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Abstract
AIM
To develop appropriate humanized three-dimensional 
ex-vivo  model system for drug testing. 

METHODS
Bioengineered humanized livers were developed in this 
study using human hepatic stem cells repopulation 
within the acellularized liver scaffolds which mimics 
with the natural organ anatomy and physiology. Six 
cytochrome P-450 probes were used to enable efficient 
identification of drug metabolism in bioengineered 
humanized livers. The drug metabolism study in 
bioengineered livers was evaluated to identify the 
absorption, distribution, metabolism, excretion and 
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toxicity responses.

RESULTS
The bioengineered humanized livers showed cellular 
and molecular characteristics of human livers. The 
bioengineered liver showed three-dimensional natural 
architecture with intact vasculature and extra-cellular 
matrix. Human hepatic cells were engrafted similar to 
the human liver. Drug metabolism studies provided a 
suitable platform alternative to available ex-vivo  and 
in vivo  models for identifying cellular and molecular 
dynamics of pharmacological drugs.

CONCLUSION
The present study paves a way towards the develop
ment of suitable humanized preclinical model systems 
for pharmacological testing. This approach may 
reduce the cost and time duration of preclinical drug 
testing and further overcomes on the anatomical and 
physiological variations in xenogeneic systems. 

Key words: Acellularization; Repopulation; Drug testing; 
Humanized liver; Bioengineering 

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Liver is the central organ for absorption, 
distribution, metabolism, excretion and toxicity (ADMET) 
of pharmacological drugs and molecules. Available in 
vitro  and in vivo  preclinical models deals with several 
limitations including xenogeneic barrier, lack of natural 
humanized liver architecture and functional responses. 
Bioengineered humanized livers developed in present 
study can overcome on such limitations. This humanized 
liver model system provides better platform which could 
be used more efficiently to screen the ADMET of several 
pipeline drugs and other pharmacological molecules. 
This approach could reduce the time and cost of the 
total drug screening experiments as compared to the 
animal models. It provides enhanced dose response 
relationship by using drug concentrations relative to 
human exposure. Ease of ex-vivo  access of cellular and 
molecular responses in humanized liver model system 
during pharmacological screening also offers high-
throughput studies to determine the cellular response 
networks and toxicity pathways. 

Vishwakarma SK, Bardia A, Lakkireddy C, Nagarapu R, 
Habeeb MA, Khan AA. Bioengineered humanized livers as 
better three-dimensional drug testing model system. World J 
Hepatol 2018; 10(1): 22-33  Available from: URL: http://www.
wjgnet.com/1948-5182/full/v10/i1/22.htm  DOI: http://dx.doi.
org/10.4254/wjh.v10.i1.22

INTRODUCTION
Drug testing has been one of the most critical cha­
llenges faced by the pharmaceutical companies with 

approximately 90% failure due to unpredictable 
adverse events which remain unidentified in preclinical 
phase[1]. The average time to introduce one drug 
to market is approximately 8.5 years from the time 
of clinical testing to Food and Drug Administration 
(FDA) approval which has 21.5% of clinical success 
rate imposing about $2 billion cost per drug[2]. Since 
many years, animal models have been gold standard 
and the most preferred choice of drug testing to 
understand the underlying mechanisms of various 
human pathologies. However, the marked biochemical 
variations, anatomical complexities and physiological 
responses limit the bio-mimetic outcomes of drug 
testing. To overcome these hurdles, patient specific 
stem cells have been employed to recapitulate the 
human pathologies in vitro to evaluate cellular process 
which is also termed as “disease-in-a-dish”[3].

Human primary hepatocytes culture system gives 
closest representation of human liver physiology[4]. 
However, the source of tissue along with phenotypic 
variations represent major limitations[5]. In addition, 
suspension culture of primary human hepatocytes offer 
the maximum drug incubation time for 4-6 h thereby 
requiring high dose of drugs to identify the cellular 
toxicity. Whereas, the monolayer cultures of human 
primary hepatocytes allows drug toxicity study for 4-72 h, 
but the drug metabolism capacity of such cultures 
represent severe downregulation which negatively 
impact the correlation with clinical outcomes[6]. In 
addition, the conventional two-dimensional (2D) cell 
culture systems do not complement the higher order 
processes which further neglect the crucial stimuli for 
cellular organization and function. These drawbacks of 
conventional cultures have been because tissue specific 
functions are dependent on several crucial factors 
other than only cell autonomous system which includes 
extracellular microenvironment with soluble factors, 
physical strength and extra-cellular matrix (ECM)[7]. 
Conventional cultures lack these crucial factors 
for proper cell to cell and cell to microenvironment 
interactions. 

The leveraging tissue-engineering strategies to 
stabilize the functions of primary human hepatocytes 
within the xenogenic liver scaffolds provides unique 
model which can be utilized for better predicting 
human drug responses, pharmacokinetics and meta­
bolic synchronization similar to human system[8,9]. 
Hence, the present study was designed to bioengineer 
humanized livers using more efficient technology of 
whole xenogenic liver acellularization and human 
hepatic stem/progenitor cells repopulation. This 
technology provides biomimetic natural organ scaffold 
with highly intact native ECM, vascular networks 
and mechanical strength. Repopulated cells in these 
acellularized whole liver scaffolds are organized in 
natural manner and perform high level of bio-mimetic 
liver functions better than conventional 2D culture 
systems. 

In present study, the structural and functional 
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advantage of humanized livers has been evaluated 
by testing the metabolism of six cytochrome P-450 
(CYP) probe substrates (phenacetin, diclofenac, 
S-mephenytoin, dextromethorphan, nifedipine and 
testosterone). CYP has been considered the most 
common drug metabolizing enzymes which are profusely 
expressed in liver apart from lungs, kidney, intestine and 
brain etc. The expression level of these CYPs changes 
according to the physiological conditions and disease 
status[10]. Hence studying the behavior of these CYPs 
against different kinds of substrates in humanized liver 
could provide better choice for identifying the pharmacoki­
netics and pharmacodynamics of drugs. This technology 
offers tremendous potential option for pre-clinical phar­
macological drug testing which can reduce the cost, 
time and unpredictable adverse events.

MATERIALS AND METHODS
Spontaneously aborted 10 wk gestation aged human 
fetuses (n = 2) were collected from local maternity 
hospitals after taking written informed consent 
from their parents. The study was approved by the 
Institutional Ethics Committee of Deccan College 
of Medical Sciences, Hyderabad. The study was 
conducted according to the ethical and regulatory 
guidelines of Indian Council of Medical Research 
(ICMR), India.

Establishing the technology for efficient acellularization 
of xenogenic liver
The whole liver was harvested by laparotomy from 
male Wister rats (n = 10, average body weight 
= 180-200 g) having intact hepatic artery and 
portal vein. The rats were obtained from National 
Institute of Nutrition (NIN), Hyderabad, Telangana, 
India. Harvested rat liver was initially perfused with 
heparinized phosphate buffered saline (100 U/mL) 
through portal vein with the help of 22G (gauge) 
intravenous catheter. Following to this, 3.8% of Sodium 
Citrate solution was infused to completely remove 
the red blood cells from liver. Afterwards a sequential 
perfusion was performed through main hepatic artery 
using different concentration gradients of Sodium 
dodecyl sulphate (SDS) at 30 Hg pressure and with 
flow rate of 1 mL/min for 16 h. After obtaining the 
complete acellularized whole liver scaffold, distilled 
water was run for 10min followed by Triton-X-100 
(1.0%) perfusion. Completely acellularized rat liver 
scaffolds (ALS) were preserved in distilled water 
containing antibiotic and antimycotic solutions and 
stored at 4 ℃ until further use. 

Characterization of acellularized liver scaffold 
Identifying the residual nucleic acids: Acellularized 
xenogenic liver scaffolds were first characterized 
for the absence of nucleic acid contents in tissue 
lysate and flow through after 16 h of acellularization. 
Briefly; the lysate of acellularized and native liver was 

prepared by digestion with 0.1% papain solution, 1 
mmol/L EDTA, 7.0 mmol/L cysteine and 1 mol/L NaCl 
in 1 × PBS at 60 ℃ for 48 h in an incubator shaker 
and residual nucleic acid content was quantified using 
spectrophotometric analysis at 260 and 280 nm. 
The ratio of 260/280 nm sample optical density was 
calculated to compare the presence of nucleic acid 
content.

Immunohistochemical staining: Further immuno­
histological staining was performed for the ALS using H 
and E staining. The presence of intact ECM components 
within ALS was determined using immunofluorescence 
staining for collagen, fibronectin and laminin. Briefly; 
ALS was fixed in 4% paraformaldehyde (PFA) and 
further used for the preparation of 3-5 µm thin 
sections which were stained using specific primary 
and secondary antibodies and analyzed under the 
microscope. Parallel analysis was also performed using 
native rat liver sections for comparison. 

Ultra-structure analysis: The ultra-structure analysis of 
ALS was performed using scanning electron microscopy 
(SEM). Section were prepared and fixed in 2.5% (v/
v) Gluteraldehyde in 1 × PBS and further subjected 
to dehydration using graded series of ethanol (50%, 
75%, 80%, 95% and 100%) for 15 min each and 
dried in a HCP-2 critical-point dryer using CO2. The 
cross sections were mounted and subjected for SEM 
analysis using JOEL-JSM 5600 SEM at RUSKA Lab’s 
College of Veterinary Science, SVVU, Rajendranagar, 
Hyderabad, India[11].

Sterilization of ALS: Sterilization of ALS was per­
formed to preserve the functional homology of liver 
matrix. Briefly; the ALS were perfused with 0.1% per-
acetic acid (PAA) for 30 min in laminar chamber at 
room temperature and further exposed to ultra-violet 
(UV) light for 30 min.

Mechanical strength: ALS was subjected to me­
chanical strength analysis following to sterilization 
procedure using mixed tensile strength, suture reten­
tion strength and compressive strength assays[12]. All 
the mechanical properties of ALS were compared with 
the native liver without acellularization. 

Vascular integrity analysis 
Methylene blue dye was infused into the acellularized 
liver through main hepatic artery to check the integrity 
of liver vascular system. The microvasculature and 
the surface capsule integrity was evaluated further by 
increasing the infusion rate using peristaltic pump. 

Derivation and immunomagnetic enrichment of human 
hepatic progenitor cells
Human hepatic cells were isolated from 10 wk gestation 
aged spontaneously aborted human fetal livers following 
the protocol as described in our earlier studies[13,14]. 

Vishwakarma SK et al . Humanized liver for drug testing 
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The enrichment of human hepatic progenitor cells 
(hHPCs) was performed by magnetic activated cell 
sorting (MACS) using epithelial cell adhesion molecular 
(EpCAM) antibody tagged with the iron nanoparticles 
(MiltenyBiotec)[15]. EpCAM+ve enriched cells were 
termed as hHPCs which were further tested for their 
viability and counted using hemocytometer. Human 
HPCs were further characterized for the expression 
of other liver cell specific pluripotent markers using 
immunofluorescence and molecular analysis. Human 
HPCs with more than 90% viability were used for 
repopulating the ALS.

Humanization of acellularized rat liver scaffold
Post-sterilization ALS was transferred to a perfusion 
chamber kept in a CO2 incubator having inlet and outlet 
for the flow of culture media. Initially, Dulbecco’s Modified 
Eagle’s Medium (DMEM)-F12 medium supplemented 
with 10% Fetal Calf Serum (FCS), 0.0036 µg/mL 
insulin, 10 ng/mL Epidermal Growth Factor (EGF), 1 
× antibiotics and antimycotics was perfused through 
cannula connected with the main hepatic artery. 
Following to this, 12 × 106 EpCAM+ve enriched hHPCs 
were resuspended in 5 mL of human hepatic maturation 
medium and infused into ALF through hepatic artery at 
flow rate of 1 mL/min. Recellularized liver was incubated 
for three hours in static culture. The flow through before 
and after incubation was collected to determine the cells 
repopulation efficiency. After static culture, continuous 
fluidic culture was established by supplying culture 
media to the repopulated liver at flow rate of less than 
0.5 mL/min with the help of a peristaltic pump. The 
perfusate was collected after 24, 48 and 72 h of culture 
and used for DNA quantification and release of lactate 
dehydrogenase (LDH). 

Characterization of humanized liver 
SEM: SEM analysis of repopulated liver scaffold (RLS) 
was performed using the standard protocol described 
by Bozzola and Russell (1998)[11]. The humanized liver 
tissues were fixed in 2.5% (v/v) gluteraldehyde in 1 
× PBS and the ultra-structures of these tissues were 
documented using JOEL-JSM 5600 SEM at RUSKA Lab’s 
College of Veterinary Science, SVVU, Rajendranagar, 
Hyderabad, India. 

Immunofluorescence staining: The immunofluo­
rescence staining of repopulated hHPCs in ALS was 
identified using specific antibodies for Glucose-6-
phosphatase catalytic subunit (G6PC) and albumin 
(ALB). 4’,6-diamino-2-phenylindole (DAPI, Sigma) was 
used as counterstain for nuclear components. Stained 
sections were imaged using inverted fluorescence 
microscope (Carl Zeiss, Germany). 

Histology: Histological analysis of RLS was performed 
using H and E staining of liver tissue microsections and 
compared with the native liver. 

Functional analysis: The functional response of 
humanized livers was identified by quantification of 
albumin and glucose-6-phosphatase catalytic subunit 
(G6PC) liver enzyme in culture supernatant at different 
time point’s post-repopulation. 

Drug treatment and metabolism study
Six of the commonly used CYP probe substrates such 
asphenacetin (100 μmol/L) specific to CYP1A2[16], 
diclofenac (25 μmol/L) specific to CYP2C9[17], 
S-mephenytoin (5 μmol/L) specific to CYP2C19[18], 
dextromethorphan (50 μmol/L) as a substrate of 
CYP2D6[19], nifedipine (5 μmol/L) as a substrate of 
CYP3A4 and testosterone (120 μmol/L) as a substrate 
of CYP3A4[20] were used to evaluate cellular metabolism 
in humanized livers in comparison to 2D-cultures. One 
hundred microlitres of each test compound (diluted in 
DMSO water) was infused in repopulated humanized 
livers to maintain final volume of DMSO below 0.2% 
(v/v). The drug metabolism time was set for two hour 
post-treatment in CO2 incubator at 37 ℃ temperature, 
5% CO2 and 95% humid atmospheres. Each of the 
treatment condition was performed in triplicates 
in two separate cohort studies. The reaction was 
terminated using 2 mL of acetonitrile containing 1 
mg/mL celecoxib as internal control. The supernatant 
from each treatment group was transferred in sterile 
glass tubes and the contents were dried using steam 
of nitrogen with the help of multivap evaporator set 
at 40 ℃ (N-evap, Orginomation, Berlin, MA, United 
States). The residue was reconstituted in 200 µL 
mobile phase (A:B, 1:1). One hundred microlitres 
of this reconstituted solution was injected in High-
performance liquid chromatography (HPLC) for further 
analysis.

HPLC analysis
HPLC analysis of drug metabolism was performed as 
earlier described by Rao et al[21] 2003. Briefly; HPLC 
system containing water alliance separation module 
attached with a water photodynamic array detector 
was set at detection range of 190-400 nm. A C18, 
3V column (GL Sciences, Inc, Japan) was used for 
the analysis. A tertiary mobile phase gradient system 
containing three different types of solutions (solution 
A: 0.01 mol/L ammonium acetate having pH 5 and 
acetonitrile 90:10, solution B: 0.01 mol/L ammonium 
acetate having pH 5 and acetonitrile 5:95, and 
solution C: 0.01 mol/L ammonium acetate having 
pH 5 and methanol 5:95). The total run time was 
40 min with gradient flow. Analysis was conducted 
by estimating the peak area at individual UV-spectra 
with the integration of the peak area counts obtained 
from the internal standards. The area counts of each 
test compound were divided by the area counts of 
internal standard within the same analytical run to 
find the area ratio. This calculated area ratio was used 
to determine the percentage depletion of the parent 
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compound after 2 h of metabolism in 3D-humanized 
liver as compared to 2D-culture system. 

Statistical analysis
The data were expressed as mean ± SEM. Each 
experiment was performed in triplicate in two separate 
cohort studies to maintain the reproducibility. During 
metabolism studies, area of the drug was divided by 
the area of internal standard to calculate the area 
ratio. The area ratio obtained at 0 h was considered as 
100% and at 2 h was calculated to get the metabolic 
stability of test compounds. Drug metabolism in each 
group was estimated using the substrate depletion 
approach[22] with the formula: Percentage substrate 
remained in test sample = (ratio of substrate in test 
sample/ratio of substrate in control sample) × 100. 
One way and two way ANOVA was performed using 
Graph Pad Prism (version V) to identify the statistical 
significance among multiple groups. P < 0.05 was 
set as statistical significance for all the variables in 
different groups. 

RESULTS
Bioengineering humanized liver using acellularization 
and repopulation technology
Humanized livers were bioengineered based on 
the acellularization and human HPCs repopula­
tion technology as demonstrated in Figure 1. This 
strategy involves the compete removal of cellular 
components from the total liver through perfusion 
with acellularization reagents. The continuous flow of 
acellularization reagents at fixed speed and pressure is 
maintained with the help of peristaltic pump. 

Characterization of liver tissue scaffolds pre and post-
acellularization 
The optical characterization of liver tissues post-
acellularization showed absence of liver parenchyma 
and non-parenchyma cells. The solid and red color 
whole liver became translucent post-acellularization 
while retaining intact vascular networks (Figure 2). 
Further expression and distribution analysis before and 
after acellularization of whole liver showed intact ECM 
proteins. More specifically, the immunohistochemistry 
of liver key ECM proteins collagen type 1 and fibro­
nectins showed complete preservation of liver ECM 
components post-acellularization. In addition, laminin 
staining showed intact lining of liver vasculature 
representing the intact network of vascular tree within 
the liver post-acellularization. 

Ultra-structural characterization of ALS: SEM 
analysis of ALS showed intact 3D-architecture and 
retention of micro-structures of liver specific ECM 
proteins. The key structural components such as organ 
vasculatures were well maintained and distributed 
throughout the scaffold. The prints of liver cells could 

be easily recognized in parenchyma region of the liver 
scaffolds which were surrounded by the network of 
ECM proteins (Figure 3A). Overall, these observations 
confirmed the intact three-dimensional anatomy and 
ultra-structures of liver post-acellularization.

Vascular-tree imaging: Methylene blue dye infusion 
through main hepatic artery in ALS confirmed the 
intactness of liver vasculature through gradual 
distribution from major artery to distant smaller 
arteries. The vasculature dying also demonstrated the 
intactness of all three vascular systems named portal, 
arterial and biliary. The dye infusion first colored the 
liver parenchyma and finally reached to the central 
venous system which showed the complete retention 
of intact perfusion polarity within the ALS (Figure 3B). 

Residual DNA content in ALS: The liver perfusate 
showed high quantity of dsDNA (Figure 3C) whereas 
complete reduction of dsDNA in ALS was identified 
(Figure 3D).

Mechanical properties of ALS post-sterilization: 
The retention of preserved mechanical properties of 
ALS was determined post-sterilization with PAA and UV 
and further compared with the fresh liver as control. 
Three different types of mechanical characterization 
using tensile strength test, suture retention test and 
compressive strength analysis revealed that all three 
mechanical properties of ALS were preserved similar to 
the control (Figure 3E-G). 

Humanized liver repopulated with human HPCs
The intact vasculature and liver capsule post-acellu­
larization offers the development of neo-humanized 
liver system. Herein, the humanized liver was achieved 
through repopulation of human HPCs into completely 
ALS at day 7. Optical images of humanized liver 
showed revival of liver tissues with well intact capsule 
and liver architecture (Figure 4A). The repopulation 
efficiency was calculated to be > 80% at day 7 post-
repopulation. 

SEM analysis of humanized liver 
Ultra-structural analysis of humanized liver using SEM 
showed that human liver cells are well engrafted and 
proliferated in parenchyma and around the vascular 
spaces. Liver parenchyma was completely surrounded 
by the human liver cells at day 7 which suggests that 
the cells were migrated beyond the ECM barrier to 
reach the acellularized sinusoidal spaces (Figure 4B). 

Immunohistochemical analysis of humanized liver 
H and E staining was performed to characteize the 
cellular arrangement in humanized liver tissue at 
day 7 post-repopulation (Figure 4C). The staining 
revealed proper arrangement and distribution of cells 
at defined locations as observed by SEM analysis. 
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Further the functional analysis of cells engrafted 
within the humanized liver was identified using im­
munocytochemuical staining for albumin (Figure 4D) 
and key liver cell enzyme G6PC (Figure 4E). These 
investigations confirmed that the repopulated human 
liver cells are viable and functional. The percentage cell 
apoptosis post-repopulation was determined by the 
TUNEL staining of humanized liver tissue microsections 

before (negative) and after humanization at day 7 (RL/
d7). The analysis revealed < 10% cells were apoptotic 
after 7 d of repopulation (Figure 4F).

Nuclear content in humanized liver
The quantity of nuclear contents in humanized liver 
showed that < 25% dsDNA were present in liver 
perfusate during repopulation at day 7 which may 
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Figure 1  Schematic study plan. Representation of bioengineering technology to generate humanized livers using acellularization and human HPCs repopulation 
strategy for the development of three-dimensional platform for drug testing.
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include 10% of apoptotic DNA as observed by TUNEL 
assay (Figure 5A). Humanized liver tissue extract also 
showed almost similar quantity of dsDNA per gram of 
humanized liver tissue as compared to the fresh liver 
tissue (Figure 5B).

Functional characterization of humanized liver 
The integrated cellular function of humanized liver was 

identified by estimating the albumin secretion and LDH 
released from human hepatic cells at different time 
points of repopulation and compared with the 2D-culture 
system. Albumin estimation in liver perfusate revealed 
extensively increased albumin secretion by the liver 
cells in humanized liver along with the time and was 
comparatively higher than the 2D-cultured cells (Figure 
5C). LDH released from the cells in humanized liver 
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was quite stable as compared to 2D-culture system 
which represents the stability and well established 
synchronization in liver cells within the scaffold (Figure 
5D). Furthermore, urea synthesis, one of the functional 
characteristic of mature liver cells also demonstrated 
progressively higher degree response in humanized 
livers as compared to 2D-culture system (Figure 5E). 

Metabolism of CYP substrates in humanized liver
The drug metabolism study performed in humanized 
livers for six well-known CYP substrates (Figure 6A) 
using substrate depletion assay showed that humanized 
liver metabolites the CYP substrates better than 
the 2D-cultured cells. The percentage retention of 
examined six CYP substrates was significantly lower in 
humanized livers than the 2D-culture system. Complete 
depletion was observed for nifedipine and testosterone 
in both humanized liver as well as 2D-culture system. 
Whereas, the depletion rate was quite high for 
dextromethorphan (> 20%, P < 0.001), diclofenac (> 
10%, P < 0.01), mephenytoin (> 25%, P < 0.001) and 
phenacetin (> 10%, P < 0.01) in humanized liver as 
compared to the 2D-culture system (Figure 6B). These 
results clearly suggest that humanized liver could be 
better in vitro three-dimensional drug testing model 
system to optimize the dose for safety evaluations prior 
to clinical applications. 

DISCUSSION
Human liver play significant role in drug metabolism 
and toxicological response. Therefore drug-induced 

liver toxicity has been a major concern for the 
development of acute liver failure and post-market 
drug withdrawal due to the absence of suitable 
humanized preclinical model system. Animal models 
have been the gold standard platform to identify 
the toxicological effects of pharmacological drugs/
molecules. However, species difference always does not 
allow predictive outcome similar to human system[23]. 
Hence, several in vitro models of human livers have 
been developed to complement the animal model 
system. The most widely used in vitro models include 
human liver specific cell lines such as HepG2, Hep 3B 
and SNU-398. However, these cell lines lack expression 
of several molecular cues for drug targeting. Currently, 
human stem cells have been considered the most 
suitable cell types for such studies. 

Among the various choices of stem cells, induced 
pluripotent stem cells (iPSCs) have been proposed as 
the best choice for in vitro drug testing. These cells 
are generated by reprogramming of somatic cells 
into pluripotent nature by inducing OSKM Yamanaka 
transcription factors[24]. The major advantages of iPSCs 
are its highly proliferative nature, ease of accessibility 
and less/or no ethical constraints[25]. However, the 
preclinical and clinical applicability of iPSCs has been 
limited due to reprogramming obstacles, financial 
hurdles, reprogramming inefficiencies, and genetic 
instability[26,27]. One of the examples of failing iPSCs 
pre-clinical and clinical applicability was demonstrated 
by ophthalmologist Masayo Takahashi in collaboration 
with Shinya Yamanaka where they claimed for the 
regeneration and improvement in vision post-trans­

ds
D

N
A 

in
 c

ul
tu

re
 p

er
fu

sa
te

 
( μ

g/
m

L)

10

8

6

4

2

0
RL/d1     RL/d7

b

ds
D

N
A 

in
 r

ep
op

ul
at

ed
 li

ve
r 

pe
rf

us
at

e 
( μ

g/
g 

liv
er

)

100

80

60

40

20

0
FL       RL/d1    RL/d7

b

ns

Al
bu

m
ln

 (
μg

 p
er

 1
06  c

el
ls

) 300

200

100

0
0        1        2        3        4        5        6        7

t/d

2D culture
Humanized liver

LD
H

 (
ng

 p
er

 1
06  c

el
ls

 
pe

r 
24

 h
)

20

15

10

5

0
0        1        2        3        4        5        6        7

t/d

2D culture
Humanized liver

U
re

a 
( μ

g 
pe

r 
10

6  c
el

ls
)

500

400

300

200

100

0
0        1        2        3        4        5        6        7

t/d

2D culture
Humanized liver

A B C

D E

Figure 5  Functional assessment of humanized liver. A and B: Quantification of double stranded DNA (dsDNA) in (A) liver perfusate showing reduction in quantity 
at day 7 whereas (B) in humanized liver post-repopulation showed reciprocal relationship which was significantly high (bP < 0.001) at day 7 as compared to day 1 
and was almost similar to the fresh liver (FL); C-E: The rate of (C) albumin secretion (D) lactate dehydrogenase release and (E) urea synthesis in humanized livers at 
different time points showing improved response as compared to the conventional 2D-cultures.

Vishwakarma SK et al . Humanized liver for drug testing 



30 January 27, 2018|Volume 10|Issue 1|WJH|www.wjgnet.com

plantation of iPSCs-derived retinal pigment epithelial 
(RPE) sheets in patient suffering with age related 
muscular degeneration. This trial was halted due to 
unexplained mutations in transplanted RPE and the 
patient’s iPSCs which concluded that several crucial 
safety assays need to be established before considering 
the pre-clinical applicability of iPSCs[28,29].

Alternative to iPSCs, human HPCs have been 
proposed as better cell type for drug testing model 
development. However, the source and isolation 
technique has been challenging to obtain enriched 
homogenous population of primary hHPCs. Our group 
has reported well established approach to isolate 
human fetal hepatic progenitor cells[30,31]. However, 
due to the ethical concerns alternative adult sources 
are needed to be identified. Our earlier studies have 
demonstrated tremendous clinical beneficial effects 
in the field of stem cells transplantation specifically in 
patients with acute[32,33] and chronic liver failure[13,34-36] 
and metabolic syndrome[37]. In addition to this, various 
other groups have also demonstrated significant role 
of stem cells in liver regeneration[38,39].

Development of humanized organs has always been 

a challenging area in regenerative biology. Discovery of 
stem cells has given a potential hope to regenerate the 
diseased organs or tissues in human body. Since then, 
various strategies have been tried to evolve humanized 
organs and/or tissue using stem cell technology for in 
vitro discoveries and in vivo transplantation studies. 
However, very limited success has been achieved 
as far as ex-vivo development of whole functional 
humanized organs/tissues is concerned. Due to the 
enormous potential of humanized tissues/organs in 
pharmacological studies, several investigations have 
been focused to generate biomimetic humanized 
organs which is an urgent need to replace the 
conventional 2D/or 3D ex-vivo systems and animal 
models to reduce the investigatory and economic 
burdens towards the preclinical evaluation of drugs.  

Over the past decades, micro culture technology 
has emerged to probe the biomedical mechanisms 
and functions[40]. However, the natural 3D system is 
critical to bridge the preclinical and clinical studies 
more effectively. The most popular 3D-model system 
named organoid culture exhibit more complexity in 
structure and function than the 2D cultures which 
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results in several challenges in systemic assessment of 
pharmacological interventions. Furthermore, the batch 
to batch diversity in complexity, size, morphology, 
3D-arrangement of cells and more importantly the 
protocol variability represent major challenges to 
overcome.

The very recent preclinical technology named 
“human organs-on-chip” do not mimic with the full 
complexity of human liver functions and show limited 
pharmacokinetic recapitulation and can’t exhibit the 
clinically relevant processes[41-43]. Hence, identifying a 
more clinically relevant 3D-humanized model system 
can streamline and expedite the drug evaluation 
process. Given the limitations of currently available 
preclinical models, human metabolites and their 
downstream effects often go undetectable until the 
human clinical trials which is the most costly and 
risky phase of drug development[44]. Despite these 
significant advances, several crucial issues related to 
drug absorption, distribution, metabolism, excretion 
and toxicity (ADMET) indicates lack of sufficient 
predictability in drug evaluation models. To avoid 
such higher failure rate in late-stages of drug testing 
processes, more appropriate humanized platform is 
highly desirable to generate better preclinical outcome. 
Our earlier effort was to generate such platforms 
using various bioengineering technologies in different 
organs[45-47]. However, drug metabolism studies in 
humanized liver remain to be studied. 

The bioengineered humanized model developed in 
this study provides natural system for above described 
assumptions which could be more practical approach 
to replace the earlier developed models including 
animals. In addition to the natural architecture, 
presence of human primary hepatocytes provides 
activities of human liver metabolic enzymes to identify 
the real pharmacokinetics of drugs. As CYP is the 
most common group of enzymes found in liver for 
the clearance of drugs, it has been proposed better 
pathway to study the drug metabolism[48]. Another 
important role of CYPs has been its quantitative 
variability during the drug metabolism. Hence 
identifying CYP mapping could provide important 
information about the drug metabolism either by a 
single or multiple isoforms of CYPs. FDA guidance 
requires more than 25% clearance from the CYP 
mediated liver metabolism prior to conduct human 
trial on a particular drug[49]. The metabolism of six CYP 
substrates in present study using bioengineered liver 
system could provide better platform for future drug 
metabolism studies as a replacement of animal models 
as unique pre-clinical model system. 

Humanized liver model system could be ideal 
choice for drug metabolism studies using tissue 
specific 3D-architecture, proper cell to cell and cell to 
ECM interactions which make them one of the best 
model systems to predict the drug responses. The 
3D-architecture of this model provides in vivo like 
context and also eliminates the species differences. 
This system allows biomimetic humanized preclinical 

outcomes by allowing natural drug delivery and 
distribution. In summary, bioengineered humanized 
livers could be more suitable option for determining 
drug safety and efficacy in human mimetic preclinical 
model system. This unique biomimetic platform can 
produce better outcome during disease modeling and 
ADMET studies.

ARTICLE HIGHLIGHTS
Research background
The present study offers a new platform for drug metabolism studies in 
3D-biomimetic humanized model system. 

Research motivation
This approach can provide more realistic outcome of drug metabolism in human 
cells under organ specific biological and mechanical cues. 

Research objectives
The real-time pharmacokinetics of drug absorption, distribution, metabolism, 
excretion and toxicity can be identified in natural humanized system using 
cytochrome P-450 probes. 

Research methods
This unique system offers several advantages over the conventional models of 
drug metabolism studies such as comparatively less cost and time is required 
for the maintenance and care of the cultures than animal studies.

Research results
Smaller quantities of chemicals are required for ex-vivo drug testing.

Research conclusions
The cellular response networks and toxicity pathways can be easily determined 
against drug exposure.

Research perspectives
Enhanced dose-responsive relationships can be identified relative to human 
exposure.
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