
activate postsynaptic dopamine receptors in the striatum (orange 
circles). 6-OHDA-induced dopaminergic denervation in one 
hemisphere of the striatum, results in postsynaptic supersensitivity 
to dopamine in the lesioned side (sensitized dopamine receptors 
are represented as dark blue circles), such that apomorphine (teal 
stars) stimulation increases the activity in the lesioned side to a 
greater extent than in the non-lesioned side. The supersensitivity 
effect promotes that lesioned animals turn contralateral to the 
lesioned side after apomorphine administration (curved arrow); 
C: Amphetamine stimulates dopamine-containing cells (green 
circles) grafted into the denervated striatum increasing extracellular 
dopamine concentration in the lesioned side, which leads to a 
decrement in motor asymmetry (dashed arrow); D: Grafted cells 
that release dopamine decrease the supersensitivity effect on the 
lesioned hemisphere, normalizing the response to dopamine or 
agonists relative to the non-lesioned side. Thus, after apomorphine 
administration, grafted animals decrease their turn number (dashed 
arrow). Cx: Cortex; LH: Left hemisphere; LV: Lateral ventricles; RH: 
Right hemisphere; Str: Striatum.
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AM grafts was evaluated by in vivo dialysis assays, the 
authors of the study detected basal dopamine levels only 
in those animals with motor improvement. Surprisingly, 
the dopamine levels found were only 50% lower than 
normal values in the non-lesioned striatum, despite the 
low survival of grafted chromaffin cells (approximately 
50-600 cells)[20]. However, other authors found that the 
results obtained from chromaffin cell grafts were highly 
variable and unpredictable in terms of survival and 
functional outcome, especially when grafts were placed 
into the striatum (intraparenchymal)[33]. 

The discrepancies observed when AM-tissue was 
grafted in the 6-OHDA model of PD, together with results 
derived using a different model of PD, the 1-methyl-
1,2,3,6-tetrahydropiridine (MPTP)[34], led the scientific 
community to suggest a different mechanism of action 
for chromaffin cell grafts: A neurotrophic effect. In this 

grafted into the lateral ventricle of 6-OHDA-lesioned rats 
reduced apomorphine-circling behavior by 20%-50% 
relative to the initial values before grafting, and this effect 
lasted for at least 2 mo[11]. However, the cells extended 
only very few fibers into the host tissue and the mean 
number of surviving cells was approximately 1535 two 
months post-grafting[11]. In addition, the animal with the 
highest number of surviving grafted cells (approximately 
4000) did not reduce its circling behavior. 

During the eighties it was assumed that the mechanism 
of action of AM grafts was similar to FVM cells, consisting 
of the diffusion of high concentrations of dopamine 
spontaneously released by the graft[11]. Later, it was 
demonstrated that AM grafts contain high concentrations 
of adrenaline and noradrenaline, but low concentrations 
of dopamine[32], mirroring their native characteristics in 
the AM. When the release of these catecholamines by 

The pioneering studies 
in animal models of PD 
summary

1979

1985

1979, Perlow et al  
performed the first 
graft of FVM tissue into 
the lateral ventricles of 
6-OHDA lesioned rats. 
Grafted cells survived and 
decreased apomorphine-
induced circling behavior

1980, Freed et al  
determined that 
dopamine was present 
in the striatum of FVM-
grafted animals (6-OHDA 
lesioned)

1983, Schmidt et al  
observed a correlation 
between the dopamine 
tissue content in the 
striatum of FVM-grafted 
animals and the reduction 
of circling behavior 
induced by amphetamine

1986, Zetterstrom et al  
determined by in vivo  
dialysis assay that FVM-
grafted cells release 
dopamine spontaneously, 
and is enhanced by 
administration of 
ampheta

1987, Strecker et al  
observed that basal 
dopamine release 
reached about 85% of 
normal dopamine levels 
in FVM grafted animals

1988, Nishino et al  
detected basal dopamine 
levels in the lesioned 
striatum of AM-grafted 
animals with motor 
improvement by in vivo  
dialysis assay

1987, Bohn et al  
observed that AM-grafted 
in MPTP-lesioned animals 
presented a recovery of 
host dopaminergic fibers 
in the striatum, together 
with motor functions

1988, Freed et al  
observed the striatum 
tissue from lesioned-AM-
grafted animals contains 
catecho

1983, Freed et al  
observed a correlation 
between the dopamine 
sensitivity (by dopamine-
receptor binding assay) of 
the lesioned striatum the 
funvtional recovery of the 
FVM-grafted animals

1979, Bjorklund and 
Stenevi grafted FVM 
tissue into a cavity at the 
surface of the striatum 
of 6-OHDA lesioned rats. 
Grafted cells survived and 
decreased amphetamine-
induced circling behavior

1981, Freed et al  grafted 
AM tissue into the lateral 
ventricle of 6-OHDA-
lesioned rats. Grafted 
cells survived and 
reduced apomorphine-
circling behavior

Grafts derived from:
  Fetal ventral mesencephalic (FVM) 
  tissue
  Adrenal medulla (AM)

Figure 2  Timeline of the pioneering studies on cell trans
plantation in animal models of Parkinson’s disease. This 
timeline shows only a few of the studies performed during the first 
10 years of cell grafting in animal models of PD. Most of these 
studies were selected because they were the first published reports 
of either the use of a new animal model of PD, a site of grafting, a 
type of cell or a specific technique. PD: Parkinson’s disease; FVM:  
Fetal ventral mesencephalic cells; AM: Adrenal medulla.

Boronat-García A et al . History of cell grafting in PD



183 June 24, 2017|Volume 7|Issue 3|WJT|www.wjgnet.com

regard, different authors observed that MPTP-lesioned 
animals with chromaffin cell grafts presented an enhanced 
recovery of host dopaminergic fibers in the grafted 
striatum of mouse[35] and monkeys[36], together with a 
transient functional recovery[37]. These studies suggested 
a neuroprotective action of the chromaffin cells, which 
induced the reappearance of tyrosine hydroxylase (TH) 
immunoreactivity (THir) or the sprouting of surviving host 
fibers, leading to an increment of dopamine released by 
the endogenous cell (for review[31]). However, a direct 
comparison of AM grafts to FVM-derived cells in 6-OHDA 
lesioned rats demonstrated that AM grafts were less 
effective in terms of functionality and in their long-term 
survival, even when AM grafts were placed in the lateral 
ventricles[38], a site which was assumed to induce a better 
survival of AM grafts. Thus, despite some studies showing 
transitory and modest recovery of motor function, 
AM-derived cells were shown to induce variable and 
unpredictable results, probably derived from their different 
mechanism of action compared to FVM grafts.

Clinical studies: A brief description
Although this review is focused in studies using animal 
models of PD, it is also important to provide at least a 
general overview of the clinical trials that have been 
done using both cell sources described above (FVM- 
and AM-derived cells) (for a timeline of the pioneering 
studies see Figure 4). There are several extensive 
reviews aimed at describing critically and in a deeper 
way the results derived from clinical studies (e.g., 
Ref[30]).

AM-derived cells were the first to be tested in human 
patients with PD, with similar results as those observed in 
animals: Variable and transitory restoration of some motor 
function[39-41]. Autologous chromaffin cells were first grafted 
in three different places: The caudate nucleus (Figure 
3)[39], the putamen (Figure 3)[40], or in a cavity made 
at the interface between the caudate nucleus and the 
lateral ventricles (Figure 3)[41]. In the two first studies the 
patients showed only moderate recovery that did not last 
longer than a few months[39,40]. However, by placing the 
grafts in proximity to the lateral ventricles, other authors 
reported that one of their two patients showed motor 

improvements that persisted for at least 10 mo after the 
grafting procedure[41]. As a result, many clinical studies 
were done worldwide (e.g., Ref[42-46]) despite the fact that 
the original articles only reported transitory and modest 
improvements. As described in a comprehensive review 
on the topic by Barker et al[30], the scientific community 
started to be concerned about the clinical trials that were 
taking place, due to the poor or absent functional outcome 
induced by the AM grafts, the frequent complications from 
the surgery (e.g., psychiatric alterations), and the fact 
that post-mortem studies revealed a poor survival of the 
grafted cells. This led to the abandonment of the use of 
AM tissue for transplantation. 

FVM tissue was the second cell source to be grafted 
in patients with PD. The grafted tissue was placed into 
the caudate nucleus[47], the putamen (e.g., Ref[48,49]), 
both sites (e.g., Ref[50]), in a cavity made at the 
interface between the caudate nucleus and the lateral 
ventricles[51] and even directly into the SNpc (Figure 3)[52]. 
Unfortunately, the results varied from clear benefits 
to poor or none, but there were also promising results 
showing improvements by [18F]-DOPA uptake by positron 
emission tomography (PET) imaging[47]. 

One of the most controversial issues with these 
studies was the lack of control groups to discard a 
placebo effect. In 2001, Freed et al[53] performed the 
first double-blind study that included a placebo control 
group, in which some patients received FVM cell-grafts 
bilaterally implanted in the putamen, and observed a 
modest recovery compared with the sham group. Other 
double-blind studies were done during subsequent 
years with a similarly variable symptomatic outcome[54]. 
Another important issue that became apparent several 
years after the surgery was that some of the grafted 
patients started to develop dyskinesias (involuntary 
movements) as a side effect of the transplant (see[55] 
for review). 

Many clinical studies were subsequently done using 
FVM cells, chromaffin cells or other types of cell sources 
including retinal pigmented epithelial cells attached to 
microcarriers[56,57], adult neural stem cells[58] and autologous 
bone marrow-derived mesenchymal stem cells[59], all with 
similar results: Some patients showed moderate recovery, 

Rat brain Human brain

LV

Cortex

Substantia nigra
pars compacta

LV

Cortex
Striatum Caudate

Putamen

Figure 3  Schematic representation of different sites in the rat 
and human brains used for grafting in Parkinson’s disease. 
The depicted grafting sites include the lateral ventricles (LV), the 
striatum (in rat) or caudate nucleus and putamen (in human) and 
the substantia nigra pars compacta. The above schemes are 
coronal sections of the rat striatum and human caudate (blue) and 
putamen (green) together with the substantia nigra pars compacta 
(red). The scheme below is a coronal section at the level of the rat 
substantia nigra pars compacta (red).
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whereas others showed poor or no recovery at all (for 
review see[60,61], visit http://clinicaltrials.gov for clinical 
NIH-funded trials currently underway, Table 1). The highly 
variable results obtained even to date strongly argue that 
some of the key requirements for this type of therapeutic 
option to work are still unknown.

WHAT DO WE KNOW NOW?
The study of graft-associated mechanisms producing 
motor improvements in animal models of PD has been 
largely done using experimental paradigms with a strong 
bias towards the role of dopamine. However, actually 
we know that several additional factors also somehow 
influence the functional motor recovery. These include 
the degree of survival of the graft, the capacity of the 
graft to extend fibers into the host, the ability of these 

fibers to establish functional connections with host cells 
and the extrinsic factors that influence all the previously 
mentioned aspects. The next section of this review 
focuses on comparing the facts that we knew in the 
early years with the latest advances in the field. We will 
describe the results derived using two cell types, which 
have been widely demonstrated to possess the greatest 
capacity to survive and to decrease the circling behavior 
and improve other motor functions in animal models of 
PD: FVM-derived cells and ESC-derived dopaminergic 
neurons. 

Graft survival and the effects of grafting into the 
striatum and the SNpc
The survival of the grafted cells is modified by different 
factors including the age of the donor tissue, the graft 
composition and the location of the graft. 

The pioneering studies in 
humans with PD summary

1985, Backlund et al  
performed the first 
autologous graft of AM 
tissue into the caudate 
nucleus

1990, Lindvall et al  
grafted FVM tissue into 
caudate nucleus

1995, Kordower et al  
grafted of FVM tissue 
into the putamen

Fetal ventral mesencephalic (FVM) 
Adrenal medulla (AM)

1987, Lindvall et al  
performed the first 
autologous graft of AM 
tissue into the putamen 
nucleus

1988, Drucker-Colin et 
al  performed the first 
autologous graft of AM 
tissue into the caudate 
nucleus

1989, Peterson et al  
performed an autologous 
graft of AM tissue into 
the putamen

1991, Goetz et al ; Lopez-
Lozano et al ; grafted 
autologous AM tissue 
into the caudate nucleus

1999, Hauser et al  
grafted FVM tissue into 
the substantia nigra pars 
compacta

2001

1988

1987

1985

1987, Madrazo et al  
performed the first 
autologous graft of AM 
tissue into a cavity made 
at the interface between 
the caudate nucleus and 
the lateral ventricles

1988, Madrazo et al  
performed the first graft 
of FVM tissue into a cavity 
made at the interface 
between the caudate 
nucleus and the lateral 
ventricles

1992, Sawle et al  grafted 
FVM tissue into the 
putamen

1990, Hirsch et al  
performed an autologous 
graft of AM tissue into the 
caudate nucleus

2001, Freed et al  
performed the first double-
blind study of grafted FVM

1988, Madrazo et al  
cografted AM and FVM 
tissue

1999, Drucker-Colin et al  
grafted differentiated AM 
tissue into dopaminergic 
neuron-like cells

Figure 4  Timeline of the pioneering studies on cell trans
plantation in human patients with Parkinson’s disease. This 
timeline shows only a few of the studies performed during the first 
15 years of cell grafting in patients with PD. Most of them are the 
first published reports in which, a new site of grafting or a new type 
of cell were used. PD: Parkinson’s disease.
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The relation between survival and functional recovery 
has been studied by different authors[17,19,23,62,63]. FVM 
tissue is usually obtained from 12.5-d-old mouse em
bryos or 14-d-old rat embryos. However, it has been 
observed that the survival of intra-striatal grafts of FVM-
derived dopaminergic neurons is higher when 12-d-old 
rat embryos are used[64]. Interestingly, the increment in 
survival of grafted FVM cells (derived from rat embryos 
of 12 d vs 14 d) is not necessarily accompanied by an 
equivalent improvement in the functional outcome. 
This suggests that a critical number of cells is required 
for improvement, above which a higher survival does 
not contribute to further improvement[65]. Sauer et al[19] 
estimated that approximately 2000 surviving cells were 
necessary for complete recovery of turning behavior, 
whereas only 600 cells were necessary for a moderate 
level of recovery. It is important to note that, in that study, 
the improvement observed in four animals with 600-1500 
surviving cells ranged from negligible to low[19]. In other 
reports, it has been observed that an even smaller 
number (100-200) of surviving TH+ cells was sufficient to 
obtain a 50% reduction in turning behavior (e.g., Ref[17,62]). 
More recently, using human FVM cells, it was observed 
that at least 657 TH+ surviving cells were necessary to 
induce a significant reduction (50% relative to the initial 
circling behavior before grafting) in apomorphine- induced 
circling behavior[66]. Similarly, using human ESC-derived 
midbrain dopaminergic neurons, a complete recovery of 

amphetamine-induced circling behavior was achieved 
with approximately 986 TH+ surviving cells[67]. Therefore, 
in general, the studies that have correlated survival of 
the grafted cells with behavioral improvement have, 
surprisingly, found that a very small number of cells are 
sufficient to produce a robust motor improvement. 

An additional factor to be considered in the case of 
FVM-derived cells is that the age of the donor tissue in 
turn influences the composition of the grafted cells. The 
developing mesencephalon contains two major sub-
populations of neurons: A9 and A10 neurons[12,68]. The A9 
sub-population in particular corresponds to dopaminergic 
neurons that will form the SNpc, whereas the A10 neurons 
are dopaminergic neurons that form the ventral tegmental 
area. Each subtype differs in multiple characteristics, 
including their morphology, their protein-expression 
profile and their target areas in the brain (SNpc in the 
dorsal striatum and ventral tegmental area in the ventral 
striatum). Since FVM grafts contain a mix of these two 
sub-populations[69,70], researchers started to elucidate the 
role of each subtype on the functional outcome induced by 
the graft. A9 neurons were found to be critically important 
for a major functional recovery, due to these grafted-cells 
innervating the regions of the striatum corresponding to 
the areas normally innervated by dopaminergic neurons 
from the SNpc[71]. 

Thus far, we have only discussed ectopic sites (i.e., 
located outside the SNpc) for grafting as a therapeutic 

Table 1  Current clinical trials (2013-2016)

Type of cells Site of 
procedure

Age of 
patients

No. of 
patients

Control 
group(s)

Phase2 Current status and notes

The University of Texas Health 
Science Center, United States. 
NCT026111671

Allogeneic bone marrow-
derived mesenchymal stem 

cell

Delivered 
intravenously

45-70 20 No Ⅰ and 
Ⅱ

Nov 2017.
Starts on May 2016

ISCO-Florey. Cyto 
Therapeutics Pty Limited. 
Australia. NCT024527231

Human parthenogenetic stem 
cells-derived neural stem cells

Striatum and 
SNpc

30-70 12 No Ⅰ and 
Ⅱ

Approved from the TGA 
of Australia (received on 

December 2015)
University of Saskatchewan 
and Manitoba, Canada. 
NCT025383151

Fetal dopaminergic grafts NS 18 and 
older

30 NS NS Study type: Observational. 
Using [18F]FDOPA PET/CT 
to monitor the effectiveness 

of grafts. Started on 
December 2015

University of Kentucky, United 
States. NCT018333641

Autologous peripheral nerve SNpc 40-75 16 No NS Started on 2015.

TRANSEURO, Europe. 
NCT01898390a

FVM Tissue  NS 30-68 40 Yes (no 
surgery)

Ⅰ  No updates. Patients 
undergoing deep brain 

stimulation surgery
Enrolling participants.

CHA University, South Korea. 
NCT018607941

Mesencephalic neural 
precursor cells

NS 18-70 15 NS Ⅰ and 
Ⅱ

No updates since December 
2014

Started on 2013.
No updates

Living cell technologies. 
Auckland City Hospital, New 
Zealand.
NCT01734733a

NTCELL [immunoprotected 
(alginate-encapsulated) 

choroid plexus cells]

NS 40-70 NS NS Ⅰ and 
Ⅱ

Started on 2013.
No updates

1Is the ClinicalTrials.gov identifier. For more information and other trials visit the website; 2Clinical phases: I: Test a new treatment in a small group to 
evaluate its safety, dosage range and side effects; II: Treatment in a small group to see its effectiveness and to further, evaluate its safety. NS: No specified; 
TGA: Therapeutic Goods Administration.
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approach to reverse the motor alterations observed in 
PD. However, we have to consider that dopaminergic cells 
from the nigrostriatal pathway are part of a complex circuit 
that receives regulatory inputs from other structures 
(e.g., SN pars reticulata). In agreement with this, it has 
been observed that intrastriatal grafts do not ameliorate 
all the symptoms associated with degeneration of the 
nigrostriatal pathway, since the proper function of the 
basal ganglia circuitry is far from being restored[16,28,65,72]. 
Current approaches on this front focus on the possibility 
of reconstructing the nigrostriatal pathway, by grafting 
cells into the SNpc (Figure 3) and directing their fibers 
to reestablish the lost dopaminergic circuitry in the 
striatum[73]. The first studies that attempted this procedure 
succeeded in demonstrating that FVM grafts survive when 
placed into the SNpc and that, in some cases, the neurons 
extended projections into the striatum and induced some 
reduction in drug-induced circling behavior[74-79]. However, 
the survival of FVM cells grafted into the SNpc was less 
prominent as compared to intra-striatal grafts[74,78,80]. 

Fiber ingrowth and dopamine release
The occurrence of fiber ingrowth from the graft into 
the host depends in part on the type of cell used. Intra-
striatal grafts of FVM cells[67], ESC-derived dopaminergic 
neurons[67] and induced pluripotent stem cells (iPSC)-
derived dopaminergic neurons[81] have been shown 
to extend fibers into the host striatum. It has been 
suggested that the extension of projections is important 
for mesencephalic grafts[13,16,21,23,27], although FVM-grafts 
have been shown to produce motor improvement without 
any detectable projections[1,82]. However, it is reasonable 
to consider that the greater the extension of the graft 
projections, the further the molecules they release can 
diffuse. In addition, with more and longer projections, 
the establishment of synaptic contacts between the host 
cells and the graft becomes more likely. 

Certainly, an ideal scenario for intra-striatal grafts 
is one in which dopamine release and clearance are 
regulated by the necessities of the host circuit. Different 
authors have shown that FVM grafts release dopamine 
under basal conditions, and that the release can be 
enhanced by stimulation with amphetamine[18,26] or 
high extracellular potassium[83,84]. This has also been 
demonstrated for ESC-derived dopaminergic neurons[67,85]. 
Notably, these two types of cells have been shown to 
deliver sufficient dopamine into the striatum to restore 
its concentration to normal levels[67,85]. Interestingly, a 
recent study showed that grafts of FVM cells placed into 
the SNpc increased striatal dopamine levels to 77% 
compared to lesioned animals[86]. This study also observed 
extensive axonal growth from the grafted cells (confirmed 
by grafting cells from transgenic mice overexpressing 
green fluorescent protein, GFP) that reached the striatum, 
together with a significant behavioral recovery in the 
apomorphine-induced rotation of 94% relative to the 
initial rotation numbers before grafting[86]. Another study 
published the same year showed similar results[87], and 

demonstrated that over-expression of glial cell-derived 
neurotrophic factor (GDNF) enhanced survival and axonal 
growth from the grafted cells positioned in the SNpc. The 
authors also observed a reduction in turn number induced 
by amphetamine of approximately 75% relative to the 
initial values before grafting in GDNF-treated animals, 
which lasted for at least 12 wk[87]. In a more recent study, 
Grealish et al[67] demonstrated that human ESC-derived 
dopaminergic neurons (A9 and A10 phenotypes) can 
restore dopaminergic transmission in the transplanted 
striatum, as occupancy of D2/D3 receptors by dopamine 
measured using PET showed dopamine binding levels that 
were similar to the non-lesioned side. More importantly, 
the study demonstrated that human ESC-derived midbrain 
dopaminergic neurons grafted into the SNpc provided 
widespread innervation that extended more than 10 mm 
throughout the forebrain, with dense innervation in the 
striatum (A9 subtype), as well as nucleus accumbens, 
amygdala and frontal cortex (A10 subtype), which are 
normally innervated by endogenous dopaminergic fibers 
from the SNpc. In addition, they obtained similar results 
using human FVM, with an average axonal number of 
2169 for the FVM cells and 2453 for the human ESC-
derived cells[67]; although, the functional effects of the 
nigral grafts were not determined in this study. Taken 
together, these findings are encouraging, suggesting 
that the reconstruction of the dopaminergic pathway is a 
plausible approach. However, more research is necessary, 
to determine whether normal connectivity and physiology 
are established by the grafted cells into the SNpc. In this 
regard, it seems that the projections extended by the 
grafted cells are highly specific, as they connect exclusively 
to targets that are normally innervated by dopaminergic 
fibers from the SNpc (for a review on this topic see[73]).

Establishment of connections
A property of central importance for the grafted cells 
is their capacity to integrate into the host circuit by 
establishing functional synaptic connections with other 
cells. This feature marks a difference between grafted 
cells that function only as release-pumps for dopamine 
and trophic factors, and those that integrate into the 
circuit and respond to the physiological needs of the 
site. 

Different sources of evidence support the idea that 
some types of grafted cells, especially FVM cells and 
human ESC derived-dopaminergic neurons, establish 
synapsis with the host cells[88-93]. Electrophysiological 
studies were initially difficult to perform, as no direct 
method existed for differentiating the graft from the host 
cells. Hence, in early electrophysiological studies the 
recorded cells were chosen blindly, and later identified 
by THir or by their electrophysiological properties[88,89]. 
These electrophysiological recordings showed that host 
striatal cells close to THir fiber projections of FVM cells 
decreased their firing rates to levels normally observed in 
a healthy striatum[89]. In contrast, cells located far from 
the graft or graft-projections presented altered firing 
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rates[89]. Additionally, Freund et al[90] demonstrated by 
using electronic microscopy that FVM cell grafts establish 
synapses with the dendritic shafts and spines of the 
striatal neurons, including medium spiny neurons and 
giant cholinergic interneurons. However, they failed to 
track reciprocal afferent connections to the graft from 
the host striatum[90]. Evidence of synaptic connections, 
both from graft to host and from host to graft, was 
later observed by other authors using immunostaining 
for postsynaptic and presynaptic markers and electron 
microscopy[91]. These results confirmed that some 
FVM cell grafts have the capacity to integrate into the 
host circuit and induce changes in host cell firing rates. 
Concurrently, to identify electrically active afferent 
and efferent connections of the graft to the host cells, 
Arbuthnott et al[88] grafted FVM cells in the striatum and 
implanted stimulating electrodes under the grafts in the 
striatum but also in the frontal cortex, locus coeruleus 
or dorsal raphe nuclei of 6-OHDA-lesioned animals. 
They found that grafted cells fired action potentials after 
striatal stimulation in a similar manner as naïve SNpc 
dopaminergic neurons, but remarkably, only in those 
animals in which rotational behavior was compensated 
and had longer antidromic latencies[88]. They also 
observed that some grafted cells were activated after 
stimulation in the frontal cortex, locus coeruleus or raphe 
nuclei[88]. 

More direct evidence supporting electrical activity and 
connectivity of grafts has been recently obtained using 
FVM grafts derived from transgenic mice expressing 
GFP under the control of the TH gene promoter, and 
measuring their electrical activity with whole-cell patch 
clamp recordings[92]. They observed that a higher 
proportion of grafted cells in the lesioned striatum fired 
spontaneous action potentials than grafted cells in the 
non-lesioned striatum. However, the firing frequency 
was similar for both[92]. Furthermore, they measured 
lower frequency of inhibitory and excitatory postsynaptic 
currents in cells grafted into lesioned, as compared to non-
lesioned, animals[92]. Based on these data, the authors 
suggested that dopamine levels in the striatum could 
modulate the activity of grafted cells by the activation of D2 
autoreceptors in FVM cells. Another possibility is that the 
grafts in non-lesioned animals received more GABAergic 
synaptic inputs[92].

The evidence presented thus far did not confirm 
that dopamine release was regulated by electrical 
activity, and that the release was responsible for the 
functional recovery observed in behavioral experiments. 
Interestingly, Dell’Anno et al[94] were able to control the 
electrical properties and neurotransmitter release of 
grafted reprogramed dopaminergic neurons by using 
designer receptors exclusively activated by designer 
drug technology. The authors demonstrated that the 
functional outcome is higher when the neural activity of 
the striatal-grafted cells is stimulated by clozapine-N-
oxide (the pharmacologically inert molecule that activates 
the designed receptor expressed by the cells), achieving 
similar results to those observed using FVM tissue[94]. 

In vitro, stimulation of the reprogramed cells resulted 
also in an increment in neural activity (number of spikes 
per second) together with an increment of dopamine 
release[94].

Using a different approach to control the neuronal 
activity of the grafted cells in order to understand its relation 
to the functional outcome, Steinbeck et al[93] grafted 
differentiated mesencephalic dopaminergic neurons derived 
from human ESC that expressed the inhibitory light-
activated chloride pump halorhodopsin (eNpHR3.0-EYEP, 
also known as HALO). After corroborating the functionality 
of the cells in vitro, they were grafted into the striatum 
of 6-OHDA lesioned immunodeficient mice. The authors 
observed that transplanted animals gradually decreased 
their amphetamine-induced turning behavior for a period 
of 4 mo[93]. Electrophysiological recordings on brain slices 
showed that the grafted cells produced action potentials 
that ceased after illumination (i.e., activation of the HALO-
mediated chloride conductance). It was also corroborated 
that grafted cells are able to modulate the activity of 
spiny medium neurons, and that they receive functional 
glutamatergic inputs from the host cells[93]. In vivo studies 
performed in freely moving grafted animals showed that 
the reduction of spontaneous rotations and sensorimotor 
deficits evaluated with the corridor test is dependent on 
graft activity, as optogenetic silencing of the cells reversed 
the recovery[93]. To test the dependence of recovery on 
dopamine release by grafted cells, the animals were 
injected with apomorphine before optogenetic silencing. 
The authors observed that after illumination the recovery 
of the behavior was still present, as host dopaminergic 
receptors were expected to be occupied by apomorphine. 
This study provides an appropriate strategy to interrogate 
the mechanisms underlying the functionality of grafted 
cells. In general, grafted cells have been proven to be able 
to integrate into the host tissue but more experiments are 
necessary for a complete understanding of their role in the 
population dynamics of the striatal circuit.

GENERAL DISCUSSION: LOOKING INTO 
THE FUTURE, BACK TO BASICS
After the studies by Perlow[1] and Björklund and Stenevi[2], 
several authors have replicated their results with the same 
type of cells as well as different dopamine-containing cells. 
As laid out in the preceding sections, there are several 
different cell sources that have demonstrated a capacity 
to survive and reverse motor alterations in animal models 
of PD. However, the clinical benefits of brain grafting in 
PD patients have not yielded the expected results. A look 
back in history indicates that some questions related to 
basic aspects of molecular and cellular physiology, as well 
as neuronal network function, remain unanswered.

One important issue is to identify the factors that 
determine whether a graft will induce motor recovery or 
not. Independently of the cell type used, the available 
evidence shows that, in animal models or human subjects, 
some graft recipients exhibit no recovery despite having 
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equivalent levels of graft survival to the individuals that 
presented striking motor improvement. The reason for 
this variability is still unknown. Some results have shown 
that electrical activity of the grafted cells is a common 
feature of those animals with compensated behavior[88]. 
But how is this electrical activity or integration of the 
grafted cells achieved? The question remains unanswered. 
One possibility is that the host needs to have one or 
more individual-specific traits to provide a permissive 
microenvironment for the correct integration of the graft 
into the host tissue. These traits may involve molecular 
and cellular signaling pathways and communication 
between the endogenous and exogenous cells. What are 
these traits? Are there genetic or immunologic factors 
involved? Knowing the answer to these questions would 
allow clinicians to predict who can be a candidate for cell-
replacement therapy, or even adjust the microenvironment 
of a host or the nature of the grafted cells to successfully 
treat all PD patients in an individualized manner. Current 
technology can be used for answering these questions. For 
example, current genome engineering technology such 
as CRISPR-Cas (see[95] for review) and TetR-, Cre- or Flp-
mediated DNA recombination (see[96] for review) could 
allow us to delete, insert, reverse, silence or enhance 
the expression of different genes in order to elucidate 
the factors involved in the permissibility of the host. 
This technology would also contribute to understanding 
the mechanisms and molecules involved in the commu
nication between the cells from the graft and those from 
the host. Additionally, regarding the influence of the 
microenvironment on the grafted cells, it has been shown 
that uncommitted ESC-derived cells grafted into different 
areas of the brain are capable of sensing the host site, and 
respond by modifying their survival and differentiation into 
a specific cell type[97]. 

Another important aspect is to understand the me
chanisms related to the functionality of the graft. The 
unanswered questions in this regard are more related to 
systems-biology aspects concerning the consequences of 
the graft on the basal ganglia circuit. Further studies are 
necessary to determine the physiological consequences of 
grafting over the altered basal ganglia connections during 
natural behavior, as opposed to the use of pharmacological 
tools. By combining current approximations such as 
in vivo electrophysiological recordings or optogenetic 
activation and calcium imaging, it would be possible to 
determine whether grafts have differential effects on the 
activity of the direct and indirect pathways of the basal 
ganglia, and in general over the dynamics of the striatal 
microcircuit. These technologies have been used for the 
study of the normal function of the basal ganglia circuit 
and have also been applied to animal models of PD (e.g., 
Ref[98-100]). Additionally, by coupling in vivo pharmacology 
experiments with optogenetics[101], we can understand 
more about the mechanisms underlying the functionality 
of the grafts in PD, as has been done recently[93]. 

Survival of grafted dopaminergic neurons remain as a 
limitation; only 1% to 20% of FVM-derived cells are able 
to survive in animal models of PD[102]. Different cellular 

stress responses occurring by the dissection of the cells 
and after the graft procedure are part responsible for the 
observed cell death[102]. The majority of the studies that 
follow graft survival and behavior in animal models focus 
on analyzing short and medium periods of time (e.g., 
Ref[64,102]). However, despite the low survival of grafted 
cells, clinical trials have shown cases with significant 
motor improvements that last for varying time periods 
(e.g., over some years to 20 years after grafting of 
human mesencephalic tissue[103]). Thus, as long as 
the underlying mechanisms related to the variability 
observed between subjects is comprehended, controlled 
and reduced, transplantation of dopaminergic-containing 
cells could be a potential treatment for motor symptoms 
in PD.

Finally, we have to remember that PD is a very 
complex disease that affects other systems in addition 
to the dopaminergic pathway[104]. Thus, the aim of cell 
replacement therapy in PD is merely symptomatic, and 
focused exclusively on the motor symptoms associated 
with the degeneration of the nigrostriatal pathway. An 
important concern related to the pathology per se is the 
fact that some PD-grafted patients have shown Lewy-
body inclusions in the grafted cells[105]. Lewy-bodies 
are aggregates of normal, misfolded and truncated 
proteins and ubiquitin enzymes mainly composed of 
α-synuclein, and constitute the histological hallmark 
of PD (see[106] for review). This discovery is part of 
the evidence that supports the idea that PD spreads 
as a prion-like pathology (see[107] for review). Thus, it 
is probable that independently of the site of grafting, 
striatum or SNpc, the grafted cells will eventually develop 
the pathology. However, as Petit, Olsson and Brundin[108] 
have argued, the observation of Lewy-body inclusions 
does not necessarily invalidate the cell replacement 
therapy approach, based on the following arguments: 
Some patients have demonstrated motor improvements 
for up to 18 years; only a small proportion of grafted 
cells present Lewy-body inclusions; and finally we have 
to examine the cost-effectiveness relationship. Despite 
the logic of the arguments, on which we agree, we still 
have to remember that cell replacement therapy is not 
a cure for the disease, but rather a symptomatic relief. 
Thus, understanding the mechanisms related to the 
pathophysiology of PD is of fundamental importance if 
we wish to provide a more definitive strategy to face this 
disease (for review see[109]).

CONCLUSION
Important progress has been made since the first 
demonstration of a functional effect of dopaminergic-cell 
grafts in an animal model of PD. After the first decade 
of cell grafting in PD, it was clear that FVM-derived cells 
were a better cell source for grafting in comparison to 
chromaffin cells derived from the AM. To date FVM-
derived cells are considered as the most promising 
source for cell therapy in PD. After all these years of 
extensive efforts, it has been demonstrated that striatal 
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FVM grafts survive, extend projections, release dopamine 
and more importantly, alleviate motor alterations in both 
animal models and in human subjects with Parkinson’s 
disease. Cell integration is also important for achieving a 
positive functional outcome in other cell sources such as 
ESC-derived dopaminergic neurons. In addition, midbrain 
dopaminergic neuron grafts placed directly into the SNpc 
have also been shown to survive, to extend projections 
into the striatum, to increase striatal dopamine content, 
and to induce functional recovery. These observations are 
important and encouraging as they point to the possibility 
of reconstructing the nigrostriatal dopaminergic pathway.
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