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Abstract
Magnetic resonance (MR) imaging of the liver is an 
important tool for the detection and characterization 
of focal liver lesions and for assessment of diffuse 
liver disease, having several intrinsic characteristics, 
represented by high soft tissue contrast, avoidance 
of ionizing radiation or iodinated contrast media, and 
more recently, by application of several functional 
imaging techniques (i.e. , diffusion-weighted sequences, 
hepatobiliary contrast agents, perfusion imaging, 
magnetic resonance (MR)-elastography, and radiomics 
analysis). MR functional imaging techniques are 
extensively used both in routine practice and in the field 
of clinical and pre-clinical research because, through 
a qualitative rather than quantitative approach, they 
can offer valuable information about tumor tissue and 
tissue architecture, cellular biomarkers related to the 
hepatocellular functions, or tissue vascularization profiles 
related to tumor and tissue biology. This kind of approach 
offers in vivo  physiological parameters, capable of 
evaluating physiological and pathological modifications 
of tissues, by the analysis of quantitative data that could 
be used in tumor detection, characterization, treatment 
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selection, and follow-up, in addition to those obtained 
from standard morphological imaging. In this review we 
provide an overview of recent advanced techniques in MR 
for the diagnosis and staging of hepatocellular carcinoma, 
and their role in the assessment of response treatment 
evaluation.

Key words: Liver; Cirrhosis; Hepatocellular carcinoma; 
Magnetic resonance; Transarterial chemoembolization; 
Contrast media

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Magnetic resonance (MR) of the liver is an 
important diagnostic option for detection and cha-
racterization of focal liver lesions. To date, beside the 
standard morphological sequences, new functional 
imaging tools (i.e. , diffusion-weighted sequences, 
hepatobiliary contrast agents, perfusion imaging, MR-
elastography, or radiomics analysis) have been introduced 
in clinical practice. The aim of functional imaging is to 
provide in vivo  quantitative complementary functional 
data related to the tissue or tumor modifications, offering 
useful comprehensive information about the biology, 
behavior, and prognosis of hepatocellular carcinoma 
lesions. This functional approach may help clinicians 
correctly manage cirrhotic patients, also after therapeutic 
treatment.

Ippolito D, Inchingolo R, Grazioli L, Drago SG, Nardella M, 
Gatti M, Faletti R. Recent advances in non-invasive magnetic 
resonance imaging assessment of hepatocellular carcinoma. 
World J Gastroenterol 2018; 24(23): 2413-2426  Available from: 
URL: http://www.wjgnet.com/1007-9327/full/v24/i23/2413.htm  
DOI: http://dx.doi.org/10.3748/wjg.v24.i23.2413

INTRODUCTION
Liver cancer is the fifth most frequently diagnosed 
malignancy among men and the ninth among women. 
Recently, it has risen from the third to the second cause 
of death from cancer, accounting for nearly 746000 
deaths in 2012. In some regions, like Eastern and 
South-Eastern Asia, mortality almost equals incidence 
with an overall ratio of 0.95[1]. The most common 
histological subtype of liver cancer is hepatocellular 
carcinoma (HCC), representing more than 90% of 
cases. The incidence of HCC increases with advanced 
age, reaching, at least in developed countries, a peak 
at 70 years[2]. In up to 90% of cases, HCC occurs in the 
setting of liver cirrhosis and overall, one-third of cirrhotic 
patients will develop HCC during their lifetimes[3].

The primary risk factor for HCC is still represented by 
chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) 
infection[4], with a prevalence of virus B infection in 
Eastern countries and a prevalence of virus C infection 
in Western countries. Other causes of cirrhosis comprise 

alcohol abuse, non-alcoholic fatty liver disease (NAFLD), 
and less frequent disorders such as hemochromatosis. 
All etiologies could lead to cirrhosis and may be 
complicated by tumor formation, but the risk is higher 
in patients with hepatitis infection. In the coming 
years, the diffusion of new antiviral agents for HCV[5], 
vaccination and therapy for HBV[6], and prevention 
campaigns are expected to reduce the burden of chronic 
viral liver disease and its complications, including 
HCC[7]. On the other hand, the widespread epidemic of 
obesity is expected to induce a significant increase in 
the incidence of NAFLD and its complications, such as 
NASH, cirrhosis, and HCC[8,9].

Liver cirrhosis is a common underlying condition 
associated with hepatocarcinogenesis. Cirrhosis develops 
after a long period of chronic liver disease, when the risk 
of HCC is still low. The nodules that could be potentially 
found in a cirrhotic liver comprise: Small and large 
regenerative nodule (RN), low-grade dysplastic nodule 
(LGDN), high-grade dysplastic nodule (HGDN), early 
HCC, well-differentiated HCC, and moderately-poorly 
differentiated HCC. Hepatocarcinogenesis is a multistep 
event during which cell density increases, Kuppfer cells 
decrease, nodules enlarge, and hemodynamics change. 
In the initial phase, normal arterial supply decreases 
but portal perfusion is still present. Later, intranodular 
arterial vascularity increases due to the appearance 
of unpaired arteries (capillarization) while portal blood 
supplies progressively decrease[10]. Simultaneously, 
organic anionic transporting polypeptide (OATP), 
transporters of bile salts, gradually decrease. OATP 
expression levels are high in RNs and LGDNs and 
lower in many HGDNs, early HCCs, and progressed 
HCCs. The hemodynamic changes are well depicted 
during dynamic multidetector computed tomography 
(MDCT) and magnetic resonance imaging (MRI), and 
both European and American guidelines have endorsed 
this technique for the diagnosis of HCC > 1 cm, based 
on the typical hallmarks of hypervascularity in arterial 
phase with wash-out in portal phase, thereby avoiding 
liver biopsy[11,12].

However, there remains a high rate of false 
negative, ranging from 25%-30%, in particular for 
nodules < 2 cm[13,14], which actually are the most often 
encountered focal liver lesions, thanks to the widespread 
of surveillance programs. In these small nodules, 
hemodynamic changes of hepatocarcinogenesis are in 
an early stage, since neoangiogenesis is incomplete and 
they are still mainly filled by portal vessels, in contrast 
to progressed HCC. MRI in part overcomes these limits. 
It has been recently demonstrated that this diagnostic 
technique has a higher diagnostic performance over 
computed tomography (CT) in the detection of high-
risk nodules[15]. This is due to its high contrast resolution 
and to its multiparametric characteristics. In fact, it is 
known that hyperintensity on T2 weighted sequences 
and restricted diffusion in diffuse weighted images 
(DWI) are features of malignancy[16]. Moreover the 
recent introduction of hepatospecific MRI contrast agent 
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gadolinium-ethoxybenzyl-dieth-ylenetriamine pentaacetic 
acid (Gd-EOB-DTPA, Primovist®; Bayer Schering Pharma, 
Berlin, Germany), which gives information not only 
on vascular changes but also on hepatocyte function, 
raises the sensitivity for the detection of early HCC 
to 91%-93%[17]. Based on this feature, Kim BR and 
colleagues[16] demonstrated that readers had significantly 
higher detection sensitivity for early HCCs with MRI than 
with multidetector CT (78.6% vs 52.4%, P = 0.001; 
71.4% vs 50.0%, P = 0.011; and 73.8% vs 50.0%, P 
= 0.001, respectively), as shown by 30 more LI-RADS 
category 4 early HCCs identified at MRI. 

The correct characterization of all nodules possibly 
encountered in a cirrhotic liver is of paramount impor-
tance because they are managed completely differently. 
In fact, while regenerative and dysplastic nodules 
deserve a strict follow-up, HCC should be treated with 
the more suitable therapeutic option, according its 
stage. This is clearly defined by the Barcelona Clinic 
Liver Cancer (BCLC) staging system, adopted in all 
Western countries and endorsed by both American and 
European guidelines.

In this context, beside traditional radiological 
techniques, new functional imaging tools have been 
introduced in clinical practice in order to provide not 
only morphological information but also functional data 
information. Functional magnetic resonance imaging 
encompasses a wide range of advanced techniques 
capable of evaluating physiological and pathological 

modifications of tissues, by the analysis of quantitative 
data, in addition to those obtained from standard 
morphological imaging. These techniques may include 
diffusion-weighted sequences, hepatobiliary contrast 
agents, perfusion imaging, MR-elastography, and more 
recently radiomics analysis. In particular, perfusion 
imaging (related to vascular profile) and diffusion 
imaging (related to cellular profile) (Figure 1) techniques 
have been extensively studied during various steps 
of HCC evolution, from initial assessment of vascular 
modifications in cirrhotic liver, through its progression in 
tumor lesion, and finally to its follow-up after treatment. 
Hence, in this review, we provide an overview of recent 
advances and techniques in MR studies for the diagnosis 
and the staging of HCC.

CONTRAST MEDIA: EXTRACELLULAR 
AND HEPATOBILIARY AGENTS
Gadolinium is a paramagnetic ion that shortens T1 
relaxation time in tissues and, therefore, produces an 
increase in signal intensity[18]. Based on bio-distribution, 
there are three categories of gadolinium-based contrast 
agents: extracellular fluid agents (ECFAs), blood pool 
agents (BPCAs), and targeted and organ-specific contrast 
agents, such as hepatocyte-specific contrast agents 
(HCAs). ECFAs and HCAs are the most commonly used 
in liver imaging. ECFAs consist of gadolinium chelated 
to an organic compound, such as DTPA[19]. They are 
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Cellularity                                                          Vascularization

Figure 1  Schematic comparison between diffusion weighted images (on the left) and perfusion maps (on the right) showing the meaning from the 
pathophysiological point of view of the two different functional magnetic resonance techniques. The diffusion offers qualitative information strictly related to 
tissue cellularity, while perfusion sequences offer qualitative information about tissue vascularization.
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(‘‘the one-third rule’’)[25]. Indeed, the intranodular 
hemodynamic changes during carcinogenesis start 
with an arterial hypovascularity with portal perfusion 
still present, followed by a decrease of both arterial 
and portal blood supply, then followed by an increase 
in arterial vascularity to isovascular, and, finally, to a 
hypervascular pattern[12].

On the other hand, several recent studies demon-
strated that the expression of OATP diminishes during 
hepatocarcinogenesis[26]. Moreover, OATP 8 expression 
level decreases prior to complete neoangiogenesis, 
with elevation of arterial flow and reduction of portal 
venous flow[27]. Thanks to their lipophilic characteristics, 
HCAs, after the intravascular/interstitial distribution, are 
taken up by functioning hepatocytes, metabolized, and 
excreted into the bile through the OATP 8: Consequently, 
nodules with low or no OATP expression (the majority of 
HCC, many early HCCs, and some high-grade dysplastic 
nodules) do not uptake HCAs and appear hypointense 
in the hepatobiliary phase (HBP) (Figure 2). A recent 
meta-analysis has shown that the impact of HBP on a 
per-lesion sensitivity is significant, in particular the use 
of Gd-EOB-DTPA allowed a sensitivity of 87% vs 74% 
(P = 0.03) the one without HBP[28]. Based on these 
considerations, the current contrast agents applied in the 
study of the liver are the gadobenate dimeglumine (Gd-
BOPTA/Dimeg, MultiHance®, Bracco, Milan, Italy), which 
is a chelate of the paramagnetic gadolinium ion salified 
with two molecules of meglumine, and gadolinium 
ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-
EOB-DTPA, Primovist®, Bayer Schering Pharma, Berlin, 
Germany), which is a highly water-soluble contrast 
agent with an ethobenzyl group attached to gadolinium 
diethylenetriamine pentaacetic acid[29]. The approved 
dose of Gd-BOPTA for hepatic imaging is 0.05 mmol/kg 
(0.1 mL/kg of a 0.5 mol/L solution)[30], and it should be 
administered undiluted followed by a normal saline “flush” 
of 20 to 50 mL. Hepatic uptake represents 2%-4% of 
the injected dose for Gd-BOPTA, and the HBP is typically 
performed between 45 and 120 min after injection and is 
necessary in order to achieve sufficient enhancement.

The approved dose of Gd-EOB-DTPA is 0.025 mmol/kg, 
which is considered the minimum effective dose for 
the detection of liver lesions in the hepatobiliary phase. 

further divided in standard relaxivity macrocyclic agents, 
standard relaxivity linear agents, and high relativity 
linear agents (Table 1). The details regarding the 
advantages and disadvantages of each contrast category 
is beyond the scope of this article, but in general, there 
is little clinical difference[20]. The standard dose is 0.1 
mmol/kg typically injected intravenously at a rate of 
2 mL/s followed by a normal saline “flush” of 20 to 50 
mL. After the injection, ECFAs are rapidly cleared from 
the intravascular space through the capillaries into the 
extracellular space. They are mainly eliminated by renal 
excretion and have imaging dynamics comparable 
to the extracellular iodinated contrast media used in 
CT. However, MRI is more sensitive to the effects of 
gadolinium than CT is to the effects of iodine, because 
gadolinium has an amplification effect due to the 
number of adjacent water protons relaxed by a single 
gadolinium atom[19,21]. In summary, ECFAs enter into 
the liver through the hepatic artery and portal vein and 
are freely redistributed into the interstitial space; they 
demonstrate vascular perfusion by distributing and allow 
the evaluation of liver lesions based on assessment 
of vascularity. The combination of arterial phase 
hyperenhancement followed by washout appearance 
in the portal venous and/or delayed phase is the key 
diagnostic feature of HCC[11,12] (Figure 2). 

The pathophysiologic basis for arterial phase 
hyperenhancement in HCC is related to the increasing 
of the intranodular arterial supply during hepato-
carcinogenesis[22]. The mechanisms underlying washout 
appearance in HCC depend on a range of factors: 
early venous drainage of contrast material from the 
tumor, progressive enhancement of background liver, 
reduced intranodular portal venous blood supply, 
tumor hypercellularity with corresponding reduction 
in extracellular volume, and intrinsic hypoattenuation/
hypointensity[23]. In cirrhotic patients, this enhancement 
pattern has approximately 100% specificity for lesions 
larger than 2 cm and approximately 90% specificity 
for those of 1-2 cm[24]. However, the main limitation 
with ECFAs for diagnosis and staging HCCs is low 
per-lesion sensitivity, because an atypical vascular 
behavior is quite common in small (< 2 cm) nodules 
and approximately one-third of these are malignant 

Table 1  Gadolinium-based magnetic resonance imaging contrast agent

Contrast agent Category Relaxivity Structure Concentration 
(mmol/mL)

Reccomended dosage 
(mmol/kg)

Gadoterate-meglumine ECFAs Standard macrocyclic 0.5 0.1
Gadobutrol ECFAs Standard macrocyclic 1.0 0.1
Gadoteridol ECFAs Standard macrocyclic 0.5 0.1
Gadopentetate- dimeglumine ECFAs Standard Linear 0.5 0.1
Gadoversetamide ECFAs Standard Linear 0.5 0.1
Gadodiamide ECFAs Standard Linear 0.5 0.1
Gadofosfaset-trisodium BPCAs High Linear 0.25 0.03
Gadobenate- dimeglumine HCAs High Linear 0.5 0.1
Gadoxetate-disodium HCAs High Linear 0.25 0.025

ECFAs: Extracellular fluid agents; BPCAs: Blood pool agents; HCAs: Hepatocyte-specific contrast agents.
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The modalities of gadoxetic acid administration were 
addressed in the ESGAR consensus statement[31] (flow-
rate of 1-2 mL/s followed by a 20 mL saline flush at 
1-2 mL/s using a bolus triggering technique). Hepatic 
uptake represents 50% for Gd-EOB-DTPA, and the 
HBP reaches its maximum intensity approximately 
20 min after injection with gadoxetate disodium and 
persists for several hours[32]. The clinical use of liver-
specific contrast agents allows the radiologist to obtain 
morphologic and vascular-related information, although 
an overlap between delayed phase and hepatocyte phase 
have to be considered during dynamic evaluation[33]. 
A recent meta-analysis[34] reported that in trials of 
MRI that directly compared test performance using 
different contrast agents, use of HCAs was associated 
with higher sensitivity than ECAs (difference of 13%), 
with no difference in specificity. The difference was 
somewhat greater for HCC lesions smaller than 2 cm 
(difference of 15%). These finding were stressed by 
the ESGAR consensus[31], who stated that a Gd-EOB-
DTPA MR examination should be performed in order 
to characterize an undetermined focal liver lesion of 
10 mm or larger in the cirrhotic liver. In summary, 
HCAs allow a comprehensive non-invasive imaging 

assessment of the liver parenchyma, intrahepatic lesions 
depiction or characterization, hepatic vasculature, and 
the biliary tree in a single examination. They have 
several advantages in the evaluation of the cirrhotic 
liver including: (1) Higher sensitivity for the diagnosis of 
HCC, in particular for lesions smaller than 2 cm[34]; (2) 
improved characterization of arterially enhancing lesions 
without definite washout on subsequent imaging[35]; (3) 
the possibility to differentiate arterially enhancing lesion 
vs pseudolesions[36]; and (4) detection of lesions with 
decreased uptake evidenced only in the HBP that are 
likely to be precancerous or borderline lesion[37]. 

PERFUSION IMAGING 
Perfusion MRI in the assessment of HCC focuses on 
the detection and characterization of lesions[38-40], 
the evaluation of response to therapy[38,41-44], and 
determination of prognosis[44,45] (Table 2). 

The basis of dynamic contrast-enhanced (DCE)-
perfusion MR imaging is the acquisition of multiple image 
sets, every few seconds, through the tumor or as much 
of the organ as possible, after gadolinium injection. 
The rate and pattern of contrast enhancement reflects 

Lesion                                                                                                 Sequences

Unenhanced T1            Arterial             Portal venous              Delayed              Hepatobiliary                DWI                       T2

HCC classic

HCC green

HCC 
hypovascular

HCC classic

HCC green

HCC 
hypovascular

EC
A

H
BA

Isointense lesion               Hyperintense lesion                Hypointense lesion              Slightly hyperintense lesion

Figure 2  Schematic representation showing dynamic contrast enhanced sequences, diffusion weighted images, and T2-weighted features in typical, 
green, and hypovascular hepatocellular carcinoma, comparing information from extracellular contrast agent and hepatobiliary contrast agent. ECA: 
Extracellular contrast agent; HBA: Hepatobiliary contrast agent; DWI: Diffusion weighted images.
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the time evolution of the contrast agent within the 
tissue, which occurs as a result of the microcirculatory 
pathophysiological changes. Perfusion MRI could extend 
the currently used qualitative assessment applied for the 
differential diagnosis of lesions, by applying quantitative 
metrics to describe their vascular behaviour. 

The main purpose of MRI perfusion is the quanti-
fication of vascular characteristics of HCC, because the 
growth and progression of histological malignancy of 
HCC are associated with new blood vessels formation[46] 
(angiogenesis). Moreover, the targets of anti-angiogenic 
drugs, recently used for HCC treatment, are represented 
by these new blood vessels and, therefore, the perfusion, 
as a functional imaging technique, may be suitable for 
evaluating patients treated with these agents[47-50].

Dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI) provides non-invasive imaging 
biomarkers that can measure changes in tumor 
blood flow, vascular permeability, and interstitial and 
intravascular volumes[40,43,47] and can predict the survival 
outcome in patients with HCC[51-53]. Generally, DCE-MRI 
consists of acquisition of T1-weighted MR images before, 
during, and after intravenous injection of a gadolinium-
based contrast agent[40]. The contrast agent extravasates 
at level of tumor tissue, from intravascular to the 
extravascular extracellular space (EES) with increased 
T1-w signal[43,54,55]. This extravasation to EES in the 
tumor tissue depends on vessel leakiness (permeability) 
and blood flow (perfusion), and so the signal measured 
with DCE-MRI could be sensitive to alterations in 
vascular permeability, EES, and blood flow[43,54].

DCE-MRI signals can be quantified using a semi-
quantitative (model free) or quantitative (model 
based) analysis[56]. Both analysis methods have several 
parameters related with tumor angiogenesis[54,57] and can 
give different information on liver and tumor perfusion[56]. 

Briefly, with the semi-quantitative analysis, all perfusion 
parameters are extracted directly from time-signal 
intensity (SI) curves [e.g., AUC, maximum SI or peak 
enhancement ratio, wash-in slope, mean transit time 
(MTT)], derived from different dynamic contrastographic 
sequences. Although widely used, semi-quantitative 
analysis is highly affected by the acquisition systems and 
comparison and quantification of these parameters can 
be difficult[56,57] because the true concentration of contrast 
agent in the tissues is not estimated (Figure 3). 

Quantitative analysis depends on fitting the time 
SI curves with the changes in concentration of the 
contrast agent using pharmacokinetic techniques using 
several kinetics models based on different physiological 
assumptions made[56]. These kinetics models can be 
bi-compartmental models (taking into account vessels 
and EES) or mono-compartmental (taking into account 
the vascular space because of the typical architecture 
of the liver)[56], with a double or single input system 
(arterial and portal or arterial alone), conventional 
compartment (CC) models vs distributed parameters 
(DP) models[54,56].

Several parameters extracted with quantitative 
analysis are related to the influx of contrast agent from 
the intravascular space to the EES (K trans) and its 
reverse (Kep), the volume fraction of EES (Ve), which 
is an indirect expression of the cellular density of the 
tissue[43,54,56]. 

In comparison to the semi-quantitative analysis, 
these parameters are more time consuming because 
they generate parametric maps through a pixel-by-pixel 
curve fitting process. Although the histogram analysis 
and the heterogeneity of these parametric maps are 
more computationally demanding, they may also 
provide additional information[43,56]. Moreover, numerous 
pharmacokinetic models have been proposed by Tofts 

Table 2  Magnetic resonance imaging perfusion with dynamic contrast-enhanced magnetic resonance imaging in the assessment of 
hepatocellular carcinoma, focus on diagnosis, characterization, response to therapy, and prognosis

Ref. Year Magnet (Tesla) Contrast agent Parameters

Diagnosis and characterization
   Taouli et al[38] 2013 1.5 T Gadobenate-dimeglumine and gadopentetate-

dimeglumine
AF, VF, ART, DV, MTT

   Chen et al[39] 2017 3 T GD-EOB-DTPA Ktrans, Kep, iAUC, max-Ktrans
   Jajamovich et al[40] 2016 3 T Gadobenate-dimeglumine ART, K trans, ve, kep, τ
   Abdullah et al[61] 2008 1.5 T Gadoterate-dimeglumine HPI, MTT, DV, TF, AF, PF
Response to therapy
   Ippolito et al[41] 2016 1.5 T GD-EOB-DTPA ME, MRE, RAE, RE, RLE, RVE, TTP
   Taouli et al[38] 2013 1.5 T Gadobenate-dimeglumine and Gadopentetate-

dimeglumine
AF, VF, ART, DV, MTT

   Chen et al[45] 2016 1.5 T Gadodiamide Peak, Slope, AUC, Ktrans, Kep, Ve
Prognosis
   Chen et al[45] 2016 1.5 T Gadodiamide Peak, Slope, AUC, Ktrans, Kep, Ve
   Chen et al[45] 2016 1.5 T Gadodiamide ART, AF, PF, TF, MTT, DV, PEAK, SLOPE, AUC

ART: Arterial fraction; K trans: Contrast agent transfer rate constant from plasma to extravascular extracellular space; VE: Extravascular extracellular 
volume fraction; Kep: Contrast agent intravasation rate constant; τ: Mean intracellular water molecule lifetime; ME: Maximum enhancement; MRE: 
Maximum relative enhancement; RAE: Relative arterial enhancement; RE: Relative enhancement; RLE: Relative late enhancement; RVE: Relative venous 
enhancement; TTP: Time to peak; HPI: Hepatic perfusion index; MTT: Mean transit time; DV: Distribution volume; TF: Total blood flow; AF: Arterial blood 
flow;  PF: Portal blood flow; AUC: Area under the gadolinium distribution-time curve.
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et al[58], Brix et al[59], and Larsson et al[60], using a single 
arterial input function[43]. Because HCC receives major 
blood supply from hepatic neo-arteries and often arise 
from a cirrhotic liver, the single input model (considering 
only the arterial input) and the dual compartment model 
(because of the alteration in the EES) are frequently 
both used in the literature[54,56].

However, because of numerous DCE-MRI–related 
limitations, parameters derived from these pharma-
cokinetic models may lack sufficient precision for clinical 
application[38], and there is no consensus regarding the 
pharmacokinetic model that should be used to quantify 
HCC perfusion parameters, even if some studies 
demonstrated that some pharmacokinetic models can 
be equivalent in the results[40]. 

All these possibilities and differences in the field of 
DCE-MRI led to literature studies with different results. 

In general, two recent studies demonstrated 
that HCC had significantly higher peak, slope, AUC, 
arterial fraction, and arterial flow but lower portal 
flow, distribution volume, and MTT than the liver[45]. 
HCCs with high peak are correlated to a longer overall 
survival (OS) in comparison with HCC with low peak[45] 

before systemic therapy. Secondly, high peak reduction 
assessed early (1 wk) after systemic therapy can be 
related to OS[44]. 

DCE-MRI semi-quantitative parameters (relative 
arterial, venous, and late enhancement; maximum 
enhancement; maximum relative enhancement, and 
time to peak) potentially can be used also to differentiate 
residual viable tumor tissue and effective treated lesions 
after TACE or RFA[41]. Some of them, in a multivariate 
analysis, seemed also to predict the response to 
radiotherapy RT[42].

Some groups found that with DCE-MRI it is possible 
to quantify the perfusion in the liver and HCC with an 
increased arterial flow and decreased portal venous flow 
in HCC compared with cirrhotic liver, with significant 
differences in the degree of arterial versus portal venous 
blood flow in treated and untreated HCCs[38].

Perfusion parameters could be correlated to the 
grading differentiation of HCC, but in most of the cases, 
there were no significant differences in perfusions and 
grade of HCC differentiation, with the exception of 
the arterial fraction (ART)[40]. The ART parameter is a 
value estimated each time through perfusion equations 

A B C D

E F G H
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Figure 3  Gd-EOB-DTPA enhanced magnetic resonance images of a 67-year-old male patient with large hepatocellular carcinoma lesion in the right liver 
lobe. Panels A-B: T1-weighted sequences “in and out of phase” demonstrate a heterogeneous mass slightly hypointense without a signal drop in “out of phase” 
sequence. Panels C-D: T2-weighted image without and with fat saturation demonstrates a slightly hyperintense mass with a central, homogeneous hyperintense area, 
as per necrosis. Panels E-H: Dynamic contrast-enhanced images delineate the typical contrast behavior of hepatocellular carcinoma (HCC): Hyperenhancement 
during the arterial phase (F) followed by wash-out in portal and delayed phase (G-H). In the hepatobiliary phase image 20 min after Gd-EOB-DTPA injection the 
nodule appears highly hypointense compared with the surrounding enhanced liver (panel I). Panel J: On the diffusion weighted image, HCC lesion is hyperintense due 
to the restriction of water diffusion. Panel K-L: Perfusion images derived from semiquantitative analysis (relative arterial enhancement and maximum enhancement) 
the HCC is characterized by high vascularity intensity signals, shown as hot-spots signals. 
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obtained from the addition of the two input inflow 
(arterial and portal) into one[40]. Moreover, it has been 
suggested that ART can be used to assess response to 
local regional therapy in HCC[38,40,61].

In a recent study from Chen et al[39], the max-
Ktrans seemed to correlate with tumor grades (rho = 
-0.382, P = 0.028). The Ktrans, Kep, and iAUC of high-
grades HCC were significantly lower than that of low-
grades HCC (P = 0.001, 0.031, 0.003, respectively), 
but there was no statistically significant differences for 
Ve between high grade and low grade HCC (P > 0.05)[39].

These results suggest that DCE-MRI can be useful 
as a non-invasive marker of HCC angiogenesis, but new 
equipment and sequences and models are still under 
investigation. New equipment will be applied in the near 
future to quantify the perfusion of HCC, as a biomarker 
of degree of malignancy, prognosis, and response to 
therapy[38-40].

DIFFUSION WEIGHTED IMAGING
DWI is a functional MRI sequence that allow the 
characterization of biological tissues based on the diffusion 
properties of water molecules, providing information 
about tissue cellularity and about the integrity of cellular 
membranes[2]. In fact, in high cellular tissue, the higher 
density of hydrophobic cellular membranes reduces the 
“apparent” diffusion of water protons[62], thus the water 
diffusion can be considered relatively “restricted”. More 
simply the “diffusion restriction” refers to a tumor signal 
intensity that is higher than the surrounding parenchyma 
(the liver for example) on high b-value DW MR images, 
and, to date, DW-imaging represents an integral part of 
the routine MR protocol for liver disease (Figure 4). 

In 2010, Taouli et al[63] defined DW MR imaging, an 
attractive technique, which was reaching a potential 
for clinical use in the abdomen, particularly in the liver. 
Less than a decade later, all the potential uses of DWI 
are greatly shown, and diffusion can be considered a 
useful tool for the diagnosis of focal liver lesions, with 
better results than T2-weighted images[64] especially 
in HCC[65]. There are various reasons why: DWI adds 
useful qualitative and quantitative information to 
standard sequences; it has a short acquisition time and 
can be easily included to existing protocols; and it does 
not need the use of contrast materials[66,67].

Although several DW imaging sequences can be 
applied to evaluate the liver, the single shot spin-echo 
(SE) echo-planar technique is the most frequently 
used in combination with fat suppression. Recent 
studies[68] compared free breathing (FB) vs respiratory 
triggered (RT) DWI for detecting HCC, using a 3 T 
scanner, a 32-channel torso-cardiac phased-array coil, 
and dual-source parallel radiofrequency excitation 
and transmission technology. They concluded that FB-
DWI provided better image quality and showed higher 
detectability of HCCs in patients with chronic liver 
disease compared to RT-DWI, without significantly 

reducing the SNR of the normal liver parenchyma or 
the lesion-to-non lesion CNR. DW imaging should not 
be considered a stand-alone sequence, but should be 
integrated in MR protocols: The combination of Gd-EOB-
DTPA and DWI could allow the assessment of the three 
main processes in the hepatic multistep carcinogenesis 
(vascular changes, hepatocyte change, and tissue 
diffusivity). A recent meta-analysis showed that the 
combination of gadoxetic acid-enhanced MRI and 
DWI significantly improved both diagnostic accuracy 
and specificity for HCCs associated with chronic liver 
disease[69]. Several studies underline the importance 
that DWI adds to dynamic contrast-enhanced MRI, 
in characterization of small or atypically enhancing 
lesions[70,71]. In particular, Briani et al[71] demonstrated 
that the hypovascular lesions ≥ 10 mm that appeared 
hyperintense in DWI are associated with progression 
to hypervascular HCC. DWI can not only indicate 
the morphological characteristics of a lesion with a 
qualitative assessment, but with apparent diffusion 
coefficient (ADC) measurement, can also provide a 
quantitative index of diffusion characteristics, analyzing 
structure and tissue components. Some authors[70,72] 
suggested that a lesion-to-liver ADC ratio cut-off value 
of 0.92 may offer good sensitivity, specificity, and 
accuracy in differentiating HCC vs dysplastic nodules 
(DN). Inchingolo et al[70], furthermore, obtained higher 
values (sensitivity 90.91%, specificity 80.95%, and 
accuracy of 83.55%, when the group of LGDNs was 
compared to the group that included both HGDNs and 
HCCs, with a cut-off of 0.95. Jiang et al[73] conducted 
a retrospective analysis of the correlation between 
qualitative and quantitative DWI and HCC tumor 
grade. They found that while SI values on DWI could 
distinguish only between well-differentiated HCC and 
moderately or poorly differentiated HCC, ADC values 
could distinguish between well, moderately, and 
poorly differentiated HCC, with the consequence of 
a better pre-operative and non-invasive histological 
characterization. Further applications of DW imaging are 
still ongoing, and larger studies are needed to validate 
these results. One example is the application of DWI 
concerning the prediction of microvascular invasion 
(MVI) in HCC. MVI still remains one of the important 
prognostic factors of HCC recurrence, especially after 
surgical resection or liver transplantation[74,75]. In the 
past, other imaging characteristics have previously been 
suggested as predictors of MVI, such as tumor size, 
shape and margin, capsule, peritumoral enhancement, 
and dynamic enhancement pattern; but recently Yang 
et al[76] proposed a new integrated evaluation of T2 and 
DWI images by defining the concept of “diffusion- and 
T2-weighted imaging mismatch”. They demonstrated 
that this new “DWI/T2 mismatch” was an independent 
predictor of MVI (odds ratio 4.521, P = 0.035), with a 
high specificity (95.65%). Another potential application 
of DWI is the assessment of liver tumor response to 
novel therapy. In fact, while a change in tumor size is 
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the common effect of conventional chemotherapy, loco-
regional therapies may lead to stability of tumor size 
or even an increase in hepatic tumo. Moreover, novel 
molecular-targeted therapies may alter the morphology 
of the tumor by affecting its angiogenesis, with 
unchanged tumor size[77]. Recent studies have shown 
the possibility to differentiate viable tissue from necrosis 
on the basis of ADC cut-off values, because necrosis has 
higher ADC values[78,79]. For patients with HCC treated 
with Sorafenib, a transient decrease in tumor ADC 
value approximately 1 month after treatment has been 
reported to be suggestive of hemorrhagic necrosis; 
however, a sustained decrease in ADC at 3-mo follow-
up may indicate viable tumor or its progression[80]. ADC 
values in patients with HCC treated with transarterial 
radioembolization (TARE) have been shown to increase, 
a finding suggestive of cellular necrosis. Increased 
ADC values in such cases may be an early marker of 
treatment response before changes in tumor size are 
observed[81]. Despite the several attempts to use ADC 
values in clinical practice, reproducibility of volumetric 

quantification with diffusion-weighted imaging is not 
well established. Moreover, there are some technical 
aspects that need to be considered, like the differences 
in scanner equipments, the lack of a standardized DWI 
protocol, the low reproducibility and comparability of 
ADC measurements among different studies, and finally, 
the susceptibility of ADC maps to noise and artefacts[64]. 

MR ELASTOGRAPHY
MR elastography (MRE) is an MRI-based method for the 
quantitative assessment of liver fibrosis and increased 
stiffness. This technique is based on the application of 
mechanical waves (generated through the machine) to 
the region of interest (the liver). These waves and their 
wave-length are located in the liver through different 
elastographic sequences (the most used are gradient-
echo sequences with motion-encoding gradients) to 
obtain different set of images and maps. With two 
different reconstruction algorithms applied to this set 
of images, it is possible to obtain a final colored image, 
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Figure 4  Gd-EOB-DTPA enhanced magnetic resonance images of a 61-year-old patient with hepatocellular carcinoma nodule in the VII segment of the 
liver. Panels A-B: A single nodule slightly hypointense on the T1-weighted “in phase” sequence (A) with a signal drop in the “out of phase” sequence, as per fat 
deposition. Panels C-D: On T2-weighted image without and with fat saturation the nodule appears slightly hyperintense. Panels E-H: Dynamic contrast-enhanced 
images demonstrate the typical contrast behavior of hepatocellular carcinoma: Which appear hypervascular during the arterial phase (F) with wash-out in portal and 
delayed phase (G-H). Panel I-J: Diffusion weighted image (DWI) shows the hyperintense pattern of the lesion which appear hypointense on the relative apparent 
diffusion coefficient map (arrowhead). Previously treated lesion with transarterial chemoembolization is recognizable, in panel A-E-F-G-H, at V segment of the liver 
(arrow). No any restriction of signal intensity is evident on DWI (panel I-J).
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called “confidence map”, with different stiffness areas of 
the liver expressed with different colors that correspond 
to different in kilo-pascal values (kPa).

Different studies have demonstrated the possibility 
to use MRE for assessment of mild degree of liver 
fibrosis[82-84] and to differentiate malignant and benign 
nodules in the liver[85]. A recent study tried to understand 
if there was a correlation between HCC stiffness detected 
with MRE and HCC pathologic features[84]. Tumor stiffness 
(TS) seemed to be higher in moderate/well differentiated 
HCC in comparison to poor differentiated HCC (6.5 ± 1.2 
kPa vs 4.9 ± 1.2 kPa, P < 0.01); but at the moment, 
no correlation is found to liver parenchyma stiffness, 
vascular invasion, and tumor encapsulation[84].

Another important application of MRE regards the 
assessment to treatment response and in particular 
loco-regional treatment [90Yttrium radio-embolization 
(RE), trans-arterial chemoembolization (TACE), and 
radiofrequency ablation (RFA)][86].

In two animal studies[87,88], reduction in TS was 
associated with histologically proven central necrosis[89] 
and decreased cellular proliferation and moderate 
induction of apoptosis[88]. In a preliminary study on 
humans, MRE seems to provide early evidence of 
therapeutic response, demonstrating that treated tumors 
have significantly lower TS compared to untreated 
tumors (3.9 ± 1.8 kPa vs 6.9 ± 3.4 kPa, P = 0.006) 
and cirrhotic liver, while intra-tumoral hemorrhage is 
associated with higher TS. TS seems to relate with 
visually assessed percentage of necrosis and ER and is 
more in patients treated with RE[86]. 

MRE still has the limitation of hepatic iron overload, 
which can decrease hepatic signal intensity in gradient 
echo based MRE sequences to unacceptably low 
levels[83]. On the other hand, MRE enables qualitative 
and quantitative assessment of TF without the use of 
gadolinium chelates[86].

Despite some of the limitations of MRE, it remains 
a promising technique not only for the evaluation of 
liver fibrosis but also in the spectrum of diagnosis and 
prognosis of HCC[83,84,86].

RADIOMICS
Radiomics represents the possibility to convert 
digital medical images (CT, MR, or positron emission 
tomography images) into high-dimensional data[89]; the 
hypothesis is that biomedical images contain information 
that reflects underlying pathophysiology and that these 
relationships can be revealed via quantitative image 
analyses. MRI based radiomics signature are currently 
investigated in glioblastoma, breast, and faringeal cancer. 
Currently, there are no studies about the possibility to 
use radiomics in the assessment of HCC. Main efforts 
remain focused on some complex texture analysis, taking 
in account just few features, which represent a small and 
impaired part of radiomics data analysis.

Controversial results were obtained from different 

studies concerning the use of texture analysis in the 
assessment of HCC[90-93]. The main problems are due 
to differences in the equipment, contrast phase chosen 
for the analysis, and type of segmentation (circular ROI 
vs tumor shape ROI, slice analysis vs volumetric ROI 
analysis). Recently, two studies have been published 
on the possibility to use complex texture analysis in 
MRI to assess the malignancy of HCC (Zhou et al[94]) 
or to predict the progression of hypovascular nodules 
(detected with gadoxetate disodium acid during hepa-
tobiliary phase) into hypervascular HCC lesions[90]. In 
both studies, volumetric region of interest (VOI) was 
evaluated.

All these preliminary studies demonstrated that, 
among the different features assessed with texture 
analysis, some of them seem to perform better on a 
specific dynamic phase (arterial or hepatobiliary) and 
can give useful information. In order to differentiate low 
grade and high grade HCC[94], “mean intensity value” (a 
histogram feature) presented significantly larger values 
in low-grade HCCs than in the high-grade HCCs, and 
the values of gray-level run-length nonuniformity (GLN) 
were significantly smaller in low-grade HCCs than in 
high-grade HCCs.

Moreover, in another study, different histogram 
metrics showed the possibility to predict the progression 
of a hypovascular nodule into an HCC[90], using different 
flip angles and volumetric region of interest.

Radiomics appears to offer a nearly limitless supply 
of imaging biomarkers that could potentially aid in 
cancer detection, diagnosis, assessment of prognosis, 
prediction of response to treatment, and monitoring 
of disease status[89]. Further studies and validations 
are required for the performance of the features by 
themselves, their application according to the different 
contrast phases available during MRI sequences, and 
the different MRI equipment. 

CONCLUSION
MRI of the liver represents an important tool for the 
detection and characterization of focal liver lesions and 
for the evaluation of diffuse liver disease. The main 
advantages of MRI relies on superior soft tissue contrast, 
absence of ionizing radiation, and the possibility of 
performing functional and advanced imaging techniques. 
Unlike conventional MR imaging sequences, which are 
usually reported qualitatively based on the varying 
brightness of tissue, functional MR-imaging techniques 
offers quantitative data. Among the different functional 
MR imaging techniques, DWI, MR elastography, and 
T1-weighted DCE sequences are the most likely to 
find clinical use at present or in the near future in liver 
imaging.

MR functional imaging allows for the addition of 
qualitative and quantitative functional information to 
conventional anatomic sequences and routine clinical 
protocols, thereby offering clinicians further comprehensive 
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information about the biology, behavior, and prognosis 
about HCC lesions.

ACKNOWLEDGMENTS
We wish to thank Professor Adam Cassels for his 
contribution in amending and polishing the language of 
this manuscript.

REFERENCES
1 Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo 

M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality 
worldwide: sources, methods and major patterns in GLOBOCAN 
2012. Int J Cancer 2015; 136: E359-E386 [PMID: 25220842 DOI: 
10.1002/ijc.29210]

2 El-Serag HB, Mason AC. Rising incidence of hepatocellular 
carcinoma in the United States. N Engl J Med 1999; 340: 745-750 
[PMID: 10072408 DOI: 10.1056/NEJM199903113401001]

3 Sangiovanni A, Prati GM, Fasani P, Ronchi G, Romeo R, Manini 
M, Del Ninno E, Morabito A, Colombo M. The natural history of 
compensated cirrhosis due to hepatitis C virus: A 17-year cohort 
study of 214 patients. Hepatology 2006; 43: 1303-1310 [PMID: 
16729298 DOI: 10.1002/hep.21176]

4 Bosch FX, Ribes J, Cléries R, Díaz M. Epidemiology of 
hepatocellular carcinoma. Clin Liver Dis 2005; 9: 191-211, v 
[PMID: 15831268 DOI: 10.1016/j.cld.2004.12.009]

5 Singal AK, Singh A, Jaganmohan S, Guturu P, Mummadi R, Kuo 
YF, Sood GK. Antiviral therapy reduces risk of hepatocellular 
carcinoma in patients with hepatitis C virus-related cirrhosis. Clin 
Gastroenterol Hepatol 2010; 8: 192-199 [PMID: 19879972 DOI: 
10.1016/j.cgh.2009.10.026]

6 Zanetti AR, Van Damme P, Shouval D. The global impact of 
vaccination against hepatitis B: a historical overview. Vaccine 
2008; 26 :  6266-6273 [PMID: 18848855 DOI: 10.1016/
j.vaccine.2008.09.056]

7 Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: 
consider the population. J Clin Gastroenterol 2013; 47 Suppl: 
S2-S6 [PMID: 23632345 DOI: 10.1097/MCG.0b013e3182872f29.
Epidemiology]

8 Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, Das 
D, Aslam T, Patanwala I, Gaggar S, Cole M, Sumpter K, Stewart S, 
Rose J, Hudson M, Manas D, Reeves HL. Hepatocellular cancer: 
the impact of obesity, type 2 diabetes and a multidisciplinary team. 
J Hepatol 2014; 60: 110-117 [PMID: 23978719 DOI: 10.1016/
j.jhep.2013.08.011]

9 Siegel AB, Zhu AX. Metabolic syndrome and hepatocellular 
carcinoma: two growing epidemics with a potential link. 
Cancer 2009; 115: 5651-5661 [PMID: 19834957 DOI: 10.1002/
cncr.24687]

10 Kudo M. Multistep human hepatocarcinogenesis: correlation 
of imaging with pathology. J Gastroenterol 2009; 44 Suppl 19: 
112-118 [PMID: 19148804 DOI: 10.1007/s00535-008-2274-6]

11 European Association For The Study Of The Liver; European 
Organisation For Research And Treatment Of Cancer. EASL-
EORTC clinical practice guidelines: management of hepatocellular 
carcinoma. J Hepatol 2012; 56: 908-943 [PMID: 22424438 DOI: 
10.1016/j.jhep.2011.12.001]

12 Bruix J, Sherman M; American Association for the Study of Liver 
Diseases. Management of hepatocellular carcinoma: an update. 
Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 10.1002/
hep.24199]

13 Colli A, Fraquelli M, Casazza G, Massironi S, Colucci A, Conte D, 
Duca P. Accuracy of ultrasonography, spiral CT, magnetic resonance, 
and alpha-fetoprotein in diagnosing hepatocellular carcinoma: a 
systematic review. Am J Gastroenterol 2006; 101: 513-523 [PMID: 
16542288 DOI: 10.1111/j.1572-0241.2006.00467.x]

14 Burrel M, Llovet JM, Ayuso C, Iglesias C, Sala M, Miquel R, 

Caralt T, Ayuso JR, Solé M, Sanchez M, Brú C, Bruix J; Barcelona 
Clínic Liver Cancer Group. MRI angiography is superior to helical 
CT for detection of HCC prior to liver transplantation: an explant 
correlation. Hepatology 2003; 38: 1034-1042 [PMID: 14512891 
DOI: 10.1053/jhep.2003.50409]

15 Kim BR, Lee JM, Lee DH, Yoon JH, Hur BY, Suh KS, Yi NJ, Lee 
KB, Han JK. Diagnostic Performance of Gadoxetic Acid-enhanced 
Liver MR Imaging versus Multidetector CT in the Detection 
of Dysplastic Nodules and Early Hepatocellular Carcinoma. 
Radiology 2017; 285: 134-146 [PMID: 28609205 DOI: 10.1148/
radiol.2017162080]

16 Golfieri R, Garzillo G, Ascanio S, Renzulli M. Focal lesions in 
the cirrhotic liver: their pivotal role in gadoxetic acid-enhanced 
MRI and recognition by the Western guidelines. Dig Dis 2014; 32: 
696-704 [PMID: 25376286 DOI: 10.1159/000368002]

17 Park MJ, Kim YK, Lee MW, Lee WJ, Kim YS, Kim SH, Choi D, 
Rhim H. Small hepatocellular carcinomas: improved sensitivity by 
combining gadoxetic acid-enhanced and diffusion-weighted MR 
imaging patterns. Radiology 2012; 264: 761-770 [PMID: 22843769 
DOI: 10.1148/radiol.12112517]

18 Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI 
contrast agents: Classification and application (Review). Int J 
Mol Med 2016; 38: 1319-1326 [PMID: 27666161 DOI: 10.3892/
ijmm.2016.2744]

19 Balci NC, Semelka RC. Contrast agents for MR imaging of 
the liver. Radiol Clin North Am 2005; 43: 887-898, viii [PMID: 
16098345 DOI: 10.1016/j.rcl.2005.05.004]

20 Bellin MF. MR contrast agents, the old and the new. Eur J 
Radiol 2006; 60: 314-323 [PMID: 17005349 DOI: 10.1016/
j.ejrad.2006.06.021]

21 Verloh N, Utpatel K, Haimerl M, Zeman F, Fellner C, Fichtner-
Feigl S, Teufel A, Stroszczynski C, Evert M, Wiggermann P. Liver 
fibrosis and Gd-EOB-DTPA-enhanced MRI: A histopathologic 
correlation. Sci Rep 2015; 5: 15408 [PMID: 26478097 DOI: 
10.1038/srep15408]

22 Park HJ, Choi BI, Lee ES, Park SB, Lee JB. How to Differentiate 
Borderline Hepatic Nodules in Hepatocarcinogenesis: Emphasis 
on Imaging Diagnosis. Liver Cancer 2017; 6: 189-203 [PMID: 
28626731 DOI: 10.1159/000455949]

23 Marrero JA, Hussain HK, Nghiem HV, Umar R, Fontana RJ, 
Lok AS. Improving the prediction of hepatocellular carcinoma in 
cirrhotic patients with an arterially-enhancing liver mass. Liver 
Transpl 2005; 11: 281-289 [PMID: 15719410 DOI: 10.1002/
lt.20357]

24 Khalili K, Kim TK, Jang HJ, Haider MA, Khan L, Guindi 
M, Sherman M. Optimization of imaging diagnosis of 1-2 cm 
hepatocellular carcinoma: an analysis of diagnostic performance 
and resource utilization. J Hepatol 2011; 54: 723-728 [PMID: 
21156219 DOI: 10.1016/j.jhep.2010.07.025]

25 Golfieri R, Renzulli M, Lucidi V, Corcioni B, Trevisani F, Bolondi 
L. Contribution of the hepatobiliary phase of Gd-EOB-DTPA-
enhanced MRI to Dynamic MRI in the detection of hypovascular 
small (≤ 2 cm) HCC in cirrhosis. Eur Radiol 2011; 21: 1233-1242 
[PMID: 21293864 DOI: 10.1007/s00330-010-2030-1]

26 Kitao A, Matsui O, Yoneda N, Kozaka K, Shinmura R, Koda W, 
Kobayashi S, Gabata T, Zen Y, Yamashita T, Kaneko S, Nakanuma 
Y. The uptake transporter OATP8 expression decreases during 
multistep hepatocarcinogenesis: correlation with gadoxetic acid 
enhanced MR imaging. Eur Radiol 2011; 21: 2056-2066 [PMID: 
21626360 DOI: 10.1007/s00330-011-2165-8]

27 Tsuboyama T, Onishi H, Kim T, Akita H, Hori M, Tatsumi M, 
Nakamoto A, Nagano H, Matsuura N, Wakasa K, Tomoda K. 
Hepatocellular carcinoma: hepatocyte-selective enhancement at 
gadoxetic acid-enhanced MR imaging--correlation with expression 
of sinusoidal and canalicular transporters and bile accumulation. 
Radiology 2010; 255: 824-833 [PMID: 20501720 DOI: 10.1148/
radiol.10091557]

28 Lee YJ, Lee JM, Lee JS, Lee HY, Park BH, Kim YH, Han JK, 
Choi BI. Hepatocellular carcinoma: diagnostic performance of 
multidetector CT and MR imaging-a systematic review and meta-

Ippolito D et al . Advances in magnetic resonance liver



2424 June 21, 2018|Volume 24|Issue 23|WJG|www.wjgnet.com

analysis. Radiology 2015; 275: 97-109 [PMID: 25559230 DOI: 
10.1148/radiol.14140690]

29 Lee NK, Kim S, Lee JW, Lee SH, Kang DH, Kim GH, Seo 
HI. Biliary MR imaging with Gd-EOB-DTPA and its clinical 
applications. Radiographics 2009; 29: 1707-1724 [PMID: 
19959517 DOI: 10.1148/rg.296095501]

30 Schneider G, Maas R, Schultze Kool L, Rummeny E, Gehl HB, 
Lodemann KP, Kirchin MA. Low-dose gadobenate dimeglumine 
versus standard dose gadopentetate dimeglumine for contrast-
enhanced magnetic resonance imaging of the liver: an intra-
individual crossover comparison. Invest Radiol 2003; 38: 85-94 
[PMID: 12544071 DOI: 10.1097/01.RLI.0000044931.26224.F9]

31 Neri E, Bali MA, Ba-Ssalamah A, Boraschi P, Brancatelli G, Alves 
FC, Grazioli L, Helmberger T, Lee JM, Manfredi R, Martì-Bonmatì 
L, Matos C, Merkle EM, Op De Beeck B, Schima W, Skehan S, 
Vilgrain V, Zech C, Bartolozzi C. ESGAR consensus statement on 
liver MR imaging and clinical use of liver-specific contrast agents. 
Eur Radiol 2016; 26: 921-931 [PMID: 26194455 DOI: 10.1007/
s00330-015-3900-3]

32 Hamm B, Staks T, Mühler A, Bollow M, Taupitz M, Frenzel T, 
Wolf KJ, Weinmann HJ, Lange L. Phase I clinical evaluation of 
Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, 
pharmacokinetics, and MR imaging. Radiology 1995; 195: 785-792 
[PMID: 7754011 DOI: 10.1148/radiology.195.3.7754011]

33 Nakamura Y, Toyota N, Date S, Oda S, Namimoto T, Yamashita 
Y, Beppu T, Awai K. Clinical significance of the transitional phase 
at gadoxetate disodium-enhanced hepatic MRI for the diagnosis 
of hepatocellular carcinoma: preliminary results. J Comput Assist 
Tomogr 2011; 35: 723-727 [PMID: 22082543 DOI: 10.1097/
RCT.0b013e3182372c40]

34 Chou R, Cuevas C, Fu R, Devine B, Wasson N, Ginsburg A, 
Zakher B, Pappas M, Graham E, Sullivan SD. Imaging Techniques 
for the Diagnosis of Hepatocellular Carcinoma: A Systematic 
Review and Meta-analysis. Ann Intern Med 2015; 162: 697-711 
[PMID: 25984845 DOI: 10.7326/M14-2509]

35 Kudo M, Matsui O, Izumi N, Iijima H, Kadoya M, Imai Y; 
Liver Cancer Study Group of Japan. Surveillance and diagnostic 
algorithm for hepatocellular carcinoma proposed by the Liver 
Cancer Study Group of Japan: 2014 update. Oncology 2014; 87 
Suppl 1: 7-21 [PMID: 25427729 DOI: 10.1159/000368141]

36 Motosugi U, Ichikawa T, Sou H, Sano K, Tominaga L, Muhi A, 
Araki T. Distinguishing hypervascular pseudolesions of the liver 
from hypervascular hepatocellular carcinomas with gadoxetic acid-
enhanced MR imaging. Radiology 2010; 256: 151-158 [PMID: 
20574092 DOI: 10.1148/radiol.10091885]

37 Kumada T, Toyoda H, Tada T, Sone Y, Fujimori M, Ogawa S, 
Ishikawa T. Evolution of hypointense hepatocellular nodules 
observed only in the hepatobiliary phase of gadoxetate disodium-
enhanced MRI. AJR Am J Roentgenol 2011; 197: 58-63 [PMID: 
21701011 DOI: 10.2214/AJR.10.5390]

38 Taouli B, Johnson RS, Hajdu CH, Oei MT, Merad M, Yee H, 
Rusinek H. Hepatocellular carcinoma: perfusion quantification 
with dynamic contrast-enhanced MRI. AJR Am J Roentgenol 2013; 
201: 795-800 [PMID: 24059368 DOI: 10.2214/AJR.12.9798]

39 Chen J, Chen C, Xia C, Huang Z, Zuo P, Stemmer A, Song B. 
Quantitative free-breathing dynamic contrast-enhanced MRI in 
hepatocellular carcinoma using gadoxetic acid: correlations with 
Ki67 proliferation status, histological grades, and microvascular 
density. Abdom Radiol (NY) 2018; 43: 1393-1403 [PMID: 
28939963 DOI: 10.1007/s00261-017-1320-3]

40 Jajamovich GH, Huang W, Besa C, Li X, Afzal A, Dyvorne 
HA, Taouli B. DCE-MRI of hepatocellular carcinoma: perfusion 
quantification with Tofts model versus shutter-speed model--initial 
experience. MAGMA 2016; 29: 49-58 [PMID: 26646522 DOI: 
10.1007/s10334-015-0513-4]

41 Ippolito D, Trattenero C, Talei Franzesi C, Casiraghi A, Lombardi 
S, Vacirca F, Corso R, Sironi S. Dynamic Contrast-Enhanced 
Magnetic Resonance Imaging With Gadolinium Ethoxybenzyl 
Diethylenetriamine Pentaacetic Acid for Quantitative Assessment 
of Vascular Effects on Hepatocellular-Carcinoma Lesions Treated 

by Transarterial Chemoembolization or Radiofrequency Ablation. J 
Comput Assist Tomogr 2016; 40: 692-700 [PMID: 27560010 DOI: 
10.1097/RCT.0000000000000427]

42 Liang PC, Ch’ang HJ, Hsu C, Chen LT, Shih TT, Liu TW. 
Perfusion parameters of dynamic contrast-enhanced magnetic 
resonance imaging predict outcomes of hepatocellular carcinoma 
receiving radiotherapy with or without thalidomide. Hepatol 
Int  2015; 9 :  258-268 [PMID: 25788178 DOI: 10.1007/
s12072-014-9557-1]

43 Chen BB, Shih TT. DCE-MRI in hepatocellular carcinoma-clinical 
and therapeutic image biomarker. World J Gastroenterol 2014; 20: 
3125-3134 [PMID: 24695624 DOI: 10.3748/wjg.v20.i12.3125]

44 Chen BB, Hsu CY, Yu CW, Liang PC, Hsu C, Hsu CH, Cheng 
AL, Shih TT. Early perfusion changes within 1 week of systemic 
treatment measured by dynamic contrast-enhanced MRI may 
predict survival in patients with advanced hepatocellular 
carcinoma. Eur Radiol 2017; 27: 3069-3079 [PMID: 27957638 
DOI: 10.1007/s00330-016-4670-2]

45 Chen BB, Hsu CY, Yu CW, Liang PC, Hsu C, Hsu CH, Cheng AL, 
Shih TT. Dynamic Contrast-enhanced MR Imaging of Advanced 
Hepatocellular Carcinoma: Comparison with the Liver Parenchyma 
and Correlation with the Survival of Patients Receiving Systemic 
Therapy. Radiology 2016; 281: 454-464 [PMID: 27171020 DOI: 
10.1148/radiol.2016152659]

46 Folkman J. Is angiogenesis an organizing principle in biology and 
medicine? J Pediatr Surg 2007; 42: 1-11 [PMID: 17208533 DOI: 
10.1016/j.jpedsurg.2006.09.048]

47 De Robertis R, Tinazzi Martini P, Demozzi E, Puntel G, Ortolani 
S, Cingarlini S, Ruzzenente A, Guglielmi A, Tortora G, Bassi 
C, Pederzoli P, D’Onofrio M. Prognostication and response 
assessment in liver and pancreatic tumors: The new imaging. World 
J Gastroenterol 2015; 21: 6794-6808 [PMID: 26078555 DOI: 
10.3748/wjg.v21.i22.6794]

48 Duffy AG, Ulahannan SV, Cao L, Rahma OE, Makarova-
Rusher OV, Kleiner DE, Fioravanti S, Walker M, Carey S, Yu 
Y, Venkatesan AM, Turkbey B, Choyke P, Trepel J, Bollen KC, 
Steinberg SM, Figg WD, Greten TF. A phase II study of TRC105 
in patients with hepatocellular carcinoma who have progressed 
on sorafenib. United European Gastroenterol J 2015; 3: 453-461 
[PMID: 26535124 DOI: 10.1177/2050640615583587]

49 O'Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC. 
Dynamic contrast-enhanced MRI in clinical trials of antivascular 
therapies. Nat Rev Clin Oncol 2012; 9: 167-177 [PMID: 22330689 
DOI: 10.1038/nrclinonc.2012.2]

50 Fischer MA, Kartalis N, Grigoriadis A, Loizou L, Stål P, Leidner 
B, Aspelin P, Brismar TB. Perfusion computed tomography 
for detection of hepatocellular carcinoma in patients with liver 
cirrhosis. Eur Radiol 2015; 25: 3123-3132 [PMID: 25903707 DOI: 
10.1007/s00330-015-3732-1]

51 Yuan Z, Li WT, Ye XD, Zhu HY, Peng WJ. Novel functional 
magnetic resonance imaging biomarkers for assessing response to 
therapy in hepatocellular carcinoma. Clin Transl Oncol 2014; 16: 
599-605 [PMID: 24356932 DOI: 10.1007/s12094-013-1147-5]

52 Lee SH, Hayano K, Zhu AX, Sahani DV, Yoshida H. Water-
Exchange-Modified Kinetic Parameters from Dynamic Contrast-
Enhanced MRI as Prognostic Biomarkers of Survival in 
Advanced Hepatocellular Carcinoma Treated with Antiangiogenic 
Monotherapy. PLoS One 2015; 10: e0136725 [PMID: 26366997 
DOI: 10.1371/journal.pone.0136725]

53 Lee SH, Hayano K, Zhu AX, Sahani DV, Yoshida H. Dynamic 
Contrast-Enhanced MRI Kinetic Parameters as Prognostic 
Biomarkers for Prediction of Survival of Patient with Advanced 
Hepatocellular Carcinoma: A Pilot Comparative Study. Acad 
Radiol 2015; 22: 1344-1360 [PMID: 26211553 DOI: 10.1016/
j.acra.2015.05.012]

54 Donato H, França M, Candelária I, Caseiro-Alves F. Liver MRI: 
From basic protocol to advanced techniques. Eur J Radiol 2017; 
93: 30-39 [PMID: 28668428 DOI: 10.1016/j.ejrad.2017.05.028]

55 Brix G, Griebel J, Kiessling F, Wenz F. Tracer kinetic modelling of 
tumour angiogenesis based on dynamic contrast-enhanced CT and 

Ippolito D et al . Advances in magnetic resonance liver



2425 June 21, 2018|Volume 24|Issue 23|WJG|www.wjgnet.com

MRI measurements. Eur J Nucl Med Mol Imaging 2010; 37 Suppl 
1: S30-S51 [PMID: 20503049 DOI: 10.1007/s00259-010-1448-7]

56 Thng CH, Koh TS, Collins DJ, Koh DM. Perfusion magnetic 
resonance imaging of the liver. World J Gastroenterol 2010; 16: 
1598-1609 [PMID: 20355238 DOI: 10.3748/wjg.v16.i13.1598]

57 Sourbron S. Technical aspects of MR perfusion. Eur J Radiol 2010; 
76: 304-313 [PMID: 20363574 DOI: 10.1016/j.ejrad.2010.02.017]

58 Tofts PS, Wicks DA, Barker GJ. The MRI measurement of NMR 
and physiological parameters in tissue to study disease process. 
Prog Clin Biol Res 1991; 363: 313-325 [PMID: 1988983]

59 Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ. 
Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR 
imaging. J Comput Assist Tomogr 1991; 15: 621-628 [PMID: 
2061479]

60 Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, 
Paulson OB. Quantitation of blood-brain barrier defect by magnetic 
resonance imaging and gadolinium-DTPA in patients with multiple 
sclerosis and brain tumors. Magn Reson Med 1990; 16: 117-131 
[PMID: 2255233 DOI: 10.1002/mrm.1910160111]

61 Abdullah SS, Pialat JB, Wiart M, Duboeuf F, Mabrut JY, Bancel B, 
Rode A, Ducerf C, Baulieux J, Berthezene Y. Characterization of 
hepatocellular carcinoma and colorectal liver metastasis by means 
of perfusion MRI. J Magn Reson Imaging 2008; 28: 390-395 
[PMID: 18666145 DOI: 10.1002/jmri.21429]

62 Szafer A, Zhong J, Anderson AW, Gore JC. Diffusion-weighted 
imaging in tissues: theoretical models. NMR Biomed 1995; 8: 
289-296 [PMID: 8739267 DOI: 10.1002/nbm.1940080704]

63 Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. 
Radiology 2010; 254: 47-66 [PMID: 20032142 DOI: 10.1148/
radiol.09090021]

64 Filipe JP, Curvo-Semedo L, Casalta-Lopes J, Marques MC, 
Caseiro-Alves F. Diffusion-weighted imaging of the liver: 
usefulness of ADC values in the differential diagnosis of focal 
lesions and effect of ROI methods on ADC measurements. 
MAGMA 2013; 26: 303-312 [PMID: 23053714 DOI: 10.1007/
s10334-012-0348-1]

65 Lim KS. Diffusion-weighted MRI of hepatocellular carcinoma 
in cirrhosis. Clin Radiol 2014; 69: 1-10 [PMID: 24034549 DOI: 
10.1016/j.crad.2013.07.022]

66 Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, 
Garrett RW, Djamali A. Nephrogenic systemic fibrosis: risk factors 
and incidence estimation. Radiology 2007; 243: 148-157 [PMID: 
17267695 DOI: 10.1148/radiol.2431062144]

67 Thomsen HS, Marckmann P, Logager VB. Update on nephrogenic 
systemic fibrosis. Magn Reson Imaging Clin N Am 2008; 16: 
551-560, vii [PMID: 18926421 DOI: 10.1016/j.mric.2008.07.011]

68 Takayama Y, Nishie A, Asayama Y, Ishigami K, Kakihara D, 
Ushijima Y, Fujita N, Shirabe K, Takemura A, Honda H. Image 
quality and diagnostic performance of free-breathing diffusion-
weighted imaging for hepatocellular carcinoma. World J Hepatol 
2017; 9: 657-666 [PMID: 28588750 DOI: 10.4254/wjh.v9.i14.657]

69 Li X, Li C, Wang R, Ren J, Yang J, Zhang Y. Combined 
Application of Gadoxetic Acid Disodium-Enhanced Magnetic 
Resonance Imaging (MRI) and Diffusion-Weighted Imaging (DWI) 
in the Diagnosis of Chronic Liver Disease-Induced Hepatocellular 
Carcinoma: A Meta-Analysis. PLoS One 2015; 10: e0144247 
[PMID: 26629904 DOI: 10.1371/journal.pone.0144247]

70 Inchingolo R, De Gaetano AM, Curione D, Ciresa M, Miele 
L, Pompili M, Vecchio FM, Giuliante F, Bonomo L. Role of 
diffusion-weighted imaging, apparent diffusion coefficient and 
correlation with hepatobiliary phase findings in the differentiation 
of hepatocellular carcinoma from dysplastic nodules in cirrhotic 
liver. Eur Radiol 2015; 25: 1087-1096 [PMID: 25430005 DOI: 
10.1007/s00330-014-3500-7]

71 Briani C, Di Pietropaolo M, Marignani M, Carbonetti F, Begini P, 
David V, Iannicelli E. Non-Hypervascular Hypointense Nodules at 
Gadoxetic Acid MRI: Hepatocellular Carcinoma Risk Assessment 
with Emphasis on the Role of Diffusion-Weighted Imaging. J 
Gastrointest Cancer 2017; Epub ahead of print [PMID: 28547117 
DOI: 10.1007/s12029-017-9952-7]

72 Xu PJ, Yan FH, Wang JH, Lin J, Ji Y. Added value of breathhold 
diffusion-weighted MRI in detection of small hepatocellular 
carcinoma lesions compared with dynamic contrast-enhanced 
MRI alone using receiver operating characteristic curve analysis. J 
Magn Reson Imaging 2009; 29: 341-349 [PMID: 19161186 DOI: 
10.1002/jmri.21650]

73 Jiang T, Xu JH, Zou Y, Chen R, Peng LR, Zhou ZD, Yang M. 
Diffusion-weighted imaging (DWI) of hepatocellular carcinomas: 
a retrospective analysis of the correlation between qualitative and 
quantitative DWI and tumour grade. Clin Radiol 2017; 72: 465-472 
[PMID: 28109531 DOI: 10.1016/j.crad.2016.12.017]

74 D'Amico F, Schwartz M, Vitale A, Tabrizian P, Roayaie S, Thung 
S, Guido M, del Rio Martin J, Schiano T, Cillo U. Predicting 
recurrence after liver transplantation in patients with hepatocellular 
carcinoma exceeding the up-to-seven criteria. Liver Transpl 2009; 
15: 1278-1287 [PMID: 19790142 DOI: 10.1002/lt.21842]

75 Sumie S, Kuromatsu R, Okuda K, Ando E, Takata A, Fukushima 
N, Watanabe Y, Kojiro M, Sata M. Microvascular invasion 
in patients with hepatocellular carcinoma and its predictable 
clinicopathological factors. Ann Surg Oncol 2008; 15: 1375-1382 
[PMID: 18324443 DOI: 10.1245/s10434-008-9846-9]

76 Yang C, Wang H, Sheng R, Ji Y, Rao S, Zeng M. Microvascular 
invasion in hepatocellular carcinoma: is it predictable with a new, 
preoperative application of diffusion-weighted imaging? Clin 
Imaging 2017; 41: 101-105 [PMID: 27840260 DOI: 10.1016/
j.clinimag.2016.10.004]

77 Gonzalez-Guindal ini  FD ,  Botelho MP,  Harmath CB, 
Sandrasegaran K, Miller FH, Salem R, Yaghmai V. Assessment 
of liver tumor response to therapy: role of quantitative imaging. 
Radiographics 2013; 33: 1781-1800 [PMID: 24108562 DOI: 
10.1148/rg.336135511]

78 Heijmen L, Ter Voert EE, Nagtegaal ID, Span P, Bussink J, Punt 
CJ, de Wilt JH, Sweep FC, Heerschap A, van Laarhoven HW. 
Diffusion-weighted MR imaging in liver metastases of colorectal 
cancer: reproducibility and biological validation. Eur Radiol 2013; 
23: 748-756 [PMID: 23001604 DOI: 10.1007/s00330-012-2654-4]

79 Wagner M, Doblas S, Daire JL, Paradis V, Haddad N, Leitão 
H, Garteiser P, Vilgrain V, Sinkus R, Van Beers BE. Diffusion-
weighted MR imaging for the regional characterization of liver 
tumors. Radiology 2012; 264: 464-472 [PMID: 22692032 DOI: 
10.1148/radiol.12111530]

80 Schraml C, Schwenzer NF, Martirosian P, Bitzer M, Lauer U, 
Claussen CD, Horger M. Diffusion-weighted MRI of advanced 
hepatocellular carcinoma during sorafenib treatment: initial results. 
AJR Am J Roentgenol 2009; 193: W301-W307 [PMID: 19770299 
DOI: 10.2214/AJR.08.2289]

81 Kamel IR, Reyes DK, Liapi E, Bluemke DA, Geschwind JF. 
Functional MR imaging assessment of tumor response after 90Y 
microsphere treatment in patients with unresectable hepatocellular 
carcinoma. J Vasc Interv Radiol 2007; 18: 49-56 [PMID: 17296704 
DOI: 10.1016/j.jvir.2006.10.005]

82 Bonekamp S, Kamel I, Solga S, Clark J. Can imaging modalities 
diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol 
2009; 50: 17-35 [PMID: 19022517 DOI: 10.1016/j.jhep.2008.10.016]

83 Venkatesh SK,  Yin M, Ehman RL. Magnetic resonance 
elastography of liver: technique, analysis, and clinical applications. 
J Magn Reson Imaging 2013; 37: 544-555 [PMID: 23423795 DOI: 
10.1002/jmri.23731]

84 Thompson SM, Wang J, Chandan VS, Glaser KJ, Roberts LR, 
Ehman RL, Venkatesh SK. MR elastography of hepatocellular 
carcinoma: Correlation of tumor stiffness with histopathology 
features-Preliminary findings. Magn Reson Imaging 2017; 37: 
41-45 [PMID: 27845245 DOI: 10.1016/j.mri.2016.11.005]

85 Hennedige TP, Hallinan JT, Leung FP, Teo LL, Iyer S, Wang 
G, Chang S, Madhavan KK, Wee A, Venkatesh SK. Comparison 
of magnetic resonance elastography and diffusion-weighted 
imaging for differentiating benign and malignant liver lesions. 
Eur Radiol 2016; 26: 398-406 [PMID: 26032879 DOI: 10.1007/
s00330-015-3835-8]

86 Gordic S, Ayache JB, Kennedy P, Besa C, Wagner M, Bane O, 

Ippolito D et al . Advances in magnetic resonance liver



2426 June 21, 2018|Volume 24|Issue 23|WJG|www.wjgnet.com

Ehman RL, Kim E, Taouli B. Value of tumor stiffness measured 
with MR elastography for assessment of response of hepatocellular 
carcinoma to locoregional therapy. Abdom Radiol (NY) 2017; 42: 
1685-1694 [PMID: 28154910 DOI: 10.1007/s00261-017-1066-y]

87 Li J, Jamin Y, Boult JK, Cummings C, Waterton JC, Ulloa J, 
Sinkus R, Bamber JC, Robinson SP. Tumour biomechanical 
response to the vascular disrupting agent ZD6126 in vivo assessed 
by magnetic resonance elastography. Br J Cancer 2014; 110: 
1727-1732 [PMID: 24569471 DOI: 10.1038/bjc.2014.76]

88 Pepin KM, Chen J, Glaser KJ, Mariappan YK, Reuland B, 
Ziesmer S, Carter R, Ansell SM, Ehman RL, McGee KP. MR 
elastography derived shear stiffness--a new imaging biomarker for 
the assessment of early tumor response to chemotherapy. Magn 
Reson Med 2014; 71: 1834-1840 [PMID: 23801372 DOI: 10.1002/
mrm.24825]

89 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More 
than Pictures, They Are Data. Radiology 2016; 278: 563-577 
[PMID: 26579733 DOI: 10.1148/radiol.2015151169]

90 Rosenkrantz AB, Pinnamaneni N, Kierans AS, Ream JM. 
Hypovascular hepatic nodules at gadoxetic acid-enhanced MRI: 
whole-lesion hepatobiliary phase histogram metrics for prediction 
of progression to arterial-enhancing hepatocellular carcinoma. 
Abdom Radiol (NY) 2016; 41: 63-70 [PMID: 26830613 DOI: 

10.1007/s00261-015-0610-x]
91 Kim YK , Lee WJ, Park MJ, Kim SH, Rhim H, Choi D. 

Hypovascular hypointense nodules on hepatobiliary phase 
gadoxetic acid-enhanced MR images in patients with cirrhosis: 
potential of DW imaging in predicting progression to hypervascular 
HCC. Radiology 2012; 265: 104-114 [PMID: 22891358 DOI: 
10.1148/radiol.12112649]

92 Choi JW, Lee JM, Kim SJ, Yoon JH, Baek JH, Han JK, Choi BI. 
Hepatocellular carcinoma: imaging patterns on gadoxetic acid-
enhanced MR Images and their value as an imaging biomarker. 
Radiology 2013; 267: 776-786 [PMID: 23401584 DOI: 10.1148/
radiol.13120775]

93 Kitao A, Matsui O, Yoneda N, Kozaka K, Kobayashi S, Koda 
W, Gabata T, Yamashita T, Kaneko S, Nakanuma Y, Kita R, Arii 
S. Hypervascular hepatocellular carcinoma: correlation between 
biologic features and signal intensity on gadoxetic acid-enhanced 
MR images. Radiology 2012; 265: 780-789 [PMID: 23175543 
DOI: 10.1148/radiol.12120226]

94 Zhou W, Zhang L, Wang K, Chen S, Wang G, Liu Z, Liang C. 
Malignancy characterization of hepatocellular carcinomas based on 
texture analysis of contrast-enhanced MR images. J Magn Reson 
Imaging 2017; 45: 1476-1484 [PMID: 27626270 DOI: 10.1002/
jmri.25454]

P- Reviewer: Grieco A, Jia NY, Nah YW, Zhao HT    
S- Editor: Gong ZM    L- Editor: Filipodia    E- Editor: Huang Y

Ippolito D et al . Advances in magnetic resonance liver



                                      © 2018 Baishideng Publishing Group Inc. All rights reserved.

Published by Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA

Telephone: +1-925-223-8242
Fax: +1-925-223-8243

E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk

http://www.wjgnet.com

I S S N  1 0  0 7  -   9  3 2  7

9    7 7 1 0  07   9 3 2 0 45

2  3


	组合 1
	WJGv24i23-Cover
	WJGv24i23Contents

	WJG-24-2413
	WJGv24i23Back Cover

