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Abstract
AIM: To investigate the role of P115 in the proliferation 
of gastric cancer cells and the mechanism involved. 

METHODS: The RNA and protein level of P115 and 
macrophage migration inhibitory factor (MIF) in gastric 
cancer and normal gastric tissue/cells were measured 
and the effect of P115 on cell proliferation was as-
sessed. The role of P115 in cell cycle checkpoints was 
investigated and the related proteins and signaling 
pathways, such as cyclin D1, Mcm2, p53, PCNA as well 
as the MAPK signaling pathway were determined. The 
interaction between P115 and MIF and the effect of 
P115 on MIF secretion were examined. The data were 
analyzed via  one-way ANOVA comparisons between 
groups and P  < 0.05 was considered significant. 

RESULTS: P115 and MIF were both specifically ex-
pressed in gastric cancer tissues compared with nor-
mal gastric mucosa (both P  < 0.01). The mRNA and 
protein levels of P115 and MIF in gastric cancer cell 
lines MKN-28 and BGC-823 were higher than in the hu-
man gastric epithelial cell line GES-1 (both P  < 0.01). 

In MKN-28 and BGC-823 cell lines, P115 promoted 
cell proliferation and G0-G1 to S phase transition. In 
addition, several cell cycle-related regulators, includ-
ing cyclin D1, Mcm2, PCNA, pERK1/2 and p53 were 
up-regulated by P115. Furthermore, the interaction 
between P115 and MIF was confirmed by co-immuno-
precipitation assay. ELISA showed that P115 stimulated 
the secretion of MIF into the culture supernatant (P  < 
0.01) and the compensative expression of MIF in cells 
was observed by Western blotting. 

CONCLUSION: P115 promotes proliferation of gastric 
cancer cells through an interaction with MIF. 

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Gastric cancer is one of the most common 
cancers. P115 is a tether protein which plays a key role 
in cell proliferation through combination with binding 
partners, including migration inhibitory factor (MIF). 
The present study showed that P115 and MIF were 
specifically expressed in gastric cancer tissues and 
cells. P115 promoted cell proliferation and G0-G1 to S 
phase transition. Cell cycle regulators, including cyclin 
D1, Mcm2, PCNA, pERK1/2 and p53 were up-regulated 
by P115. P115 interacted with MIF and stimulated the 
secretion of MIF into the culture supernatant. In sum-
mary, P115 promotes proliferation of gastric cancer 
cells through an interaction with MIF. 
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INTRODUCTION
Gastric cancer is one of  the most common cancers 
worldwide with a significant impact on human health[1]. 
Despite significant developments in the diagnosis and 
treatment of  gastric cancer, the prognosis remains poor. 
Extensive surgery combined with chemotherapy is the 
most common therapy choice in the early stages of  gastric 
cancer[2], while additional treatment options, such as gene 
therapy are desperately needed. With significant advances 
in genomics and proteomics, the discovery of  a novel on-
cogene for therapeutic intervention remains a future chal-
lenge.

Cancer growth is a highly complex process involving 
alterations in gene expression and the interaction of  many 
proteins. Golgi-vesicular transport protein P115 is a tether 
protein that plays an important role in many signal path-
ways required for cell proliferation[3] and has been exten-
sively studied[4-6]. Macrophage migration inhibitory factor 
(MIF) was one of  the first cytokines to be described and 
extensively studied[7]. More recently, MIF has been report-
ed to be overexpressed in a number of  cancers, including 
esophageal squamous cell carcinoma[8], glioblastoma[9], 
neuroblastoma[10], colonic cancer[11] and colorectal can-
cer[12]. The ability of  MIF to promote tumor progression 
has been demonstrated and MIF has been shown to be 
a potential target for anti-cancer therapy. Hudson et al[13] 
and Jung et al[14] reported that MIF antagonized the activ-
ity of  p53, which led to cancer progression. It was shown 
that the binding partner of  MIF was JAB1/CSN5[15] 
which is known to be involved in the differentiation and 
morphogenesis of  cells[16]. Furthermore, it is well known 
that upon binding to one of  its receptors-CD74, MIF can 
increase the phosphorylation of  Akt, ERK, MAPK and 
Stat3 which are all necessary for tumor proliferation.

Recently, a yeast two-hybrid interaction was examined 
to identify the intracellular proteins which might bind 
to MIF and mediate its secretion, and it was shown that 
P115 was a binding partner of  MIF[17]. Previous research 
in our laboratory also demonstrated the same result. The 
objective of  the present study was to evaluate the expres-
sion, the function in cell proliferation and the biological 
mechanism of  P115 in gastric cancer.

MATERIALS AND METHODS
Cell culture
Human gastric cancer cell lines BGC-823 and MKN-28 
were obtained from the American Type Culture Collec-
tion (Manassas, VA, United States). The human gastric 
epithelial cell line GES-1 was obtained from the cell 
bank of  the Fourth Military Medical University. The cells 
were cultured in RPMI 1640 medium (Gibco, Maryland, 
United States) supplied with 10% FBS (Gibco, Maryland, 
United States), 100 units/mL penicillin and 100 μg/mL 
streptomycin at 37 ℃ in humidified 5% CO2.

Immunohistochemistry
Thirty gastric cancer and 30 normal gastric mucosa speci-

mens were obtained from the Department of  Pathology, 
the First Affiliated Hospital, Chongqing Medical Univer-
sity from September 2008 to November 2009. Normal 
gastric mucosa specimens were obtained from normal 
tissues adjacent to the cancer tissue, and were pathologi-
cally confirmed as non-cancerous. The procedure was 
approved by the Ethics Committee. Samples were incu-
bated with anti-P115 and anti-MIF rabbit polyclonal an-
tibody (Cell Signaling Technology, United States) at 4 ℃ 
overnight, and then incubated with biotinylated goat anti-
rabbit antibody (Santa Cruz Biotechnology, TX, United 
States) at room temperature for 15 min. DAB substrate 
was then used in the chromogenic reaction. 

Construction of plasmids and transfection
The pCD-shRNA was reconstructed from pGPU6/
GFP/Neo. Four shRNAs targeting P115 and shNC were 
designed as shown in Table 1. ShRNAs were ligated into 
the BamH I and Bbs I-digested pGPU6/GFP/Neo vec-
tor. The P115 expressing plasmid, pEGFP-N1-P115, was 
obtained from Jikai Company (Shanghai, China). Cells 
were seeded in 6-well plates and were transfected with 2 
μg plasmids after reaching 70%-80% confluence using 
Lipofectamine 2000 (Invitrogen, Carlsbad, United States) 
following the manufacturer’s instructions.

Reverse transcription-polymerase chain reaction and 
quantitative real-time polymerase chain reaction
RT-PCR was carried out using the AccessQuickTM One-
Step reverse transcription-polymerase chain reaction 
[RT-PCR kit (Promega Co., Madison, United States)] 
according to the manufacturer’s protocol. The oligo-
nucleotide primers used were as follows: P115 sense: 
5’-AACCTGGTGGCTGAACGGCAAG-3’, P115 anti-
sense: 5’-AGAAGCTTCACACCAGGCCAGC-3’. MIF 
sense: 5’-CGGGTTCCTCTCCGAGCTCACC3’, MIF 
antisense: 5’-TGATGTAGACCCTGTCCGGGCTGA-3’. 
β-actin sense: 5’-GACCCAGATCATGTTTGAGACC-3’, 
β-actin antisense: 5’-GCCAGGATAGAGCCACCAAT-3’. 
Total RNA was reverse transcribed to synthesize cDNA 
at 45 ℃ for 45 min. PCR was performed in a single reac-
tion volume of  25 μL. The schedule consisted of  incuba-
tion for 5 min at 94 ℃ followed by 30 cycles of  94 ℃ for 
30 s, 56 ℃ for 45 s and 72 ℃ for 1 min, then incubation 
for 10 min at 72 ℃. The PCR products were subjected 
to 1.5% agarose gel electrophoresis. Quantitative real-
time RT-PCR was performed using specific sense and 
antisense primers in a 25 μL reaction volume contain-
ing 12.5 μL of  Absolute™ QPCR SYBR Green mix 
(Invitrogen), 0.25 pmol of  each primer, and 0.5 μg of  
mRNA. Oligonucleotide primers were as follows: P115 
sense: 5’-GGAGGGGAACAGTGATGGAG-3’, P115 
antisense: 5’-CAAAGCTGCTGCAATAACCC-3’. β-actin 
sense: 5’-CGGGAAATCGTGCGTGAC-3’, β-actin 
antisense: 5’-TGGAAGGTGGACAGCGAGG-3’. The 
number of  amplification cycles was 35, and the reaction 
were performed for 3 min at 50 ℃, 20 s at 95 ℃, and 30 s 
at 60 ℃, with an initial step at 95 ℃ for 3 min.
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Western blotting analysis
Cells were lysed in 100 μL RIPA lysis buffer (50 mmol/L 
Tris-HCl, pH 7.5, 1% NP-40, 150 mmol/L NaCl, 1 mg/
mL aprotinin, 1 mg/mL leupeptin, 1 mmol/L Na3VO4, 
1 mmol/L NaF) at 4 ℃ for 30 min. Cell debris was re-
moved by centrifugation at 12000 × g for 20 min at 4 ℃. 
Protein concentrations were determined by the Bradford 
assay. An equal amount of  lysate (40 μg) was resolved 
by SDS-polyacrylamide gel electrophoresis and trans-
ferred to a PVDF membrane (Millipore, Bedford, United 
States). The membranes were blocked with 5% nonfat 
milk at room temperature for 1 h and then incubated 
for 2 h with primary antibodies. The membranes were 
then incubated for 1 h with an appropriate horseradish 
peroxidase-linked secondary antibody (Santa Cruz Bio-
technology, TX, United States). Antibodies to P115, MIF, 
cyclin D1, Mcm2, PCNA, p53 and β-actin were obtained 
from Cell Signaling Technology (MA, United States). 
Electrochemiluminescence was performed according to 
the manufacturer’s instructions using a Bio-Rad imaging 
system. Quantity One software was used to quantify the 
density of  bands. 

Cell proliferation assay
Cells were seeded in 96-well plates at a density of  2000 
cells/well and allowed to proliferate for 24 h, 48 h and 72 
h. Cell proliferation ability was assessed by MTT assay. 
Briefly, MTT (5 mg/mL) was added to each well and the 
plate was incubated for a further 4 h before removal of  
the media. DMSO was then added to each well to solubi-
lize the formazan crystals. The absorbance was read at a 
wavelength of  595 nm using a microtiter plate reader. All 
experiments were carried out in triplicate. 

Flow cytometric analysis of cell cycle distribution
Flow cytometric analysis was performed as previously 
described[18]. Forty-eight hours after transfection, cells 

were harvested and fixed with 75% ethanol at -20 ℃ 
overnight. Cells were stained with propidium iodide (25 
mg/mL) and RNaseA (200 mg/mL) at 37 ℃ for 30 min. 
The DNA content was analyzed using a FACScan flow 
cytometer (Beckman Coulter, Germany). 

Co-immunoprecipitation of P115 and MIF
Cells were lysed in lysis buffer at 4 ℃ for 30 min. Cell 
debris was removed by centrifugation at 14000 × g for 5 
min at 4 ℃. To remove non-specific binding, protein G 
sepharose beads containing mouse IgG were added to 
200 μL protein and shaken slowly for 2 h at 4 ℃. The 
sample was then centrifuged at 2500 × g for 5 min at 4 ℃ 
and the supernatant was carefully removed for immuno-
precipitation. 1 μg MIF antibody was incubated with the 
supernatant overnight and 42 μL protein G Sepharose 
beads were then added. The mixture was incubated for 
3 h at 4 ℃ on a tube roller to precipitate protein com-
plexes. The beads were obtained by centrifugation at 
1000 × g for 60 s and washed twice with PBS. Finally, 20 
μL loading buffer was added for SDS-polyacrylamide gel 
electrophoresis to assess P115.

ELISA assay
MIF level in the culture supernatant was determined by 
ELISA according to the manufacturer’s recommenda-
tions. A polyclonal anti-MIF antibody was used as the 
capture antibody, and absorbance was measured at 450 
nm in a microplate reader. The concentration of  MIF in 
each sample was obtained by comparing absorbance val-
ues against the standard curve using r-MIF. Each experi-
ment was performed in triplicate.

Statistical analysis
The data were expressed as mean ± SD of  three inde-
pendent experiments. The data were analyzed via one-
way ANOVA comparisons between different groups with 
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Table 1  Sequences of shRNA

shRNA name Target site Sequences

P115-shRNA1 1117 bp S 5'-CACCGCAGCTTTGTACTATCCTAATTTCAAGAGA
ATTAGGATAGTACAAAGCTGCTTTTTTG-3'

A 5'-GATCCAAAAAAGCAGCTTTGTACTATCCTAAT
TCTCTTGAAATTAGGATAGTACAAAGCTGC-3'

P115-shRNA2 1318 bp S 5'-CACCGCGCTGTGCTGTTCTCTATTGTTCAAGAGA
CAATAGAGAACAGCACAGCGCTTTTTTG-3'

A 5'-GATCCAAAAAAGCGCTGTGCTGTTCTCTATTG
TCTCTTGAACAATAGAGAACAGCACAGCGC-3'

P115-shRNA3 1578 bp S 5'-CACCGCAACCCTCCAGTTTCTTTACTTCAAGAGA
GTAAAGAAACTGGAGGGTTGCTTTTTTG-3'

A 5'-GATCCAAAAAAGCAACCCTCCAGTTTCTTTAC
TCTCTTGAAGTAAAGAAACTGGAGGGTTGC-3'

P115-shRNA4 1777 bp S 5'-CACCGCAGTTGGTCCAAGGCTTATGTTCAAGAGACATAAGCCTTGGACCAACTGCTTTTTTG-3'
A 5'-GATCCAAAAAAGCAGTTGGTCCAAGGCTTATG

TCTCTTGAACATAAGCCTTGGACCAACTGC-3'
NC-shRNA - S 5'-CACCGTTCTCCGAACGTGTCACGTTTCAAGAGA

ACGTGACACGTTCGGAGAACTTTTTTG-3'
A 5'- GATCCAAAAAAGTTCTCCGAACGTGTCACGT

TCTCTTGAAACGTGACACGTTCGGAGAAC-3'
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significance value set at P < 0.05.

RESULTS
P115 and MIF were specifically expressed in gastric 
cancer tissues
To examine whether P115 and MIF were specifically ex-
pressed in gastric cancer, the protein levels of  P115 and 
MIF in human gastric tissue were first measured by im-
munohistochemistry (Figure 1A). It was shown that P115 
was expressed in Golgi and cytoplasm near the nucleus, 
there were 12 positive samples (40.0%) in normal gastric 
mucosa and 22 positive samples (73.3%) in gastric cancer 
with 63.6% showing a strong positive rate (14 cases). MIF 
was expressed in cytoplasm and sparsely in membrane, 
there were 14 positive samples (46.7%) in normal gastric 
mucosa and 24 positive samples (80%) in gastric cancer 
with 66.7% showing a strong positive rate (16 cases).

Furthermore, the tissue homogenates of  normal gas-

tric mucosa and gastric cancer were lysed to measure 
P115 and MIF levels. Semi-quantitative RT-PCR analysis 
showed that P115 and MIF mRNA in gastric cancer (0. 
694 ± 0. 046 and 0. 814 ± 0. 040, respectively, n = 3) were 
1.377 and 1.326 times that in normal mucosa (0.504 ± 
0.646 and 0.614 ± 0.054, respectively, n = 3) (Figure 1B, 
both P < 0.01). As shown in the semi-quantitative analy-
sis of  Western blotting results (Figure 1C), compared 
with normal gastric mucosa, the expression of  P115 and 
MIF increased by 2.085- and 1.391-fold in gastric cancer 
(0.759 ± 0.058 vs 0.364 ± 0.037; 0.715 ± 0.040 vs 0.514 ± 
0.044, respectively, n = 3; both P < 0.01).

P115 and MIF were specifically expressed in gastric 
cancer cell lines 
P115 and MIF mRNA in different cell lines are shown 
in Figure 1D. P115 mRNA in the MKN-28 (0.391 ± 
0.042, n = 3) and BGC-823 (0.513 ± 0. 038, n = 3) cell 
lines was 1.836- and 2.408-fold that in the normal gastric 
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Figure 1  P115 and macrophage migration inhibitory factor were specifically expressed in gastric cancer. A: Immunohistochemistry showed that in gastric can-
cer tissue, P115 was expressed in Golgi and cytoplasm near the nucleus, and macrophage migration inhibitory factor (MIF) was expressed in cytoplasm and sparsely 
in membrane. In normal gastric mucosa tissue, P115 and MIF were negatively expressed (DAB stained, × 200). Real-time reverse transcription-polymerase chain re-
action (RT-PCR) (B) and Western blotting (C) showed that mRNA and protein levels of P115 and MIF in gastric cancer tissue were higher than those in normal gastric 
mucosa tissue. RT-PCR (D) and Western blotting (E) showed that mRNA and protein levels of P115 and MIF in MKN-28 and BGC-823 cells were higher than those 
in the normal gastric mucosa epithelial cell line GES-1. β-actin was used as a loading control for RT-PCR and Western blotting. Data are mean ± SD of three experi-
ments.
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mucosa epithelial cell line GES-1 (0.213 ± 0.036, n = 3), 
respectively (both P < 0.01). Moreover, in the poorly dif-
ferentiated cell line, BGC-823, it was 1.312 times that in 
MKN-28 cells (P < 0.01). Correspondingly, MIF mRNA 
in MKN-28 (0.683 ± 0.046, n = 3) and BGC-823 (0.895 
± 0.104, n = 3) cells was 1.453 and 1.904 times that in 
GES-1 (0.470 ± 0.052, n = 3) and BGC-823 cells was 
1.310 times that in MKN-28 cells (all P < 0.01). 

Similar to the results of  RT-PCR, the protein levels 
of  P115 and MIF were markedly higher in MKN-28 
and BGC-823 cells than in GES-1 cells (Figure 1E), and 
were higher in BGC-823 cells. Semi-quantitative analysis 
showed that the expression of  P115 in MKN-28 (0.507 
± 0. 020, n = 3) and BGC-823 (0.547 ± 0. 015, n = 3) 
cells was 3.229- and 3.484-fold that in GES-1 cells (0.157 
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± 0.010, n = 3), and in BGC-823 it was 1.079-fold that 
in MKN-28 cells (all P < 0.01). The expression of  MIF 
in MKN-28 (0.601 ± 0.017, n = 3) and BGC-823 (0.687 
± 0.015, n = 3) cells was 1.154- and 1.319-fold that in 
GES-1 cells (0.521 ± 0.020, n = 3), and in BGC-823 it 
was 1.143-fold that in MKN-28 cells (all P < 0.01). 

P115-shRNA inhibited cell proliferation
To explore the biological function of  P115, P115-shRNA 
plasmids expressing siRNA were constructed. First, 
the silencing efficiencies of  4 different P115-shRNAs 
were tested using Western blotting (Figure 2A) and real-
time PCR (Figure 2B), which showed that the level of  
P115 was down-regulated most by 2 µg P115-shRNA2 
plasmids (protein: 0.259 ± 0.034, n = 3; mRNA: 0.211 
± 0.010, n = 3) after 36 h transfection in BGC-823 cells 
(expression of  P115 was relatively high) compared with 
control cells (protein: 0.727 ± 0.018, n = 3; mRNA: 1.041 
± 0.086, n = 3) and NC-shRNA (protein: 0.735 ± 0.010, 
n = 3; mRNA: 1.054 ± 0.094, n = 3), with silencing effi-

cacy up to 76.8%. Therefore, P115-shRNA2 was selected 
for subsequent study. The proliferation rate of  BGC-823 
cells was then determined by MTT assay 24 h, 48 h and 
72 h after transfection, and showed that the growth rate 
of  P115-shRNA treated BGC-823 cells was obviously 
decreased (Figure 3A) compared with NC-shRNA. 

P115-shRNA inhibited G0-G1 to S phase transition
The role of  P115 in the cell cycle checkpoints was inves-
tigated (Figure 3B). FACS analysis revealed that P115-
shRNA resulted in an 11.3% and 11.18% increase in cell 
number at G0-G1 phase compared with control and NC-
shRNA in BGC-823 cells. 

P115-shRNA inhibited expression of cyclin D1, Mcm2, 
PCNA, pERK1/2 and p53
As P115-shRNA caused cell cycle arrest, it was sup-
posed that P115 could lead to a change in G0-G1 phase-
related proteins and signaling pathways, such as cyclin 
D1, Mcm2, p53, PCNA as well as the MAPK signaling 
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pathway. Therefore, the above proteins and phosphoryla-
tion of  ERK1/2 were assessed. It was shown that cyclin 
D1, Mcm2, PCNA and pERK1/2 were significantly 
decreased by P115-shRNA in BGC-823 cells, which 
explained the effect of  P115 on cell cycle phase. In addi-
tion, p53 was up-regulated by P115-shRNA (Figure 3C).

Interaction between P115 and MIF was detected by co-
immunoprecipitation assay
MIF in BGC-823 cells was extracted through protein pre-
cipitation with a multiple clone antibody and the protein 
complex was detected by Western blotting. As shown in 
Figure 4A, P115 was detected in the protein complex, 
indicating that there was an interaction between MIF and 
P115 protein.

P115-shRNA inhibited expression of MIF in cells and 
secretion of MIF into supernatant 
Considering that MIF is a secretory protein, the level of  
MIF in the culture supernatant was assessed by ELISA. 
This assay showed that the secreted concentration of  
MIF in the culture supernatant in P115-shRNA treated 
BGC-823 cells was markedly reduced (1173.67 ± 63.47 
pg/mL, n = 3) compared with control (1535.62 ± 77.25 
pg/mL, n = 3) and NC-shRNA treated cells (1517.69 ± 
102.51 pg/mL, n = 3), this difference was statistically sig-
nificant (P < 0.01, Figure 4B). In addition, MIF mRNA 
and protein in cells were also detected. As shown in Fig-
ure 4C, P115-shRNA decreased the level of  MIF mRNA 
in BGC-823 cells, and Western blotting showed the same 
trend as real-time PCR, in that P115-shRNA decreased 
the expression of  MIF (Figure 4D).

pEGFP-N1-P115 promoted cell proliferation, G0-G1 to 
S phase transition, expression of G0-G1 phase-related 
proteins and secretion of MIF into supernatant
The role of  P115 in gastric cancer cells was assessed 
from another point of  view. It was shown that after 
transfection with 2 µg pEGFP-N1-P115 for 24, 48 and 
72 h, the proliferation rate of  MKN-28 cells (expres-
sion of  P115 was relatively low) was markedly increased 
(Figure 5A) and the transition of  G0-G1 phase to S phase 
in MKN-28 cells was accelerated by 13.71% and 13.9%, 
respectively, compared with control and pEGFP-N1-NC 
(Figure 5B), suggesting that stimulation of  cell growth 
by P115 was associated with the distribution of  cell 
cycle phase. Correspondingly, cyclin D1, Mcm2, PCNA 
and pERK1/2 were significantly increased by pEGFP-
N1-P115 in MKN-28 cells (Figure 5C).

ELISA showed that the secreted concentration of  
MIF in the culture supernatant in pEGFP-N1-P115 
treated MKN-28 cells was markedly increased (1696.38 
± 107.95 pg/mL, n = 3) compared with control (1227.64 
± 90.58 pg/mL, n = 3) and pEGFP-N1-NC treated cells 
(1208.63 ± 101.78 pg/mL, n = 3), and the difference was 
statistically significant (P < 0.01, Figure 6A). As shown in 
Figure 6B, MIF mRNA in pEGFP-N1-P115 treated cells 
was increased and Western blotting also indicated that 
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pEGFP-N1-P115 increased the expression of  MIF (Fig-
ure 6C).

DISCUSSION
The complicated molecular mechanisms of  carcinogen-

esis and the interaction of  multiple oncogenes in gastric 
cancer challenge our ability to identify novel and rational 
molecular therapeutic targets. The present study dem-
onstrates that P115 may be a potential tumor biomarker 
and therapeutic target which is overexpressed in human 
gastric cancer. Interaction with MIF may be involved in 
its molecular mechanism. 

P115 has been demonstrated to be involved in intra-
Golgi transport[6] and can bind to the Golgi-associated 
proteins, GM130[19] and giantin[20], which both play an 
important role in mitosis, that is, P115 is essential for 
biogenesis of  the Golgi apparatus[21,22]. MIF is a secretary 
protein which plays an important upstream role in the 
regulation of  diverse cellular responses[23-25]. The role of  
MIF has been emphasized by the finding that high ex-
pression of  MIF is associated with the incidence or the 
severity of  oncologic diseases[26-28]. The data from this 
study showed that overexpression of  P115 significantly 
enhanced the secretion of  MIF, which indicated that 
P115 might be one of  the stimuli inducing MIF secretion 
through direct interaction. Merk et al[29] reported that MIF 
was co-secreted with P115, indicating that P115 had a 
specific role in MIF export, which is consistent with our 
results. MIF lacks a signal sequence and is secreted by an 
unconventional route for protein export. Stimuli induce 
the rapid release of  MIF from preformed and cytoplas-
mic pools, which is followed by an upregulation of  MIF 
mRNA expression and a replenishment of  intracellular 
protein content[30,31]. Therefore, the protein and mRNA 
expression of  MIF in cells was detected. As expected, 
when P115 was overexpressed or silenced, MIF protein 
and mRNA in cells were also enhanced or reduced com-
pensatively.

The biological mechanism of  MIF on tumor growth 
includes the induction of  growth-related protein expres-
sion and inhibition of  apoptosis-related protein expres-
sion[32]. Jung et al[14] demonstrated that MIF interacted 
with p53 in vivo and directly promoted tumorigenesis by 
inhibiting p53 accumulation. Our data demonstrated that 
P115 knockdown enhanced the expression of  p53, which 
was considered a result of  MIF reduction. It is known 
that p53 is a classic tumor suppressor gene that can pro-
mote cell cycle arrest and apoptosis in response to DNA 
damage. Absence or down-regulation of  p53 can inter-
fere with these important checkpoints for maintaining 
genetic stability and allows cells to survive and proliferate. 
This may explain our results where knockdown of  P115 
led to the inhibition of  cell proliferation and apoptosis 
(results not shown). 

To further explore the molecular mechanism of  P115 
influencing cell growth, key proteins involved in the 
G0-G1 phase relevant signaling pathway were determined. 
It was reported that the ERK1/2 pathway was neces-
sary for transcriptional induction of  cyclin D1 which 
promoted progression from G1 to S phase[33]. In addition, 
Mcm2 and PCNA are both important proteins for initia-
tion of  DNA synthesis[34]. As shown in our results, cyclin 
D1, Mcm2 and PCNA, as well as pERK1/2 were mark-
edly reduced by P115-shRNA, which was consistent with 
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G0-G1 arrest. Researchers have reported that recombinant 
MIF can activate the ERK-MAP kinase pathway, and 
subsequently increase cell proliferation rate in fibroblasts 
and a colon cancer cell line[35]. Therefore, it is concluded 
that MIF is the key factor in the biological function of  
P115 in cell proliferation.

In conclusion, our study demonstrates that P115 is 
overexpressed in gastric cancer tissue and cells. Knock-
down of  P115 blocks cell proliferation in vitro, and the 
mechanism involves P115 stimulating the secretion of  
MIF directly by interacting with MIF, subsequently, lead-
ing to progression of  cell cycle through relevant proteins. 
Although additional functional studies are required, P115 
as well as the interaction between P115 and MIF may be 
a potential therapeutic target for the treatment of  gastric 
cancer. 
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