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Abstract
Bilirubin, a major end product of heme breakdown, 
is an important constituent of bile, responsible for its 
characteristic colour. Over recent decades, our under-
standing of bilirubin metabolism has expanded along 
with the processes of elimination of other endogenous 
and exogenous anionic substrates, mediated by the 
action of multiple transport systems at the sinusoidal 
and canalicular membrane of hepatocytes. Several 
inherited disorders characterised by impaired bilirubin 
conjugation (Crigler-Najjar syndrome type Ⅰ and type 
Ⅱ, Gilbert syndrome) or transport (Dubin-Johnson and 
Rotor syndrome) result in various degrees of hyperbili-
rubinemia of either the predominantly unconjugated or 
predominantly conjugated type. Moreover, disrupted 
regulation of hepatobiliary transport systems can ex-
plain jaundice in many acquired liver disorders. In this 
review, we discuss the recent data on liver bilirubin 
handling based on the discovery of the molecular basis 
of Rotor syndrome. The data show that a substantial 
fraction of bilirubin conjugates is primarily secreted by 

MRP3 at the sinusoidal membrane into the blood, from 
where they are subsequently reuptaken by sinusoidal 
membrane-bound organic anion transporting polypep-
tides OATP1B1 and OATP1B3. OATP1B proteins are 
also responsible for liver clearance of bilirubin conju-
gated in splanchnic organs, such as the intestine and 
kidney, and for a number of endogenous compounds, 
xenobiotics and drugs. Absence of one or both OATP1B 
proteins thus may have serious impact on toxicity of 
commonly used drugs cleared by this system such as 
statins, sartans, methotrexate or rifampicin. The liver-
blood cycling of conjugated bilirubin is impaired in cho-
lestatic and parenchymal liver diseases and this impair-
ment most likely contributes to jaundice accompanying 
these disorders. 

© 2013 Baishideng. All rights reserved.

Key words: Hyperbilirubinemia; Hereditary jaundice; 
UGT1A1; ABCC2; Organic anion transporting polypep-
tide 1B1; Organic anion transporting polypeptide 1B3

Core tip: Experiments with Oatp1a /1b -null mice and 
Oatp1a /1b ; Abcc3  combination knockout mice plainly 
demonstrated that even under physiologic conditions 
a substantial portion of bilirubin glucuronides is not 
excreted directly into bile but is transported back to 
the blood by Abcc3. Oatp1a/1b  activity accentuated in 
downstream (centrizonal) hepatocytes allows efficient 
reuptake of bilirubin conjugates, with a subsequent 
possibility being safely eliminated by excretion into bile. 
This and molecular findings in Rotor syndrome suggest 
that human transporters MRP3 and OATP1Bs form a 
sinusoidal liver-to-blood cycle which mediates shifting 
(hopping) of bilirubin and other substrates from peri-
portal to centrizonal hepatocytes (References 18, 19, 
22, 125).
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INTRODUCTION
Bilirubin is the end product of  heme breakdown. About 
80% of  bilirubin originates from degradation of  eryth-
rocyte haemoglobin in the reticuloendothelial system; the 
remaining 20% comes from inefficient erythropoiesis in 
bone marrow and degradation of  other heme proteins[1-4]. 
Water insoluble, unconjugated bilirubin (UCB) bound to 
albumin is transported to the liver where it is removed 
from the plasma. The exact mechanism of  UCB uptake 
is unknown; however, passive transmembrane diffusion 
seems to be combined with active transport mediated by 
several sinusoidal transporters (see below). Within the 
cytoplasm of  hepatocytes, bilirubin is bound to ligandin 
and transported to endoplasmic reticulum where conju-
gation with glucuronic acid takes place. Conjugation is 
catalysed by the enzyme uridine diphosphate glycosyl-
transferase 1A1 (UGT1A1; EC2.4.1.17), a member of  an 
enzyme family in the endoplasmic reticulum and nuclear 
envelope of  hepatocytes[5-8]. In addition to the liver, UGT 
activity has also been detected in the small intestine and 
kidney[9,10]. UGT1A1 gene (ID: 54658) is a part of  a com-
plex locus encoding 13 UDP-glucuronosyltransferases[11]. 
The locus contains a series of  thirteen unique alternate 
promoters and first exons, followed by four common 
exons No. 2-5. Theoretically, each of  the unique first ex-
ons is spliced to the first of  the four shared exons. The 
unique first exons encode different substrate binding 
domains whereas the other functional domains encoded 
by the shared exons 2-5 are the same[11-15]. In reality, only 
9 of  the 13 predicted UGT1As are active genes encoding 
functional enzymes; four are nonfunctional pseudogenes.

The excretion of  conjugated bilirubin into bile is me-
diated by an ATP-dependent transporter identified as the 
multidrug resistance-associated protein MRP2/cMOAT 
and, to a lesser extent, also by ATP-binding cassette 
(ABC) efflux transporter ABCG2. MRP2 is encoded by 
ABCC2 and expressed under physiologic conditions at 
the apical (canalicular) membrane of  hepatocytes and, 
to a much lesser extent, in the kidney, duodenum, ileum, 
brain and placenta[16]. Since the MRP2 mediated export 
represents an important step in detoxification of  many 
endogenous and exogenous substrates, the absence of  
functionally active MRP2 prevents the secretion of  these 
conjugates into bile. Absence of  MRP2 mediated trans-
port is followed by upregulation of  the basolateral MRP2  
homologues at the sinusoidal membrane of  hepatocytes 
and conjugated bilirubin flow is redirected into sinusoidal 
blood[17]. Aside from MRP2 mediated transport of  conju-
gated bilirubin into bile, recent studies have shown that a 
significant fraction of  the bilirubin conjugated in the liver 
is, under physiologic conditions, secreted into sinusoidal 
blood and subsequently reuptaken by hepatocytes for fi-

nal biliary excretion[18,19]. The process is mediated by sinu-
soidal transporters MRP3 and organic anion-transporting 
polypeptides OATP1B1 and OATP1B3. OATP1B trans-
porters facilitate sodium-independent uptake of  numer-
ous endogenous and exogenous substrates[20,21]. Since 
expression of  OATP1Bs is higher in centrilobular hepa-
tocytes, the MRP3-OATP1B1/3 loop is likely responsible 
for shifting (hopping) of  conjugated bilirubin and other 
substrates from the periportal to the centrilobular zone 
of  the liver lobule (Figure 1). Such intralobular substrate 
transfer may protect periportal hepatocytes against el-
evated concentrations of  various xenobiotics[22]. In addi-
tion, the OATP1B proteins mediate hepatic clearance of  
bilirubin conjugated in splanchnic organs and may rep-
resent an important alternative pathway in enterohepatic 
circulation[18]. 

OATP1Bs may also contribute to liver uptake of  
UCB since complete absence of  both OATP1Bs in Ro-
tor syndrome (RS, see below) is associated with elevated 
levels of  UCB and single nucleotide polymorphisms in 
genes encoding OATP1B proteins have been shown to 
influence serum bilirubin level[23,24]. Furthermore, results 
of  functional studies demonstrate that OATP1B3, but 
not OATP1B1, may play an important role in the carrier-
mediated uptake of  foetal UCB by the placental tropho-
blast and contribute to elimination of  UCB across the 
placental barrier[25,26].

Mild or moderately elevated serum bilirubin seems 
to be beneficial: Bilirubin is known as a strong antioxi-
dant[27,28] and the protective effects of  bilirubin on athero-
genesis and cancerogenesis have been demonstrated in 
both in vitro and in vivo studies[29-33]. On the other hand, 
patients with profound unconjugated hyperbilirubinemia 
are at risk for bilirubin encephalopathy (kernicterus)[34,35]. 
The toxic effects of  bilirubin are explained by inhibi-
tion of  DNA synthesis[36]. Bilirubin may also uncouple 
oxidative phosphorylation and inhibit adenosine triphos-
phatase (ATPase) activity of  brain mitochondria[37,38]. 
Bilirubin mediated inhibition of  various enzyme systems, 
RNA synthesis and protein synthesis in the brain and 
liver, and/or alteration of  carbohydrate metabolism in 
the brain can also contribute to its toxicity[39-43]. The ac-
cumulation of  bilirubin in plasma and tissues results in 
characteristic yellow discoloration of  tissues known as 
icterus or jaundice.

Inherited disorders of  bilirubin excretory pathway 
played the key role in understanding the individual steps 
of  the bilirubin excretory pathway. Disrupted regulation 
of  hepatobiliary transport systems explained jaundice 
in many acquired liver disorders[44-48]. Additional infor-
mation was obtained from a number of  animal models 
of  hereditary jaundice. These include the Gunn rat and 
Ugt1(-/-) mouse mimicking the Crigler-Najjar syndrome 
type Ⅰ[49-51], the Bolivian population of  squirrel monkeys 
mimicking Gilbert syndrome (GS)[52,53] and mutant TR or 
GY (Groningen yellow) rats with organic anion excretion 
defect (TR -/-), Eizai hyperbilirubinuria rats (EHBR), 
mutant Corriedale sheep, and Mrp2(-/-) mice, all model-
ling the Dubin-Johnson syndrome (DJS)[54-58].
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HEREDITARY PREDOMINANTLY 
UNCONJUGATED HYPERBILIRUBINEMIA
Conjugation of  bilirubin in endoplasmic reticulum is ca-
talysed by the enzyme UGT1A1. Mutations in UGT1A1 
can lead to decreased expression or partial or even com-
plete inactivation of  the enzyme[59]. By contrast, expres-
sion of  UGT1A1 can be increased by phenobarbital (PB) 
administration. PB response activity is delineated to a 
290-bp distal enhancer module sequence (-3483/-3194) 
glucuronosyltransferase phenobarbital response enhanc-
ing motif  (gtBPREM) of  the human UGT1A1[59,60]. 
gtBPREM is activated by the nuclear orphan receptor, 
human constitutive active receptor (hCAR). CAR is a cy-
toplasmic receptor which, after treatment with activators 
such as PB, translocates into the nucleus, forms a het-
erodimer with the retinoid X receptor and activates the 
PB response enhancer element. 

Three types of  inherited, predominantly unconju-
gated hyperbilirubinemia with different levels of  UG-
T1A1 activity are recognised: Crigler-Najjar syndrome 
type Ⅰ (CN1), type Ⅱ (CN2) and GS.

CN1 (MIM#218800), the most deleterious form, de-
scribed in 1952 by Crigler and Najjar[61], is characterised 
by complete or almost complete absence of  UGT1A1 
enzyme activity with severe jaundice[62]. Icterus occurring 
shortly after birth is complicated by bilirubin encephalop-
athy (kernicterus). Until the introduction of  photother-
apy and plasmapheresis, kernicterus was fatal in almost 
all cases during the first two years of  life or caused seri-

ous brain damage with permanent neurologic sequelae. 
Intermittent phototherapy is lifelong and it results in a 
thorough elimination of  water-soluble photoisomers of  
unconjugated bilirubin via bile. The effectiveness of  pho-
totherapy may decrease gradually with age and patients 
are at higher risk of  sudden brain damage[63].

Although new treatment modalities such as hepa-
tocyte or hepatic progenitor cell transplantation have 
already been used to treat CN1 patients, liver transplanta-
tion is still considered to be the only definitive treatment 
for CN1[63-67]. Gene therapy seems to be a promising 
therapeutic possibility for the patients with CN1 in the 
near future[68,69].

CN2 (Arias syndrome, MIM #606785), described by 
Arias in 1962[70], is characterised by reduced UGT1A1 
enzyme activity with a moderate degree of  nonhemolytic 
jaundice. Bilirubin levels do not exceed 350 µmol/L and 
CN2 is only rarely complicated by kernicterus[71]. Virtually 
all the mutations responsible for the syndrome are auto-
somal recessive, as in CN1, but several observations have 
also suggested the possibility of  autosomal dominant 
pattern of  inheritance[72-74].

An important clinical difference between CN type Ⅰ and 
type Ⅱ is the response to PB treatment, with no effect in 
type Ⅰ (complete loss of  the UGT1A1 enzyme activity) 
and a decrease of  serum bilirubin levels by more than 
30% in CN type Ⅱ (some residual UGT1A1 activity is 
preserved). Moreover, bilirubin glucuronides are pres-
ent in bile in CN2. However, the method of  choice for 
the diagnosis of  CN syndrome is mutation analysis of  
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Figure 1  Liver cycle of conjugated bilirubin. Bilirubin conjugated in endoplasmic reticulum of hepatocytes is secreted into the bile. This process is mediated by 
MRP2/ABCC2 with possible minor contribution of other transporters (ABCG2) at the canalicular membrane of hepatocytes. In addition, even under physiologic condi-
tions, a fraction of bilirubin conjugates is secreted by MRP3 across the sinusoidal membrane into the blood, from where they can be subsequently reuptaken by sinu-
soidal membrane-bound OATP1B1 and OATP1B3 transporters. The highest overall expression of OATP1Bs has been demonstrated at the centrilobular hepatocytes. 
The process of substrate shifting (hopping) from periportal to centrizonal hepatocytes may act as a protection of the periportal hepatocytes against elevated concen-
trations of various xenobiotics. MRP: Multidrug resistance-associated protein; OATP: Organic anion transporting polypeptide; UGT: Uridine diphosphate glucuronosyl-
transferase; ABC: ATP-binding cassette. 
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development of  prolonged neonatal hyperbilirubinemia 
in breast-fed infants[93,94].

 Moreover, since the process of  glucuronidation is an 
important step in elimination of  numerous endogenous 
and exogenous substrates, GS subjects may be more sus-
ceptible to the adverse effects of  some drugs metabolised 
by UGT1A1, such as indinavir, atazanavir[95-99] or irinote-
can[100-102].

HEREDITARY PREDOMINANTLY 
CONJUGATED HYPERBILIRUBINEMIA
Two types of  hereditary conjugated jaundice are known 
as Dubin-Johnson and Rotor syndrome. Both are charac-
terised by the presence of  mixed, predominantly conju-
gated hyperbilirubinemia, with conjugated bilirubin more 
than 50% of  total bilirubin. 

DJS (MIM # 237500), a benign autosomal recessive dis-
order described in 1954 by Dubin et al[103] and Sprinz et al[104], 
is characterised by fluctuating mild, predominantly con-
jugated hyperbilirubinemia, with typical manifestation 
in adolescence or young adulthood. Most patients are 
asymptomatic except of  occasional slight abdominal pain 
and fatigue. Urine excretion of  total coproporphyrin in 
24 h is normal, but 80% are represented by coproporphy-
rin I. Biliary excretion of  anionic dyes including bromo-
sulfophthalein (BSP), indocyanine green and cholescintig-
raphy radiotracers is delayed with absent or delayed filling 
of  the gallbladder[105]. BSP clearance in DJS subjects is 
normal at 45 min with the second peak at 90 min[106]. 
Liver histology in DJS shows an accumulation of  distinc-
tive melanin-like lysosomal pigment in an otherwise nor-
mal liver that gives the organ a characteristic dark pink 
or even black colour. The pigment is positive in PAS and 
Masson-Fontana reaction with marked autofluorescence. 
In contrast to melanin, DJS pigment does not reduce 
neutral silver ammonium solution[103,107]. The amount of  
pigment may vary and possible transient loss may oc-
cur in coincidence with other liver diseases[108,109]. The 
molecular mechanism in DJS is absence or deficiency of  
human canalicular multispecific organic anion transporter 
MRP2/cMOAT caused by homozygous or compound 
heterozygous mutation in ABCC2 (gene ID: 1244) on 
chromosome 10q24[110-114]. The ABCC2 mutation alters 
not only MRP2-mediated transport of  conjugated biliru-
bin but also transport of  many anionic substrates as well 
as a wide range of  drugs, such as chemotherapeutics, uri-
cosurics, antibiotics, leukotrienes, glutathione, toxins and 
heavy metals. Absence of  MRP2/cMOAT may result in 
impaired elimination and in subsequent renal toxicity of  
the substrates mentioned above[115-120].

A rare type of  hereditary mixed hyperbilirubine-
mia caused by the simultaneous presence of  mutations 
characteristic for DJS and GS has been classified as dual 
hereditary jaundice[121]. Serum direct bilirubin concentra-
tions in dual hereditary jaundice reach only 20%-50% of  
total bilirubin.

RS (MIM #237450), described in 1948 by Rotor et al[122], 

UGT1A1[75].
GS (MIM #143500), described in 1901 by Gilbert and 

Lereboulet[76], is characterised by fluctuating mild, uncon-
jugated nonhemolytic hyperbilirubinemia < 85 µmol/L 
without overt haemolysis, usually diagnosed around pu-
berty, and aggravated by intercurrent illness, stress, fast-
ing or after administration of  certain drugs[77,78]. Physical 
examination and the results of  routine laboratory tests 
are normal apart from elevated serum bilirubin and jaun-
dice. The clinical diagnosis of  GS can be established if  
patients have a mild, predominantly unconjugated hyper-
bilirubinemia and normal activity of  liver enzymes. The 
reduced caloric intake test and phenobarbital stimulation 
test have low diagnostic specificity in GS subjects[79]. 
Histological findings in GS are mild, with a slight cen-
trilobular accumulation of  pigment with lipofuscin-like 
properties[80]. Ultrastructurally, hepatocytes reveal hyper-
trophy of  smooth endoplasmic reticulum[81,82]. Since the 
morphological picture of  GS is completely non-specific 
and the disorder is benign, liver biopsy is not indicated.

GS is characterised by reduced levels of  UGT1A1 
activity to about 25%-30% caused by homozygous, com-
pound heterozygous, or heterozygous mutations in the 
UGT1A1 with autosomal recessive transmission[80]. 

GS is the most frequent hereditary jaundice affect-
ing nearly 5%-10% of  the Caucasian population[83]. 
The genetic basis of  GS was first disclosed in 1995[84] 
as presence of  the allele UGT1A1*28, characterised by 
insertion of  TA in the TATAA box (A[TA]7TAA) in the 
proximal promoter of  UGT1A1. UGT1A1*28 has been 
identified as the most frequent mutation in Caucasian 
GS subjects[85]. The insertion is responsible for reduc-
tion of  transcription of  UGT1A1 to 20% from normal 
and for a decrease of  hepatic glucuronidation activity by 
80% in a homozygous state[86]. In Caucasians and Afri-
can Americans, the frequency of  UGT1A1*28 allele is 
about 35%-40%, but it is much lower in Asians, including 
Koreans (13%), Chinese (16%), and Japanese (11%)[87-89]. 
Moreover, in the majority of  Caucasian GS subjects, 
expression of  UGT1A1 is further decreased by the pres-
ence of  the second mutation T>G in gtPBREM[59,60]. 
In addition to the mutations in the promoter, GS may 
be caused by mutations in structural regions of  the 
UGT1A1. In Asians, other variants, such as UGT1A1*6 
characterised by a missense mutation involving G to A 
substitution at nucleotide 211 (c.211G>A) in exon 1 (also 
known as p.G71R), UGT1A1*7 (p.Y486D), UGT1A1*27 
(p.P229Q), and UGT1A1*62 (p.F83L) have been detect-
ed[60,87-90].

In addition to biochemical defect leading to reduced 
glucuronidation, other factors, such as impaired hepatic 
(re)uptake of  bilirubin (see Rotor syndrome below for 
the possible mechanism) or an increased load of  bi-
lirubin, seem to be necessary for clinical manifestation of  
GS[86,91,92].

GS is benign and GS carriers present with no liver 
disease. However, the mutations in the UGT1A1 identical 
to those recognised in GS subjects may contribute to the 
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is characterised by mild, predominantly conjugated hy-
perbilirubinemia with delayed excretion of  anionic dyes 
without re-increase of  their concentration. Total urinary 
coproporphyrin excretion is significantly increased and 
the proportion of  coproporphyrin Ⅰ in urine is approxi-
mately 65% of  the total in homozygotes and 43% in 
heterozygotes[123,124]. By histopathological examination, 
the liver tissue does not display any marked architectural 
or cytomorphological abnormalities and pigment is not 
present.

The presence of  homozygous mutations in both 
SLCO1B1 and SLCO1B3 neighbouring genes located on 
chromosome 12 with complete and simultaneous defi-
ciency of  proteins OATP1B1 and OATP1B3 has recently 
been identified as the molecular mechanism of  the syn-
drome[125]. The complete absence of  both transporters 
OATP1B1 and OATP1B3 has been confirmed by immu-
nohistochemistry in all studied Rotor subjects. Interest-
ingly, the presence of  a single functional allele of  either 
SLCO1B1 or SLCO1B3 prevented the jaundice.

RS does not require any therapy but, with regard to 
the impact of  OATP1B transporters on pharmacokinet-
ics of  a broad spectrum of  commonly used drugs such 
as penicillins, statins, sartans, rifampicin, methotrexate 
and many others, it is assumed that RS subjects and also 
those with the deleterious mutations in either of  the SL-
CO1B genes, even without full clinical expression of  the 
syndrome, may be at increased risk for drug toxicity[125-129].

BILIRUBIN HANDLING PROTEINS IN 
CHOLESTASIS
Animal models of  obstructive and intrahepatic cholesta-
sis help us to discover and understand the main princi-
ples of  acquired defects in hepatobiliary transport of  bile 
salts and other organic anions. Up and down regulation 
of  these mechanisms can explain impaired liver uptake 
and excretion of  the biliary constituents resulting in the 
cholestasis and icterus which accompanies many com-
mon acquired liver disorders[48,130,131]. A general pattern of  
response to cholestatic liver injury is initiated by down-
regulation of  the basolateral membrane bound transport-
ers NTCP and OATP1B1. The expression of  several 
canalicular export pumps is relatively unaffected [bile 
salt export pump (BSEP), multidrug resistance protein 
2 (MDR2)] or even upregulated (MDR1). Decreased ex-
pression of  MRP2 in sepsis or in obstructive cholestasis 
is followed by upregulation of  several MRP homologues 
at basolateral membrane of  hepatocytes that may extrude 
bile salts back to the sinusoidal blood and systemic circu-
lation. Most of  these changes are believed to help prevent 
an accumulation of  potentially toxic bile components and 
other substrates in the liver.

Similar patterns of  expression of  the bilirubin and 
bile salts handling proteins and mRNA are observed in 
cholestatic liver diseases in humans. At the stage Ⅰ and Ⅱ 
of  primary biliary cirrhosis (PBC), expression and locali-
sation of  OATP1B1, OATP1B3, NTCP, MRP2, MRP3 

and MDR3 are unchanged. At stage Ⅲ, immunostaining 
intensities of  the sinusoidal uptake transporters and their 
mRNA levels decrease. Irregular MRP2 immunostain-
ing suggests redistribution of  MRP2 into intracellular 
structures in the advanced stages of  PBC; however, at 
stage Ⅲ and Ⅳ, basolateral uptake transporters NTCP 
and OATP1B1 are downregulated. Expression of  the 
canalicular export pumps for bile salts (BSEP) and bi-
lirubin (MRP2) remains unchanged and the canalicular 
P-glycoproteins MDR1 and MDR3 and the basolateral 
efflux pump MRP3 are upregulated[132-135]. 

At the early-stages of  cholestasis in extrahepatic 
biliary atresia, BSEP, MDR3, MRP2, NTCP/SLC10A1, 
SLCO1A2 and nuclear receptor farnesoid X receptor 
are downregulated. At the late-stages of  cholestasis, 
farnesoid X receptor and BSEP levels returns to normal, 
MDR3 and MDR1 are upregulated and MRP2 is down-
regulated[136]. 

In primary sclerosing cholangitis, the level of  OAT-
P1B1 mRNA in liver tissue has been demonstrated to 
represent 49% of  controls and the level of  MRP2 mRNA 
dropped to 27% of  controls[137]. 

CONCLUSION AND PERSPECTIVES
Over the last decades, molecular basis of  hyperbiliru-
binemia syndromes has been elucidated and mutations 
affecting the basolateral and apical membrane transport-
ers responsible for accumulation of  either conjugated or 
unconjugated bilirubin have been identified. 

Except for GS, the majority of  inherited hyperbiliru-
binemia syndromes are rare autosomal recessive disor-
ders with a low prevalence in the general population and, 
apart from CN syndrome type Ⅰ and some cases of  CN 
type Ⅱ in neonatal period, mostly not requiring further 
therapy. Nonetheless, the enzyme and transport systems 
involved in bilirubin metabolism may play an important 
role in the elimination and disposition processes of  many 
other endogenous and exogenous substrates including 
hormones, drugs, toxins and heavy metals[102,138]. Dysfunc-
tion or absence of  these systems, including selected ABC 
transporters and OATPs, may alter pharmacokinetics and 
pharmacodynamics of  many biologically active agents, 
affect penetration of  the substrates into various tissues 
and lead to their intracellular accumulation with a subse-
quent increase of  organ toxicity[126,127,128]. In addition, the 
absence of  the functional transport proteins involved in 
hepatobiliary and enterohepatic circulation may involve 
drug disposition, drug-drug or drug-food interactions 
and result in decreased effectiveness or even resistance to 
a diverse spectrum of  chemotherapeutic agents and xe-
nobiotics[139-141]. Individuals with mutations in the respon-
sible gene or genes with the fully expressed phenotype of  
the corresponding hyperbilirubinemia syndrome, as well 
as subjects carrying mutations without clinical manifesta-
tion of  hyperbilirubinemia under normal conditions, may 
be more susceptible to the adverse effects of  some drugs 
and metabolites[142,143].
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Clarifying the molecular genetic basis of  hereditary 
hyperbilirubinemia syndromes together with the discov-
eries of  the major systems essential for the metabolism 
and transport of  bilirubin and other endogenous and ex-
ogenous substrates represent a substantial contribution to 
the current knowledge of  the heme degradation pathway. 
Further investigation of  how bilirubin transport proteins 
and their variations affect pharmacokinetics of  drugs 
may be of  significant clinical importance.
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