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Abstract
AIM
To compare liver proteolysis and proteasome activation 
in steatotic liver grafts conserved in University of 
Wisconsin (UW) and Institut Georges Lopez-1 (IGL-1) 

4211 June 21, 2017|Volume 23|Issue 23|WJG|www.wjgnet.com

ORIGINAL ARTICLE

Relevance of proteolysis and proteasome activation in fatty 
liver graft preservation: An Institut Georges Lopez-1 vs  
University of Wisconsin appraisal

Basic Study

Mohamed Amine Zaouali, Arnau Panisello-Roselló, Alexandre Lopez, Carlos Castro Benítez, Emma Folch-Puy, 
Agustín García-Gil, Teresa Carbonell, René Adam, Joan Roselló-Catafau

Submit a Manuscript: http://www.f6publishing.com

DOI: 10.3748/wjg.v23.i23.4211

World J Gastroenterol  2017 June 21; 23(23): 4211-4221

 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)



solutions.

METHODS
Fatty liver grafts from male obese Zücker rats were 
conserved in UW and IGL-1 solutions for 24 h at 4 ℃
and subjected to “ex vivo ” normo-thermic perfusion 
(2 h; 37 ℃). Liver proteolysis in tissue specimens 
and perfusate was measured by reverse-phase high 
performance liquid chromatography. Total free amino 
acid release was correlated with the activation of 
the ubiquitin proteasome system (UPS: measured as 
chymotryptic-like activity and 20S and 19S proteasome), 
the prevention of liver injury (transaminases), mito
chondrial injury (confocal microscopy) and inflammation 
markers (TNF 1 alpha, high mobility group box-1 
(HGMB-1) and PPAR gamma), and liver apoptosis 
(TUNEL assay, cytochrome c and caspase 3).

RESULTS
Profiles of free AA (alanine, proline, leucine, isoleucine, 
methionine, lysine, ornithine, and threonine, among 
others) were similar for tissue and reperfusion effluent. 
In all cases, the IGL-1 solution showed a significantly 
higher prevention of proteolysis than UW (p  < 0.05) 
after cold ischemia reperfusion. Livers conserved 
in IGL-1 presented more effective prevention of 
ATP-breakdown and more inhibition of UPS activity 
(measured as chymotryptic-like activity). In addition, 
the prevention of liver proteolysis and UPS activation 
correlated with the prevention of liver injury (AST/
ALT) and mitochondrial damage (revealed by confocal 
microscopy findings) as well as with the prevention of 
inflammatory markers (TNF1alpha and HMGB) after 
reperfusion. In addition, the liver grafts preserved in 
IGL-1 showed a significant decrease in liver apoptosis, 
as shown by TUNEL assay and the reduction of cyto
chrome c, caspase 3 and P62 levels. 

CONCLUSION
Our comparison of these two preservation solutions 
suggests that IGL-1 helps to prevent ATP breakdown 
more effectively than UW and subsequently achieves a 
higher UPS inhibition and reduced liver proteolysis.

Key words: Liver proteolysis; proteasome activation; 
fatty liver preservation; Institut Georges Lopez-1; 
University of Wisconsin; high mobility group box 1; 
cold ischemia reperfusion injury

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Although several reports have confirmed that 
proteolytic activity during cold storage determines graft 
outcome after transplantation, the effect of preservation 
solution on steatotic liver graft proteolysis and on the 
activation of ATP-dependent proteasome during cold 
ischemia injury has not been fully investigated. Here, 
we compared the effect of two preservation solutions 
Institut Georges Lopez-1(IGL-1) and University of 
Wisconsin on liver proteolysis and ubiquitin-proteasome 

activation when steatotic liver grafts were subjected to 
cold storage. We provide evidence for a protective role 
of proteasome and proteolysis inhibition using IGL-1 
during steatotic liver graft preservation.

Zaouali MA, Panisello-Roselló A, Lopez A, Castro Benítez 
C, Folch-Puy E, García-Gil A, Carbonell T, Adam R, Roselló-
Catafau J. Relevance of proteolysis and proteasome activation 
in fatty liver graft preservation: An Institut Georges Lopez-1 vs 
University of Wisconsin appraisal. World J Gastroenterol 2017; 
23(23): 4211-4221  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v23/i23/4211.htm  DOI: http://dx.doi.
org/10.3748/wjg.v23.i23.4211

INTRODUCTION
Functional graft recovery remains one of the major 
complications after liver surgery. Cold static preservation 
is an inherent feature of liver transplantation (LT) 
and is strongly associated with graft outcome after 
transplantation[1]. Despite continued attempts to 
improve preservation solutions, success in liver trans­
plantation is always hampered by the complexity 
of ischemia reperfusion (I/R) injury[2,3]. In addition, 
exacerbated I/R injury is due, to a large extent, to 
the quality of the graft and to its conservation in 
preservation solutions[4,5]. In the liver, the presence 
of steatosis makes the graft more vulnerable to cold 
I/R injury[6] and thus aggravates the detrimental 
effects of cold I/R injury in fatty liver grafts preserved in 
commercial solutions. 

University of Wisconsin (UW) solution is considered 
to be the standard solution for liver graft preservation. 
However, alternative preservation solutions have 
been used in clinical liver transplantation, such as 
Institut Georges Lopez-1 (IGL-1), histidine-tryptophan-
ketoglutarate (HTK) and Celsior solutions. Briefly, IGL-1 
is a new preservation solution whose differences vis-à-
vis UW are the oncotic agent used (PEG35, instead of 
HES) and its lower potassium and lower viscosity. HTK 
and Celsior solutions have no oncotic agent[2,7]. 

The ubiquitin-proteasome system (UPS) is the 
principal non-lysosomal proteolytic system and is 
thought to contribute to a large variety of pathologies, 
including I/R injury associated with LT[8-10]. Recently, 
we showed that UPS modulation is a pharmacological 
target for improving graft preservation and for 
reducing I/R injury in the liver[10].

Moreover, it is has been well established that 
proteolysis is necessary to control protein concentra­
tion and to prevent its abnormal accumulation[8]. 
Proteasomes also perform multiple intracellular func­
tions, such as the degradation of damaged proteins 
and the modulation of many regulatory proteins that 
are involved in inflammatory processes including the 
cell cycle, metabolism, growth and differentiation[8]. In 
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fact, proteolytic activity is necessary for amino acid (AA) 
recycling of proteins that are no longer needed, thus 
preventing their accumulation in the cytoplasm[11,12].

The first evidence that proteolysis has a detrimental 
effect on liver graft out-come after transplantation 
was provided by Calmus et al[13] who showed that 
the degree of proteolytic activity detected by the free 
amino acids in the effluent of human liver grafts is a 
good predictive marker for postoperative graft function 
when using UW solution. Later, Upadhya et al[14] proved 
that the composition of the preservation solution may 
be relevant for the prevention of liver proteolysis. 
These authors demonstrated that lactobionate, a 
component of the UW solution, is a key factor for 
preventing the release of matrix metalloproteinases, 
particularly gelatinases, during cold preservation[15]. 
More recently, other solutions such as IGL-1 have also 
been considered as potential alternatives to UW[1,16]. 
Despite the proven efficiency of IGL-1, especially 
in steatotic liver preservation, its effects on graft 
proteolysis have not been investigated to date.

It is well known that energy breakdown following 
oxygen deprivation in liver graft is the main event 
during cold storage, and that its effects are concomitant 
with a significant decrease in ATP content which leads 
to severe graft damage[2]. It was recently reported that 
this ATP decline may activate a subset of 26S protea­
somes, a cell-destructive protease that contributes to 
myocardial injury during cold ischemia[17,18]. Moreover, 
this proteasome inhibition contributes to prolonging 
myocardial viability in hypothermic preservation[19]. 
Recently, we demonstrated that proteasome inhibitors 
such as MG132 and bortezomib protected fatty liver 
grafts when they were used as additives to UW 
and IGL-1 solutions[10,20]. However, the role of the 
UPS system and liver proteolysis in fatty liver graft 
preservation has not been fully investigated. 

The aim of this study is to assess the potential 
relationship between proteolysis, energy breakdown 
and liver injury using UW and IGL-1 solutions, in 
order to shed new light on the molecular and cellular 
mechanisms involved in liver cold I/R injury.

MATERIALS AND METHODS
Animals
Homozygous (obese [Ob]) Zücker rats aged 16-18 wk 
were purchased from Iffa-Credo (L’Abresle, France). 
An “ex vivo” perfused rat liver model was used, as 
previously described. All procedures were performed 
under isofluorane inhalation anesthesia according to 
the European Union regulations (Directive 86/609 
EEC) for animal experiments[21].

Preservation solutions 
We used UW (gold standard) and IGL-1 solutions. 
IGL-1 solution is a modification of UW solution in 
which hydroxyethyl starch (HES) is substituted by 
polyethylene glycol 35 (PEG 35) and the ionic K/Na ratio 

is also reversed. 

Experimental groups and isolated perfused liver model 
Briefly, 24 rats were randomly divided into three 
groups. The abdomen was opened by midline incision, 
following cannulation of the common bile duct, and 
the portal vein, the splenic and gastroduodenal veins 
were ligated. After organ recovery the livers were 
flushed with UW (UW group) and IGL-1 (IGL-1 group) 
preservation solutions respectively, and then stored 
in each solution for 24 h at 4 ℃. Next, the preserved 
livers were flushed with a perfusion liquid consisting 
of a cell culture medium (William’s medium E, Bio 
Whitaker, Barcelona, Spain), with a Krebs-Henseleit-
like electrolyte composition enriched with 5% albumin 
as osmotic support. For the reperfusion, livers were 
connected via the portal vein to a recirculating 
perfusion system for 2 h at 37 ℃. The third study 
group was a Control group (Cont) in which livers were 
flushed and immediately perfused ex vivo without 
ischemic preservation. Time 0 was the point at which 
the portal catheter was satisfactorily connected to the 
circuit. During an initial equilibration period of 15 min 
of perfusion, the flow was progressively increased 
in order to stabilize the portal pressure at 12 mmHg 
(Pression Monitor BP-1, Instruments, Inc., Sarasota, 
FL, United States). In order to maintain the portal 
pressure at 12 mmHg, the flow rate was modified 
using a peristaltic pump (Minipuls 3, Gilson, France). 
The buffer was continuously ventilated with a 95% O2 
and 5% CO2 gas mixture. It was subsequently passed 
through a heat exchanger (37 ℃) and a bubble trap 
prior to entering the liver[21,22].

Protocol I Proteasome activity and ATP levels 
after 24 h cold storage: In order to evaluate the 
proteasome activity and ATP breakdown in steatotic 
liver grafts following 24 h-cold storage in UW or IGL-1, 
aliquots of the flush effluents and liver tissue samples 
were collected and stored at -80 ℃ for subsequent 
measurement. Control livers (Cont 1 group) were 
flushed with Ringer’s lactate solution via the portal vein 
without ischemic preservation.

Protocol II Evaluation of proteasome activity and 
liver viability after 2 h reperfusion: To examine 
the role of UW and IGL-1 solutions in proteasome 
activation and their subsequent effect on proteolysis, 
liver function and also liver damage, fatty livers were 
subjected to two hours of normoxic reperfusion. Then, 
the perfusate effluent and the liver tissue sample were 
collected and stored at -80 ℃ for later measurement. 
In control group (Cont 2) livers were flushed with 
Ringer’s lactate and immediately perfused ex vivo 
without ischemic preservation.

Biochemical determinations
Nucleotide analysis and ATP content: Livers 
were homogenized in perchloric acid solution, and 
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and a near infrared Titanium:Saphire laser (MaiTai, 
SpectraPhysics) for two-photon excitation running at 
800 nm. Images were acquired with resonant scan at 
8000 lines/s. Two-photon excitation was performed 
at 800 nm and emission of the different fluorescent 
dyes was captured at the following wavelength ranges: 
Evans blue dye (515-560 nm), and rhodamine 123 
(500-550 nm)[28,29].

Western blotting analysis of PPARγ , HMGB-1, Caspase3, 
cytochrome C, 20S5beta and 19S proteasome subunit 
and β -Actin
Liver tissue was homogenized as described else­
where[30], and proteins were separated by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis and 
transferred to polyvinylidene fluoride membranes. 
Membranes were immunoblotted with antibodies 
against 20S5beta and 19S proteasome subunits 
(BML-PW 8895,and BML-PW8825 respectively, ENZO 
Life Sciences, Madrid, Spain), PPAR-γ and HMGB-1 
(Abcam, United Kingdom), cleaved caspase 3 and 
cytochrome C (Cell Signaling, Beverly, MA, United 
States), and β-Actin (Sigma Chemical, St. Louis, MO, 
United States). Signals were detected by enhanced 
chemiluminescence and quantified by scanning 
densitometry[10]. 

Terminal deoxynucleotidyl transferase-mediated dUTP 
nick end-labeling method[31]

To detect apoptotic cells, 16-μm-thick frozen sections 
from livers were collected on poly-L-lysine-coated glass 
slides, and the nuclear DNA fragmentation of apoptotic 
cells was labeled in situ by the TUNEL method using 
an ApopTag Peroxidase In Situ Apoptosis Detection Kit 
(Intergen Co. Purchase, NY, United States). Briefly, the 
sections were fixed in 1% paraformaldehyde in PBS, 
pH 7.4 for 10 min at room temperature and, after 
washing in PBS, they were post-fixed in precooled 
ethanol:acetic acid 2:1 for 5 min at -20 ℃. After 
rinsing in distilled water, the sections were treated 
with 3% hydrogen peroxide in 10% methanol for 5 
min, washed with distilled water and incubated in the 
equilibration buffer provided for 10 min. Then, the 
sections were incubated with terminal deoxynucleotide 
transferase (TdT) in the reaction buffer provided 
with digoxigenin-dUTP, in a humidifier chamber at 
37 ℃ for 1 h. The incorporated digoxigenin-dUTP was 
detected by peroxidase-conjugated antidigoxigenin 
antibody and the signal developed by incubation 
with 3,3-diamino-benzidine (DAB) in the presence 
of H2O2. The slides were counterstained with Harris 
hematoxylin. Negative controls were prepared by 
replacing the antidigoxigenin antibody with phosphate 
saline buffer, and a case of breast carcinoma was 
included as positive control.

Statistical analysis
Data are expressed as means ± SD and were com­
pared statistically by variance analysis, followed by the 

the adenine nucleotide pool was measured by high-
performance liquid chromatography (HPLC) as pre­
viously reported[23,24].

Assessment of liver proteolysis[7]: Free amino 
acid content in ex vivo eluates and tissue specimens 
was measured by HPLC techniques, as previously 
described[25]. Briefly, effluent and tissue homogenization 
samples were first deproteinized by ultrafiltration and 
then derivatized with phenylisothiocyanate (PITC) 
to produce phenylthiocarbamyl (PTC) amino acids. 
Amino acids were determined by automated gradient 
reverse phase HPLC and ultraviolet detection at 254 
nm. Quantitative analysis of total free amino acids was 
performed using the PICO.TAG Amino Acid Analysis 
System[25]. 

Transaminase assay: Hepatic injury was evaluated 
according to transaminase levels using a commercial 
kit from Boehringer Mannheim (Munich, Germany)[10].

Proteasome chymotryptic-like activity assay[9,10]: 
ATP-dependent chymotryptic activity of the proteasome 
was measured using the substrate N-Suc-Leu-Leu-Val-
Tyr-aminomethylcoumarin (ENZO Life Sciences). The 
cleavage products AMC were analyzed in a fluorimeter 
(excitation/emission 380/460 nm). Product formation 
was linear with time (at least for 60 min). Background 
activity (caused by nonproteasomal degradation) was 
determined by the addition of the proteasome inhibitor 
epoxomicin at a final concentration of 20 μmol/L (ENZO 
Life Sciences). 

Glutamate dehydrogenase activity[10]: Liver 
mitochondrial damage was measured by GLDH activity 
levels at the end of reperfusion, as previously reported.

Inflammatory mediators: TNF alpha and IL-1/IL10 
TNF alpha levels were measured using a commercial 
immunoassay kit for rat TNF alpha from Biosource 
(Caramillo)[10,26]. IL-1 beta and IL10 were measured 
by enzyme-linked immunosorbent assay as previously 
reported[10,27]. Commercial kits from Amersham 
LifeScience (Amersham, United Kingdom) were used.

Confocal microscopy for mitochondrial damage
During 2 h of normothermic preservation, fatty 
livers were perfused with Krebs supplemented with 
rhodamine 123 (0.11 mg/L, Sigma, R8004) for 
mitochondrial membrane potential staining and 1% 
Evans blue dye used as a viability assay on the basis 
of its penetration into non-viable cells. Fatty livers 
were then carefully sectioned (0.5 cm3 fragments) 
and the internal side of the liver was exposed on the 
glass coverslip mounted on the stage of a Leica TCS 
SP5 resonant scan multiphoton confocal microscope 
(Leica Microsystems Heidelberg GmbH) equipped 
with a HCX IR APO L 25 × water immersion objective 
(Numerical Aperture 0.95), scanner at 400 lines/s, 

Zaouali MA et  al. Proteolysis and liver preservation
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Student-Newman-Keuls test. P < 0.05 was considered 
significant.

RESULTS
We evaluated the relevance of proteasome activity 
and proteolysis in fatty livers preserved in IGL-1 
and UW solutions when subjected to normothermic 
reperfusion. As Figure 1A shows, chymotryptic-like 
proteasome activity increased in steatotic liver grafts 
during cold preservation in UW solution compared 
with control non-preserved livers. However, steatotic 
livers preserved in IGL-1 solution showed lower 
chymotryptic-like proteasome activity than those 
preserved in UW solution. 

Given the close relationship between proteasome 
activity and the ATP contents during cold preservation[18], 
we next evaluated the ATP concentration during liver 
preservation. Lower ATP levels during cold storage were 
observed in steatotic livers preserved in UW solution 
than in non-preserved livers. ATP breakdown was more 
effectively prevented by the use of IGL-1 solution (Figure 
1B). 

With these results in mind, we also evaluated the 
chymotryptic-like proteasome activity and the 19S 
and 20S proteasome protein levels after reperfusion. 
As indicated in figure 2A, the chymotryptic-like 
proteasome activity after reperfusion follows the same 
pattern profile as those observed for cold storage. 
The 20S proteasome protein levels were reduced only 
when IGL-1 preservation solution was used. In contrast, 
the 19S subset protein levels remained unchanged 

across all experimental groups (Figure 2B and C). 
Also, the AA profiling studies confirmed that 

IGL-1 offered more efficient prevention of AA release 
in tissue graft specimens and effluents after 2 
h-reperfusion at 37 ℃. The AA profiles obtained in 
liver tissue (Figure 3B) and eluate samples (Figure 3A) 
were similar but were seen more in tissue samples 
than in ex vivo eluates, thus confirming the relevance 
of proteolysis (measured as free AA release) after cold 
I/R injury. The better prevention of liver proteolysis 
in grafts preserved in IGL-1 solution than in UW 
was consistent with significant reductions in other 
parameters associated with the pathophysiology of 
liver I/R injury, such as transaminases (ALT and AST) 
and GLDH release as sensitive and specific markers of 

Figure 2  Chymotryptic-like activity (A) and 20S (B) and 19S (C) protein 
levels after reperfusion. Representative Western blot at the top and 
densitometric analysis at the bottom of 20S (B) and 19S (C). aP < 0.05 vs 
Cont2, cP < 0.05 vs UW. Cont2: Liver flushed and perfused ex vivo without cold 
preservation; UW: Liver preserved in UW solution; IGL-1: Liver preserved in 
IGL-1 solution; UW: University of Wisconsin; IGL-1: Institut Georges Lopez-1.
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Figure 1  Chymotryptic-like proteasome activity (A) and ATP content (B) 
in steatotic livers after cold preservation. aP < 0.05 vs Cont1, cP < 0.05 vs 
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solution; IGL-1: Liver preserved in IGL-1 solution; UW: University of Wisconsin; 
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mitochondrial damage (Table 1). 
Given that proteasome activity plays a crucial 

role in the modulation of many of the regulatory 
proteins involved in inflammatory processes in fatty 
liver grafts[8], we evaluated the involvement of other 
inflammatory markers in fatty liver, such as PPARγ, in 
the proteasome changes and proteolysis inhibition in 
steatotic liver grafts subjected to cold I/R injury. As 
shown in Figure 4A, PPARγ protein levels in steatotic 
liver grafts preserved in UW solution remained 
unchanged compared with control non preserved 
grafts, but increased significantly in grafts preserved 
in IGL-1 preservation solution. We also measured the 
effect of preservation solution on other cytokines such 
as high mobility group box 1 (HMGB1) which was 
recently shown to be involved in fatty liver preservation 

and transplantation[32]. IGL-1 showed lower levels 
of HMGB-1 than UW (Figure 4B) concomitant with 
a significant reduction in the release of other in­
flammatory cytokines such as TNFα but not for IL1. 
IGL-1 also increased the concomitant release of anti-
inflammatory IL-10 in fatty livers after reperfusion 
(Table 2). 

Next, we evaluated the effect of proteasome 
activity and proteolysis modulation on apoptosis and 
autophagy induction. Figure 5 shows a significant 
increase in cytochrome C and cleaved caspase 3 
protein levels in steatotic livers preserved in UW 
solution compared with non-preserved ones. However, 
preservation in IGL-1 solution significantly reduced 
both apoptotic markers. In addition, the autophagy-
related ubiquitin-binding protein SQSTM1/p62, which 
is involved in aggresome formation and degradation 
through autophagy, is increased in steatotic livers 
preserved in UW solution compared with those pre­
served in IGL-1 solution (Figure 5C).

This effect on liver apoptosis in both IGL-1 and UW 
solutions was also corroborated by the percentage of 
TUNEL-positive hepatocytes (Figure 6). Only a few 
sinusoidal lining cells were positive to TUNEL staining 
in control non-preserved steatotic livers (Figure 
6B). After preservation with UW and reperfusion, 
the number of positive cells significantly increased 
(Figure 6B). Preservation with IGL-1 reduced apoptotic 

Table 1  ALT and AST (Liver injury) and GLDH (mitochondrial 
damage) in steatotic liver grafts preserved in University of 
Wisconsin and Institut Georges Lopez-1 solutions and then 
subjected to two hours of normothermic reperfusion

Liver injury Cont2 UW IGL-1

ALT, U/L   26.76 ± 4.095   172.1 ± 10.81a 92.99 ± 8.64a,c

AST, U/L 24.92 ± 2.42 280.93 ± 14.14a 202.24 ± 24.71a,c

GLDH, U/L 26.13 ± 6.83   425.22 ± 156.92a      143 ± 31.16a,c

aP < 0.05 vs Cont, cP < 0.05 vs UW. UW: University of Wisconsin; IGL-1: 
Institut Georges Lopez-1.

Zaouali MA et  al. Proteolysis and liver preservation

Figure 3  Proteolysis in effluent and liver grafts after reperfusion. Amino acid levels in the effluent and tissue after reperfusion. cP < 0.05 vs UW. UW: Liver 
preserved in UW solution; IGL-1: Liver preserved in IGL-1 solution; UW: University of Wisconsin; IGL-1: Institut Georges Lopez-1.

900

750

600

450

300

150

0

μm
ol

/L

c c

c

c

c c
c c

c

Lysine
Ornithine
Leucine
Isoleucine
Methionine
Tyrosine
Serine
Glutamine
Glycine

Proteolysis in the effluent

U
W

IG
L-

1

U
W

IG
L-

1

U
W

IG
L-

1

U
W

IG
L-

1

U
W

IG
L-

1

U
W

IG
L-

1

U
W

IG
L-

1

U
W

IG
L-

1

U
W

IG
L-

1

7500

5000

2500

0

pm
ol

s/
m

g 
pr

ot
eí

ns

Proteolysis in liver

U
W

IG
L-

1

c

c
ccc

cc

c

c

c
c

c

c

c

Aspartic acid
Glutamic acid
Proline
Lysine
Ornithine
Tryptophan
Leucine
Isoleucine
Methionine
Valine
Tyrosine
Arginine
Histidine
Asparagine
Serine

U
W

IG
L-

1
U

W
IG

L-
1

U
W

IG
L-

1
U

W
IG

L-
1

U
W

IG
L-

1
U

W
IG

L-
1

U
W

IG
L-

1
U

W
IG

L-
1

U
W

IG
L-

1
U

W
IG

L-
1

U
W

IG
L-

1
U

W
IG

L-
1

U
W

IG
L-

1
U

W
IG

L-
1

A

B



4217 June 21, 2017|Volume 23|Issue 23|WJG|www.wjgnet.com

cell death (Figure 6B). In all cases, single (but 
not clustered) TUNEL-stained cells were observed 
more extensively in periportal and mid-zonal areas. 
Finally, the confocal microscopic study confirmed that 
steatotic livers preserved in IGL-1 solution conserved 
the membrane potential of liver mitochondria more 
efficiently, as shown by an increase in the rhodamine 
123 cell viability marker (in green) and a decrease in 
Evans blue labeling (in red), indicating the albumin 
content and the disrupted mitochondrial membranes 
(Figure 6A).

DISCUSSION
At present, a considerable number of fatty donor livers 
have to be discarded, a situation that accentuates even 
further the critical shortage of human donor livers. 

A better knowledge of the preservation mechanisms 
of steatotic liver grafts is urgently needed to reduce 
their high vulnerability to cold I/R injury, and thus to 
improve their viability after transplantation[33,34]. 

In this study, we investigated the involvement 
of UPS activation and liver proteolysis and their 
relationship with the breakdown energy metabolism in 
steatotic liver grafts preserved in different commercial 
preservation solutions such as IGL-1 and UW. We 
also associated the changes in UPS activation during 
cold I/R injury with the inflammatory events and liver 
apoptosis. Our data demonstrate that IGL-1 prevented 
liver proteolysis more effectively than UW. In all cases, 
free AA levels determined in tissue specimens and 
eluates were lower in IGL-1 than in UW after cold 
I/R. This improved prevention of liver proteolysis with 
IGL-1 is consistent with its more effective protection 
against I/R injury. This could be explained, in part, 
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Figure 5  Liver graft apoptosis and autophagy after reperfusion. 
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steatotic liver grafts. aP < 0.05 vs Cont2, cP < 0.05 vs UW. Cont2: Liver flushed 
and perfused ex vivo without cold preservation; UW: Liver preserved in UW 
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Inflammation Cont2 UW IGL-1

TNFα (pg/mL) 26.17 ± 5.85   1285.89 ± 231.32a   1005.83 ± 101.94a,c

IL-1β (pg/mL)   4.29 ± 1.66     89.01 ± 10.53a 84.69 ± 7.79a

IL-10 (pg/mL) 134.89 ± 14.84 109.33 ± 17.3a 192.13 ± 7.73a,c

aP < 0.05 vs Cont, cP < 0.05 vs UW. UW: University of Wisconsin; IGL-1: 
Institut Georges Lopez-1.

Table 2  TNFα, IL-1 and IL-10 levels (inflammation) in 
steatotic liver grafts preserved in University of Wisconsin and 
Institut Georges Lopez-1 solutions and then subjected to two 
hours of normothermic reperfusion
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by the presence of different oncotic agents: PEG35 
in IGL-1, and HES in UW. In fact, we have recently 
demonstrated that the addition of PEG35 to washout 
solution protects the liver against I/R injury by the 
inhibition of metalloproteinases MMP9 and MMP2, 
a finding that may explain its role in preventing 
liver proteolysis[21]. The presence of lactobionate (a 
common ingredient of the UW and IGL-1 solutions) 
may also help to prevent liver proteolysis due its 
strong inhibitory effect on gelatinases, presumably 
via calcium or zinc chelation[13,14]. This effective pre­
vention of proteolysis is also consistent with the 
significant reduction in proteasome activity reflected 
by decreases in chymotryptic-like proteasome activity 
and 20S proteasome protein levels and the better 
prevention of energy metabolism breakdown with 
IGL-1 solution. In fact, a recent report established a 
functional link between 26S proteasome activity and 
ATP depletion in tissue during cold I/R injury[18]. Those 
authors advanced that ATP depletion during ischemic 
insult appears to activate the 26S proteasome which 
is formed from a multimeric proteasome core particle 
(20S proteasome) which is singly or doubly capped at 
its ends by a 19S regulator complex[17]. Taking this into 
account, we suggest that the reduced 20S proteasome 
protein levels in steatotic livers preserved in IGL-1 
solution are to do some extent the consequence of the 
better preservation of ATP content in this group, which 
thus affects 26S assembly and activity. Furthermore, 
our results are in accordance with previous studies 

which have demonstrated the relevance of proteasome 
inhibition in protecting steatotic liver grafts against I/R 
injury when preservation solutions were supplemented 
with proteasome inhibitors MG132 and bortezomib[10,20].

In order to explain the mechanisms by which pro­
teasome modulation and proteolysis inhibition protect 
steatotic livers against cold I/R injury, we also assessed 
levels of PPARγ and HMGB-1 proteins, which are 
both involved in the modulation of the inflammatory 
response after I/R injury[35-37]. It is clear that PPARγ 
belongs to the hormone nuclear receptor superfamily 
of ligand-activated transcription factors which are 
major regulators of post-ischemic liver injury[35]. Its 
protective effect is mediated by its anti-inflammatory 
properties via the inhibition of pro-inflammatory gene 
expression[35] in which the UPS has recently been 
implicated; the UPS is responsible for PPAR turnover 
and is also involved in the modulation of the ligand-
dependent activity of these nuclear receptors[38].

The fact that the UPS is the major system for 
selective degradation of short-lived proteins in eukaryotic 
cells such as PPARγ[38] suggests that proteasome 
inhibition after steatotic liver graft preservation in IGL-1 
solution may be responsible for the PPARγ accumulation 
induced, thus leading to a reduction in the expression of 
pro-inflammatory proteins[39]. These findings were also 
confirmed by the lower HMGB-1 protein levels in livers 
preserved in IGL-1 solution than in livers preserved in 
UW. HMGB-1 is a well-known extracellular signaling pro-
inflammatory mediator which, when released from cells, 
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leads to cell death in several pathologies including liver 
I/R[32]. Our results corroborate those of a previous study 
which demonstrated that PPARγ-mediated upregulation 
of miR-142-3p inhibits HMGB-1 expression, which, 
in turn, is a novel anti-inflammatory mechanism of 
PPARγ and plays an important role in the treatment 
of inflammatory diseases[40]. Moreover, HMGB-1 is 
associated with apoptotic cell death[41] and autophagy 
modulation[42,43].

Next we evaluated both parameters after cold I/R 
injury in steatotic livers preserved in UW and IGL-1 
solutions. Our results demonstrated that the use of 
IGL-1 reduced apoptotic cell death, as reflected by 
decreases in cleaved caspase3 and cytochrome C 
protein levels when compared with UW solution. The 
relevance of cytochrome c as a reliable biomarker 
of mitochondrial damage in fatty liver disease was 
also reported by another study[44]. These results 
were correlated with a better prevention of liver 
mitochondrial damage and were also consistent with 
the finding that IGL-1 solution efficiently prevented 
liver apoptosis in rat liver transplantation[45]. 

Finally, in order to explore the effect of proteasome 
modulation on autophagy, we determined the levels 
of autophagy-related ubiquitin-binding protein 
SQSTM1/p62. This protein is involved in aggresome 
formation and degradation through autophagy which 
is associated with the liver graft self-response to cold 
I/R injury (the SQSTM/p62 substrate that accumulates 
in autophagy-deficient cells)[46,47]. Our results de­
monstrated that UW solution increased SQSTM1/
p62 protein levels, which are inversely correlated to 
autophagy, while the use of IGL-1 solution reduced 
SQSTM1/p62 protein levels, thus showing autophagic 
activation, as a response to better preservation 
mechanisms. These results corroborate our previous 
finding that impaired autophagic clearance after 
steatotic liver preservation is correlated with increased 
liver injury[31].

In conclusion, we show that liver graft proteolysis 
and proteasome activation are dependent on the organ 
preservation solutions used for liver transplantation such 
as UW and IGL-1. Our results confirm the relevance of 
both markers for evaluating the graft damage caused 
by cold I/R injury in fatty liver preservation.
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COMMENTS
Background
Cold ischemia reperfusion (I/R) injury is a multifactorial process that 
can interfere with graft function after liver transplantation (LT). A better 
understanding of the pathophysiology of this injury is fundamental for the 
development of protective strategies able to improve the outcome of LT. The 

ischemic graft damage that occurs during cold storage of fatty liver grafts 
depends in part on the ATP-energy breakdown. It is well known that the 
prevention of ATP-breakdown during cold static preservation is associated with 
inhibition of ubiquitin-proteasome system (UPS) activity, which helps to protect 
the liver graft against reperfusion. In this context the selection of commercial 
organ solution seems crucial for modulating the UPS, as well as the graft 
proteolysis against cold I/R injury. We demonstrate that Institut Georges 
Lopez-1 (IGL-1) solution reduces cold I/R injury more efficiently by helping to 
prevent ATP- breakdown and subsequently achieving a higher UPS inhibition 
than University of Wisconsin (UW). Both these factors are modulated by the 
organ preservation solution and determine the degree of proteolysis in the liver 
graft.

Research frontiers
The authors focused on strategies for interfering with the mechanisms 
responsible for hepatic I/R injury associated with LT, and on strategies for 
enhancing the endogenous mechanisms that protect against cold ischemic 
damage. UW and IGL-1 solutions are widely used in LT. They demonstrate 
that the nature of the oncotic agent present in UW and IGL-1 solutions is 
responsible, in part, for the modulation of energy breakdown and its subsequent 
inhibitory action on the UPS, which are key factors in graft protection against I/
R insult. In the present study IGL-1 showed more hepato-protective effects than 
UW, due, in part, to the presence of the oncotic agent PEG-35.

Innovations and breakthroughs
This study demonstrates for the first time that UPS inhibition is a key factor in 
fatty liver preservation using different commercial organ preservation solutions 
such as UW and IGL-1. UPS inhibition may explain the better prevention of the 
proteolysis observed in IGL-1 than in UW, thus favoring the use of IGL-1 in fatty 
liver graft preservation.

Applications
UPS inhibition and the degree of proteolysis can be used to predict the viability 
of steatotic liver grafts after prolonged static preservation.

Terminology
The UPS system and proteolysis are involved in the complex pathophysiology of 
hepatic cold I/R injury. Both are helpful for evaluating the fatty liver preservation 
using either static or dynamic preservation (with machine perfusion) strategies.

Peer-review
The manuscript is about Relevance of proteolysis and proteasome activation in 
fatty liver graft preservation. There must be possible prospective achievement in 
this basic studies. The authors try to solve the problem of preservation of fatty 
donor liver from ischemic injury in liver transplantation, and the study design 
was reasonable. The results were also good and provided some scientific hints.
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