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Abstract
Human induced pluripotent stem cells (hiPS cells or 
hiPSCs) can be derived from cells of patients with severe 
muscle disease. If skeletal muscle induced from patient-
iPSCs shows disease-specific phenotypes, it can be 
useful for studying the disease pathogenesis and for 
drug development. On the other hand, human iPSCs 
from healthy donors or hereditary muscle disease-
iPSCs whose genomes are edited to express normal 
protein are expected to be a cell source for cell therapy. 
Several protocols for the derivation of skeletal muscle 
from human iPSCs have been reported to allow the 
development of efficient treatments for devastating 
muscle diseases. In 2017, the focus of research is 
shifting to another stage: (1) the establishment of 
mature myofibers that are suitable for study of the 
pathogenesis of muscle disease; (2) setting up a high-
throughput drug screening system; and (3) the pre
paration of highly regenerative, non-oncogenic cells in 
large quantities for cell transplantation, etc . 

Key words: Human induced pluripotent stem cells; 
Skeletal muscle; Transplantation; Disease; Modeling; 
Muscle progenitors; Muscular dystrophy; MYOD

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Skeletal muscle cells induced from patient 
induced pluripotent stem cells (iPSCs) are useful for 
the study of pathogenesis and drug development. The 
derivation of mature myofibers is required for disease 
modeling. On the other hand, human iPSCs from heal
thy donors are likely to be a cell source for cell therapy. 
For safe cell transplantation, non-oncogenic cells are 
needed. 

Yuko Miyagoe-Suzuki, Shin’ichi Takeda
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INTRODUCTION
In 2006, Takahashi et al[1] reported that they su­
ccessfully reprogrammed skin fibroblasts into pluri­
potent stem cells, which are undistinguishable from 
embryonic stem (ES) cells, using oct4, sox2, klf4 
and c-myc. They called this new pluripotent stem cell 
type “induced pluripotent stem cells (iPSCs)”. Human 
induced pluripotent stem cells (hiPSCs) are rejuvenated, 
proliferate in vitro keeping their pluripotency, and 
differentiate into multipotent cell lineages. As a result, 
the induced pluripotent stem (iPS) technology was 
expected to advance the study of pathogenesis, drug 
screening, and regenerative medicine. However, in 
the field of skeletal muscle disease, the use of iPSCs 
has been relatively limited due to the difficulty of 
inducing skeletal muscle cells from human iPSCs in 
large quantities with sufficient purity. In addition, 
skeletal muscle derived from human iPSCs generally 
show embryonic phenotypes. In this review, we try to 
summarize the recent progress and remaining problems 
to be solved in inducing muscle cells from human iPSCs 
and their application. 

MUSCLE SATELLITE CELLS/Myoblast-
based cell therapy
Muscle satellite cells are skeletal muscle-specific 
stem cells that reside between the muscle basement 
membrane and the plasma membrane of myofibers in 
a G0 state in adult muscle. When muscle is damaged, 
satellite cells are activated, proliferate (myoblasts), and 
fuse with injured myofibers to repair muscle tissue. 
In Duchenne muscular dystrophy (DMD), however, 
muscle satellite cells are exhausted by repeated cycles 
of muscle degeneration and regeneration[2,3]. As a 
result, myofibers are replaced by fibrotic tissue and 
adipocytes. In 1989, Partridge et al[4] demonstrated 
that direct injection of normal myoblasts into mdx 
muscle converted dystrophin-negative myofibers to 
dystrophin-positive ones. Based on this finding, clinical 
trials of myoblast transplantation therapy (MTT) were 
performed. However, MTT for DMD conducted between 
1991 and 1997 was not successful[5-7]. Experiments 
using mouse models suggested the rapid and massive 
death of a substantial fraction of injected myoblasts 
after transplantation[8]. It was also demonstrated that 
satellite cells lose their regenerative ability during 
expansion in culture[9,10]. Because it is not possible to 
prepare fresh myoblasts in large quantities from limited 
donor muscle tissues, MTT is now applied to myopathies 

that affect specific muscles, such as those in oculo-
pharyngeal muscular dystrophy[11]. 

IPSC-BASED CELL THERAPY 
Although it has long been difficult to induce skeletal 
muscle from human ES/iPSCs, several groups have 
recently reported successful derivation of skeletal 
muscle[12]. Many researchers expect that iPS technology 
will overcome the limitations of MTT because iPSCs 
are expected to provide a large quantity of muscle 
progenitor/precursor cells without invasive procedures. 
It is also expected that more proliferative and 
regenerative stem/progenitor cells can be induced from 
hiPSCs than from postnatal myoblasts. 

INDUCTION OF MYOGENIC 
PROGENITORS AND Precursor CELLS 
FROM HUMAN IPSCS
The protocols for the derivation of skeletal muscle 
from human ES/iPSCs can be roughly divided into two 
categories: (1) direct reprogramming with muscle-
specific transcription factors, such as PAX3, PAX7; and 
MYOD; and (2) the step-wise induction of skeletal muscle 
using small molecules and cytokines to inhibit or activate 
relevant signaling pathways in myogenesis (Figure 1).

Forced expression of MYOD or PAX7
More than 25 years ago, Weintraub et al[13] found 
that MyoD can convert non-myogenic cells to skeletal 
muscle cells[13]. Rao et al[14] lentivirally transduced 
human ES cells with a doxycycline (DOX)-inducible 
MyoD. Within 10 d after addition of DOX to the culture, 
multinucleated myotubes were formed. The induction 
efficiency was over 90%. Tanaka et al[15] used a 
Piggy Bac transposon vector to overexpress MYOD 
and showed robust induction of skeletal muscle from 
Miyoshi myopathy-iPSCs. Akiyama et al[16] reported that 
transient ectopic expression of a catalytic domain of 
histone demethylase JMJD3, which reduces H3K27me, 
together with synthetic MyoD mRNAs, further acceler­
ates the differentiation of human pluripotent stem cells 
into myogenic cells. Thus, MyoD-mediated muscle 
induction is fast and efficient. A limitation of the method 
would be that a high level or long expression of MyoD 
protein induces cell cycle arrest. In addition, MyoD 
cannot induce PAX3+PAX7+ muscle progenitors. For 
in vitro disease modeling, the properties of myotubes 
induced by the forced expression of MyoD remain to be 
compared with myotubes induced by Stepwise methods 
via the paraxial mesoderm and somite stage.

Pax3 and Pax7 regulate skeletal muscle formation 
during development, but play distinct roles in the post-
natal period (reviewed in Ref.[17]). Forced expression 
of PAX7 in embryoid bodies successfully induces trans­
plantable myogenic cells from human ES cells[18]. In 
contrast to MYOD, however, PAX7 alone does not 
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convert adult fibroblasts to skeletal muscle. Therefore, 
the embryoid body would be the best stage in which 
to transduce myogenic cells with a PAX7-expression 
vector. Although random integration into the genome of 
over-expression vectors is not suitable for cell therapy, 
MyoD-induced skeletal muscle is now widely used for in 
vitro muscle disease modeling and drug screening. 

Sphere-based culture method
Hosoyama et al[19] reported a sphere-based culture 
method for the derivation of myogenic progenitor cells 
from human ES/iPSCs (EZ sphere method). Human ES/
iPSCs are cultured as spheres in serum-free medium 
for neurospheres supplemented with relatively high 
concentrations of fibroblast growth factor-2 and epider
mal growth factor. After a six-week free-floating culture, 
cells plated onto MatrigelTM-coated dishes start to form 
multinucleated myotubes and finally start to twitch. 
EZ-sphere cells contain both myogenic cells and neural 
cells, requiring the purification of myogenic cells for 
further application. In addition, whether the EZ-sphere 
method can induce transplantable myogenic cells or not 
remains to be shown. 

Embryoid body-based induction 
Awaya et al[20] reported a method for the selective 
expansion of mesenchymal cells from cell aggregation 
called embryonic bodies (EBs). The resulting cells 

express CD56 (N-CAM) and the mesenchymal markers 
CD73, CD105, CD166, and CD29. The cells are trans­
planted into the muscle of immune-deficient mice and 
regenerate myofibers, as well as replenish the satellite 
cells. This method and the EZ sphere method require a 
lengthy culture and are not highly efficient. 

Induction of skeletal muscle via activation of Wnt 
signaling 
Many successful methods to induce skeletal muscle 
progenitors use a GSK-3β inhibitor (which activates 
Wnt signaling) in the first phase of culture[21-25]. Chal et 
al[24,25] monitored the induction process using reporter 
iPSC lines and comprehensive gene expression analysis, 
and established a stepwise induction of skeletal muscle. 
Paraxial mesoderm specification was achieved using 
a GSK3 inhibitor (CHIR-99021) together with BMP4 
inhibition (LDN-193189) because BMP4 inhibition 
prevents the cells from differentiating into lateral 
mesoderm. The method induces myogenin(+) myogenic 
cells with 25%-30% efficiency[24,25]. The induced 
myotubes express titin, a fast perinatal myosin heavy 
chain, have a sarcomere structure, and spontaneously 
contract[24,25].

Heterogeneity of differentiation potential of human iPS 
clones 
Human iPSCs are heterogeneous in myogenic differen­

Figure 1  Step-wise induction of skeletal muscle from human embryonic stem/induced pluripotent stem cells and their application. In many protocols, 
pluripotent stem cells are first induced to differentiate into paraxial mesoderm using a GSK3 inhibitor (activation of Wnt signal) and a BMP4 inhibitor, and they then 
differentiate into premyogenic progenitors in serum-free DMEM/F12-ITS (or KSR) medium supplemented with growth factors such as FGF-2, IGF-1, or HGF. After 
differentiation into muscle progenitors, the cells are induced to precursor cells (myoblasts) and then differentiate into multinucleated myotubes (in vitro) and myofibers (in 
vivo). The transition from embryonic to fetal myoblasts and finally into adult myoblasts is thought to occur sequentially in a dish, but the mechanisms and modes are 
largely unknown. FGF: Fibroblast growth factor; IGF: Insulin-like growth factor; HGF: Hepatocyte growth factor.
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tiation potential. Some iPS clones efficiently differentiate 
into the skeletal muscle lineage, while others do not. 
The heterogeneity is found even among iPS clones 
derived from the same donor using the same method. 
Although the molecular basis is largely unknown, 
one possibility is that some clones are incompletely 
reprogrammed and cannot respond to differentiation 
signals properly. If the induction protocol is appropriate, 
completely reprogrammed iPS clones are expected to 
efficiently differentiate into the skeletal muscle lineage. 
Recently, using integrative analysis of reprogramming 
in a human isogenic system, Shutova et al[26] identified 
criteria to select the best iPS line. 

Characterization of induced 
muscle cells
In humans, the myogenesis process can be divided 
into 3 developmental stages: primary myogenesis 
(6-8 wk of development), secondary myogenesis 
(8-18 wk of development) and adult-type myogenesis 
(muscle growth in later myogenesis and regeneration). 
In primary myogenesis, embryonic myoblasts form 
primary myofibers. In secondary myogenesis, fetal 
myoblasts form secondary myofibers. Postnatally, 
satellite cells fuse with growing myofibers or fuse with 
injured myofibers[27,28]. During regeneration, a fraction 
of satellite cells return to their niche (self renewal) and 
maintain quiescence until the next turn. Importantly, the 
developmental stage of the myogenic progenitors largely 
determines the types of myofibers they form. 

Morphology and gene expression of hiPSC-derived 
muscle
Human embryonic myoblasts show a limited prolifera­
tion capacity and are more prone to differentiation than 
fetal myoblasts. Isolated embryonic myoblasts form 
thinner myofibers with fewer nuclei than fetal myoblasts 
in vitro[27-29]. Because embryonic and fetal myoblasts 
express quite different gene sets in mice[28,30], gene 
expression analysis would be informative to determine 
the properties of the myogenic cells induced from human 
ES/iPSCs. For example, research in mice has revealed 
that embryonic myoblasts express PAX3, Paraxis, Meox1, 
Eya2, and Cadherin11, while fetal myofibers express 
NFIX, a key transcriptional regulator in fetal myoblasts[31], 
MCK, PKC theta, HeyL, and integrin α7[27,28,30]. These 
genes are good markers to determine the developmental 
stages of hiPSC-derived myogenic cells. 

Cell surface markers 
Cell surface markers to prospectively enrich myogenic 
progenitor cells with a highly myogenic and long-term 
expansion potential are under investigation. Barberi et 
al[32] reported the sorting of CD73(+) cells enriched in 
adult mesenchymal stem cell-like cells, and after 4-wk 
culture in ITS medium, NCAM(+) cells were collected 
and successfully transplanted into immunodeficient mice. 

Borchin et al[22] reported that the sorting of cMet(+) 
CXCR4(+) ACHR(+) cells enriched myogenic progenitors. 
After the screening of more than 300 antibodies, Uezumi 
et al[33] found novel surface markers on adult myoblasts 
(CD82 and CD318) and succeeded in the enrichment of 
myogenic cells induced from hiPSCs using CD82. The 
new marker CD82 ensures expansion and preservation 
of myogenic progenitors by suppressing excessive 
differentiation of adult myoblasts. Alexander et al[34] also 
reported that CD82 is a marker for prospectively isolating 
stem cells from human fetal and adult skeletal muscle 
and is possibly involved in the pathogenesis of muscular 
dystrophies. The function of CD318 in myogenesis and 
whether CD318 is helpful for purification of hiPSC-derived 
myogenic cells are now under investigation. 

Response to TPA, BMP-4, TGF-β and Notch 
In mice, embryonic, fetal, and adult myoblasts have 
been demonstrated to respond differently to extracel­
lular signals such as TPA, BMP-4, and TGF-β[27,28,35]. 
It was also shown that an activated Notch pathway 
is necessary for TGF-β- or BMP-4-mediated inhibition 
of differentiation in fetal myoblasts[27,28]. By contrast, 
embryonic myoblasts are insensitive to TGF-β and 
BMP-mediated inhibition of differentiation[27,28]. TPA 
inhibits the differentiation of fetal myoblasts, but not 
that of embryonic myoblasts and satellite cells, possibly 
through the activation of PKC[27,28,36]. The PDGF receptor 
was reported to be expressed in embryonic myoblasts 
and adult myoblasts, but not in fetal myoblasts in the 
chick, suggesting that PDGF is involved in regulation 
of the transition of myogenesis[27,28,37]. Such different 
sensitivities to external stimuli not only explain the 
different timings of the differentiation of embryonic, 
fetal, and adult myoblasts during development but 
are also informative to make engrafted myoblasts 
participate efficiently in muscle repair.

cell transplantation of iPSC-
derived muscle progenitor cells
Allogeneic transplantation of immune-compatible donor 
cells vs genome-edited autologous cell transplantation 
Although the extent to which patient-derived iPSCs 
and their derivatives evoke immune reactions when 
transplanted into the same patient is still unclear[38,39], 
recent tools for genome editing, such as CRISPR/Cas9, 
help in the preparation of gene-corrected cells from 
patients for autologous cell transplantation. For DMD, 
gene correction by homologous recombination is ideal, 
but restoration of the reading frame by exon skipping at 
the genomic level or by inserting a small DNA fragment 
is another option to obtain autologous, functional 
cells[40]. Recently, Young et al[41] demonstrated a large 
CRISPR/Cas9-mediated deletion of 725 kb of DMD 
(deletion of DMD exon 45-55), resulting in reframed 
and functional DMD iPSCs. Genome editing can also 
generate PAX7 or MYF5 reporter iPSC lines to monitor 
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muscle differentiation[42,43] or disease-specific iPSCs 
carrying various gene mutations in the same genetic 
backgrounds. On the other hand, hiPS stocks are under 
construction for allogeneic transplantation of immune-
compatible donor cells (https://www.cira.kyoto-u.
ac.jp/e/research/stock.html). The use of iPS stock of 
a guaranteed quality is less time consuming and more 
economical. 

Xenotransplantation 
Thus far, a limited number of reports have described 
the efficient engraftment of human iPSCs-derived 
myogenic cells in animal models[18,20,21,24]. Most studies 
have used immune-deficient, dystrophin-deficient mdx 
mice as recipients. Recently, NSG-mdx4Cv mice have 
been developed for xenotransplantation. NSG mice 
were generated by mating NOD/Scid mice with IL2 
receptor gamma chain-null mice. NSG mice were then 
crossed with mdx4Cv mice[44]. The Central Institute for 
Experimental Animals in Japan established NOG (NOD/
Shi-scid/IL-2Rγnull)-mdx mice, which have a different 
mutation in the IL-2 receptor gamma gene, and are also 
expected to be good recipients of human iPSC-derived 
muscle progenitor cells (https://www.ciea.or.jp/about/
reports/pdf/report/59_report.pdf). In many studies of 
xenogeneic transplantation, the hindlimb muscles of 
host mice are X-irradiated to kill endogenous satellite 
cells. A highly toxic venom, cardiotoxin, or BaCl2 is 
also used to damage the TA muscle 24 or 48 h before 
cell transplantation. Both X-irradiation and cardiotoxin 
injection effectively increase the contribution of engrafted 
cells to muscle regeneration; however, the effect is not 
physiological and cannot be applied to human recipients.

Delivery 
Because most muscular dystrophies affect muscles of 
the whole body, the final goal of cell therapy is to deliver 
myogenic progenitors via the circulation. However, 
satellite cells and myoblasts cannot be delivered via 
the circulation. Mesoangioblasts have been reported 
to be systemically delivered and ameliorate dystrophic 
phenotypes in murine and canine models[45,46]. There­
fore, the induction of mesoangioblasts from human 
ES/iPSCs is an attractive strategy to target the whole 
musculature. Tedesco et al[47] reported induction of 
mesoangioblast-like myogenic cells from iPSCs. Be­
cause the iPSC-derived mesoangioblast-like cells did 
not spontaneously differentiate into skeletal muscle, the 
authors overexpressed MyoD-estrogen receptor fusion 
protein in them and induced myogenic differentiation 
by tamoxifen administration after intramuscular trans­
plantation. 

EVALUATION METHOD FOR PROOF-OF-
CONCEPT IN XENOTRANSPLANTATION
Histological and immunohistochemical analysis 
Reduced necrotic fibers (H and E staining), fibrosis 

(Masson’s trichrome), and adipogenesis (oil red O), 
increased fiber diameter and muscle mass, and reduced 
inflammation are all indicative of the therapeutic effects 
of cell therapy. The percentage of central nuclei is 
not suitable for evaluation because, once myofibers 
regenerate, nuclei stay in the central position for a long 
time. Myofibers formed by transplanted cells are immu
nohistochemically detected using antibodies against 
human proteins, such as human laminA/C (nuclear 
membrane) or human spectrin (sarcolemma). The 
widely used human spectrin antibody (clone RBC2/3D5) 
reacts with mouse utrophin[48], and dystrophin recog­
nizes revertant fibers. In fact, we experienced high levels 
of dystrophin expression in NSG-mdx4Cv mice (0.84% 
in the TA muscle of 6-mo-old males) (data not shown). 
Rozkalne et al[48] advised against relying on the detection 
of a single protein, but performing multiple human-
specific labels and detecting dystrophin and dystrophin-
associated proteins at the sarcolemma instead. 

Muscle function
The improvement of muscle function is the most reliable 
proof-of-concept for cell therapy of muscular dystrophy. 
The measurement of the tetanic and specific force of 
an isolated single myofiber or muscle tissues in vitro 
is one of the widely used evaluation methods, but it 
is technically difficult. To obtain reproducible data, a 
system was developed in which the torque of the ankle 
of mice (planter flexion) is measured after the injection 
of myogenic stem/progenitor cells into gastrocnemius 
muscles. The measurement can be performed under 
anesthesia at different time points (http://www.brck.
co.jp/application/files/3614/1523/5703/BRCsogo20­
11_P145.pdf). 

In vivo survival and 
differentiation of TRANSPLANTED 
CELLS
The efficiency of the transplantation of muscle stem/
progenitor cells depends both on the intrinsic properties 
of the transplanted cells and on the microenvironment 
in the diseased muscle. Sakai et al[49] reported that 
mouse satellite cells showed many more dystrophin-
positive fibers than mouse fetal muscle progenitors after 
intramuscular transplantation into dystrophin-deficient 
mdx mice. By contrast, Tierney et al[50] demonstrated 
that fetal muscle stem cells expand and contribute 
to muscle repair more efficiently than satellite cells 
after transplantation. Although the reasons for the 
discrepancy in the results are unclear, the studies sug­
gest that the efficiency of transplantation depends 
largely on the intrinsic properties of the cells. Therefore, 
it is important to determine the signals that differently 
regulate the survival, proliferation, and differentiation 
of muscle stem/progenitor cells derived from hiPSCs. 
In addition, the microenvironment of diseased muscle 
might inhibit the survival and differentiation of engra­
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fted cells. For example, fibrosis, an impaired blood 
supply, an inflammatory environment, and an activat
ed immune response all inhibit the ability of engrafted 
cells to survive, proliferate, and differentiate to fuse 
host myofibers. The reconstitution of a regeneration-
friendly microenvironment using a scaffold filled with 
regeneration-supportive ECM and cytokines, and the 
suppression of inflammatory responses would be 
effective.

Tumor formation by iPS 
cell-derived myogenic cells 
Tumor-like growth in the host muscle after the trans­
plantation of hiPS-derived muscle progenitor cells is 
occasionally observed. However, few publications have 
examined this problem extensively. In our opinion, the 
causes of tumorigenesis can be divided into at least 
three categories. The first cause is residual pluripotent 
stem cells in the transplanted population, which form 
teratomas. Teratoma is rare, and the elimination of 
undifferentiated pluripotent cells using FACS and human 
ES/iPSC markers such as SSEA4 or TRA-1-60 or by 
a recombinant lectin-toxin fusion protein would be 
effective[51]. The second cause is genetic abnormalities 
of human iPSCs ranging from gross karyotypic abnor­
malities to sub-chromosomal abnormalities (gene 
duplication, deletions, point mutation, de novo copy 
number variations (CNVs). Mutations are reported 
to occur during the derivation and culture of human 
ES/iPSCs and are supposed to be responsible for 
tumor formation after the transplantation of hiPS-
derived progenitor cells[52,53]. Re-activation of transgenic 
oncogenes like c-Myc or KLF4 used for reprogramming 
is often related to the overgrowth of transplanted 
cells. These genetic abnormalities should be carefully 
examined before clinical application. The third cause 
is immature progenitors that fail to differentiate into 
mature cells for unknown reasons and continue to 
proliferate in transplanted tissues. In fact, we occa­
sionally observed that hiPSC-derived myogenic cells 
overgrew in the muscle of immune-compromised 
mice. A similar phenomenon was observed in the trans­
plantation of neurogenic cells. Interestingly, Ogura 
et al[54] reported that a Notch inhibitor promoted 
the differentiation of immature, actively proliferating 
progenitors, resulting in reduced tumor-like growth and 
engraftment of mature neurons in animal models of 
Parkinson’s disease. Similar results have been reported 
in a mouse model of spinal cord injury[55]. Whether 
such differentiation-resistant neuronal progenitor cells 
carry specific genetic abnormalities is not clear. Detailed 
characterization of cells that proliferate without terminal 
differentiation in transplanted muscle and investigation 
of the signaling pathways controlling self-renewal and 
differentiation of progenitors would be needed.

DISEASE MODELING IN VITRO USING 
PATIENT-DERIVED IPSCS 
Successful examples of disease modeling 
iPSCs derived from patients are useful for the eluci­
dation of molecular pathogenesis and drug discovery. 
Various muscle disease-specific iPSCs have already 
been generated and deposited in a cell bank (e.g., 
http://cell.brc.riken.jp/en/; https://catalog.coriell.
org/). The CRISPR/Cas9 technique further widened 
the possibility of examining the molecular pathology of 
ultra-rare diseases. For Duchenne muscular dystrophy 
(DMD), several groups have already reported that 
DMD-iPSCs-derived muscle cells show disease-specific 
phenotypes in vitro; Choi et al[56] reported the aberrant 
expression of inflammation or immune-response genes 
and reduced fusion competence of DMD-iPS-derived 
myogenic cells. Shoji et al[57] reported a pronounced 
calcium ion influx only in DMD myotubes, which were 
rescued by morpholino-mediated exon-skipping to skip 
a premature stop codon. Chal et al[24] reported that 
fibers derived from the ES cells of mdx mice exhibited 
an abnormal branched phenotype resembling that 
described in vivo. For other muscular dystrophies, 
Tanaka et al[15] demonstrated defective membrane repair 
in hiPSC-derived myotubes from a Miyoshi myopathy 
patient and phenotypic rescue by the expression of 
full-length DYSFERLIN. Snider et al[58] reported that 
hiPSCs express full-length DUX4, and the differentiation 
of control iPSCs to embryoid bodies suppresses the 
expression of full-length DUX4, whereas the expression 
of full-length DUX4 persists in differentiated iPSCs 
derived from patients with FSHD (facio-scapulo-humeral 
muscular dystrophy). Iovino et al[59] have created a 
novel cellular model of human muscle insulin resistance 
by differentiating iPSCs from individuals with mutations 
in the insulin receptor into functional myotubes and 
characterizing their response to insulin compared with 
controls. These successful in vitro disease models using 
patient-iPSCs are encouraging and useful for screening 
new drugs.

Neuromuscular junction
Maturation of skeletal muscle derived from human iPSCs 
in vitro is generally limited, partly because myofibers 
mature under innervation. However, neuromuscular 
junction (NMJ) formation in vitro is still challenging[60]. 
Morimoto et al[61] reported three-dimensional (3D) free-
standing skeletal muscle fibers co-cultured with motor 
neurons. Yoshida et al[62] generated an NMJ-like structure 
using motor neurons derived from SMA patient-speci­
fic iPSCs and myotubes formed by C2C12 cells. Im­
portantly, the clustering of acetylcholine receptors (AChR) 
is severely impaired. The authors further showed that 
valproic acid or antisense oligonucleotide-targeting 
splice-silencing motifs in intron 7 of SMN2 ameliorated 
the AChR clustering defects, by increasing the level of 
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SMN2 transcripts[62]. 

Mechanical stress
Mechanical stress is needed for the maturation of 
hiPSC-derived muscle. A decellularized ECM scaffold 
filled with hiPSC-derived muscle progenitor cells might 
help us to obtain functional skeletal muscle tissue under 
physiological mechanical stress.

Induction of diverse myofibers in the body
Our musculature is composed of many types of muscle 
in the body: Cranial muscle, trunk muscle, and limb 
muscle. They have different developmental origins and 
programs. Each muscle is composed of slow or fast 
myofibers expressing different types of myosin heavy 
chain genes[63]. To faithfully mirror the physiology 
and pathology in vivo, such differences should be 
considered, although an induction method for diverse 
types of myofibers is at present challenging. 

CONCLUSION
To maximally utilize the benefits of iPS technology 
for the cell therapy of devastating muscle disorders, 
a standardized protocol to constantly and efficiently 
induce skeletal muscle stem/progenitor cells from 
hiPSCs in a short time at low cost is desirable. Reduction 
of the risk of tumorigenesis and systemic delivery of 
therapeutic cells to the wider musculature are also 
required, and they are still highly challenging. For the 
modeling of disease, maturation of myotubes into adult-
type myofibers in vitro, including the reconstitution of 
the neuromuscular junction, would be helpful. 
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