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Abstract
Colorectal carcinogenesis (CRC) imposes a major health 
burden in developing countries. It is the third major 
cause of cancer deaths. Despite several treatment 
strategies, novel drugs are warranted to reduce the 
severity of this disease. Adenomatous polyps in the 
colon are the major culprits in CRC and found in 45% 
of cancers, especially in patients 60 years of age. 
Inflammatory polyps are currently gaining attention in 
CRC, and a growing body of evidence denotes the role 
of inflammation in CRC. Several experimental models 
are being employed to investigate CRC in animals, 
which include the APCmin/+ mouse model, Azoxymethane, 
Dimethyl hydrazine, and a combination of Dextran 
sodium sulphate and dimethyl hydrazine. During CRC 
progression, several signal transduction pathways are 
activated. Among the major signal transduction pathways 
are p53, Transforming growth factor beta, Wnt/β-catenin, 
Delta Notch, Hippo signalling, nuclear factor erythroid 
2-related factor 2 and Kelch-like ECH-associated protein 
1 pathways. These signalling pathways collaborate 
with cell death mechanisms, which include apoptosis, 
necroptosis and autophagy, to determine cell fate. 
Extensive research has been carried out in our laboratory 
to investigate these signal transduction and cell death 
mechanistic pathways in CRC. This review summarizes 
CRC pathogenesis and the related cell death and signal 
transduction pathways.
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Core tip: Colorectal carcinogenesis (CRC) imposes a 
major health burden. This review addresses the cell 
death mechanisms and major signal transduction 
pathways involved in CRC. Regulated cell death is im-
portant for maintaining normal homeostasis, and the 
dysregulation of cell death processes leads to a spectrum 
of diseases including cancer. It is interesting to note 
that cell death pathways collaborate with each other, so 
understanding the various cell death mechanisms are 
therefore essential. CRC is orchestrated by various signal 
transduction pathways, which are used as drug targets. 
This review highlights the key concepts concerning cell 
death mechanisms and signal transduction in CRC. 

Pandurangan AK, Divya T, Kumar K, Dineshbabu V, Velavan 
B, Sudhandiran G. Colorectal carcinogenesis: Insights into the 
cell death and signal transduction pathways: A review. World J 
Gastrointest Oncol 2018; 10(9): 244259  Available from: URL: 
http://www.wjgnet.com/19485204/full/v10/i9/244.htm  DOI: 
http://dx.doi.org/10.4251/wjgo.v10.i9.244

INTRODUCTION
Cancer is a dreadful disease caused to an anomalous 
growth of cells, which leads to an irregular balance of 
cell proliferation and death. Cell death is a physiological 
process where normal cells are regulated by “touch 
contact-inhibition”. However, proliferating tumor cells 
metastasize to distant sites and invade other tissues, 
often causing morbidity[1,2]. In recent years, colorectal 
carcinogenesis (CRC) has imposed a major health 
burden in developing countries[3,4]. CRC is the second 
highest cause of cancer deaths in women, and the 
third highest cause of cancer deaths in men[5]. Due to 
environmental factors, a sedentary lifestyle and diet, the 
risk of CRC has been growing over the past few years. 
In many cases, the symptoms are not recognized by 
the individual. Although awareness via cancer scree-
nings and the knowledge of therapy modalities has 
increased, the burden of CRC is much more pronounced 
in developing countries. The mortality rate of CRC 
is particularly high in Asian and African populations. 
Recently, mortality rates are declining in Western coun-
tries because of early screening and better treatment 
procedures[6]. An increase in mortality has been reported 
in several Latin American countries, the Caribbean and 
Asia, likely due to inadequate health infrastructure and 
the lack of awareness about cancer screenings[7]. It is 
well-known that dietary factors influence the incidences 
of CRC[8]. Diets that are rich in fiber and that have low 
fat content tend to prevent CRC. The food stuffs we 

intake determine our quality of health. Fried foods, red 
meat, and processed foods all increase CRC risk[9,10]. 

ROLE OF POLYPS IN COLORECTAL 
CANCER
The cells in the lining of the colon change morpholo-
gically and proliferate uncontrollably. Benign (non-
cancerous) polyps are often found lining the bowels. 
They occur in several areas of the gastrointestinal tract, 
but predominantly arise in the colon. They appear as 
small protrusions in the lumen. As aging progresses, 
the number of polyps increases. Malignant polyps indi-
cate an adenoma that appears benign. Adenomas 
are precursor lesions in CRC that arise through the 
adenoma-carcinoma sequence. CRC develops due to the 
formation of malignant neoplasms within the lining of 
the large intestine[11]. Malignancy risk has been linked to 
the site, size, and histological characteristics of polyps. 
Polyps < 5 mm in diameter are harmless and pose an 
insignificant risk of malignancy, whereas those with a 
diameter > 25 mm pose a significant risk[12]. Colonic 
polyps are aberrant growths that appears in the colon. 
Polyps, in principle, can be diagnosed by screening the 
colon via endoscopy or colonoscopy. Three types of 
colonic polyps include hyperplastic polyps, adenomatous 
polyps and malignant polyps[13]. These small colorec-
tal polyps vary in size, ranging from small (< 10 mm) 
to diminutive (< 6 mm), and develop into cancer in 
3%-5% of cases[14]. The larger polyps have a greater 
chance of developing into a tumor. Among polyps, the 
most common ones are adenomas, which have the 
potential to become cancerous and can be removed 
during screening tests. Hyperplastic polyps must be 
differentiated from adenomatous polyps, as they have 
less cancerous potential unless localized in the proximal 
colon[15]. Inflammatory polyps are gaining attention and 
often contribute to ulcerative colitis. Ulcerative colitis 
therefore increases the overall risk of CRC[16,17]. A recent 
article highlights the importance of both managing these 
complex polyps and resecting colonic tumors[18]. It is 
known that 5% of all CRC cases are attributed to two 
specific inherited syndromes, which include hereditary 
nonpolyposis colorectal cancer and familial adenomatous 
polyposis[19,20].

SYMPTOMS AND RISK FACTORS OF 
COLORECTAL CANCER
Common symptoms of CRC are rectal bleeding, signi-
ficant changes in the colour of stool (especially dark 
or black-colored stools), irregular bowel habits, pain or 
discomfort in the lower abdomen, weakness or fatigue, 
and certain types of anemias[21]. Several risk factors 
are thought to cause CRC. Age is a major risk factor. 
About 90% of CRC patients are above the age of 50. 
The median age of CRC diagnosis is 68 in men and 72 
in women. CRC risk also increases due to environmental 
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factors, which include consuming a diet rich in red 
meat and fat, poor intake of dietary fiber, sedimentary 
life style, obesity, diabetes mellitus, smoking and con-
sumption of alcohol[22,23]. One possible mechanism of 
diet-associated CRC is the production of heterocyclic 
amines during the cooking of meat, as well as higher 
levels of fecal bile acids[24]. Conversely, the consumption 
of fish oil rich in omega 3 - fatty acids (Omega 3 PUFA) 
reduces CRC risk. Personal history of sporadic tumours 
is also known to increase the risk of CRC. A previous 
history of colonic polyps, small bowel, endometrial, 
breast or ovarian cancers are additional factors that 
contribute to CRC[25,26]. In recent years, there has been 
an increasing interest in evaluating the genetic pathways 
that contribute to CRC. The current research trend has 
been diverted towards chromosome instability path-
ways, which correlate with sporadic CRC via mutations 
arising in K-ras, p53 and adenomatous polysposis coli 
(APC). The microsatellite instability pathway describes 
hereditary non-polyposis through frequent mutations in 
DNA mismatch repair pathway genes[27,28].

STAGES OF COLORECTAL CANCER 
CRC is a horrendous disease that progresses gradually 
through three precisely-connected stages: Initiation - a 
process that alters the molecular message of the normal 

cell, promotion - aberrant signal transduction cascades 
and progression - phenotypically-altered, transformed 
cells. CRC can be divided into five stages, stage 0 to 
Ⅳ (Figure 1). Disease severity and the corresponding 
therapeutic options depend on the stage[29]. Stage 0 
can be characterized by a tumour at the region of the 
mucosa or inner lining of the colon. CRC stage Ⅰ is 
when cancer cells grow in the mucosa, yet their invasive 
capacity is restricted to the muscular region and not 
present in the neighbouring tissues of the colon)[30]. 
Stage Ⅱ can be subcategorized into three types based 
on invasive growth into: the walls of the colon, the mus-
cular layer of abdomen lining, and nearby tissues[31]. 
Depending upon the growth of the cancer, stage Ⅲ can 
be further divided into three types. During this stage, 
the cancer grows into the inner lining of the colonic 
muscular layer and forms lymph nodules in surrounding 
tissues. Based on the number of nodule formations, this 
stage can be named ⅢA, ⅢB or ⅢC. Stage Ⅳ describes 
the worst stage of the disease where the cancer has 
spread to distant parts of the body, such as the liver, 
lungs, etc.[32]. 

MURINE MODELS OF COLORECTAL 
CANCER
Basic CRC research using animal models has grown[33,34]. 
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layers of muscle into the serosa, the layer of visceral peritoneum. The cancer begins to spread to the lymph nodes; Stage Ⅳ: A tumour nodule forms in the tissue 
surrounding the colon, cancer cells appears within the lymph nodes, and the cancer begins to metastasize. 
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dine and N-methyl-N-nitrosourea are non-specific colon 
cancer models. These carcinogens induce neoplasia 
in multiple organs when administered to rodents [48-51]. 
N-methyl-N-nitrosourea injection into rodents also in-
duces prostate and breast cancer[52]. When N-methyl-
N-nitrosourea is administered through the rectum, it not 
only causes a greater incidence of CRC, but also induces 
thymic lymphoma and lung cancers[53]. Since this is con-
sidered to be a non-specific colon cancer model, it is not 
frequently used to study colorectal cancer. 

Western diet-induced rodent CRC model 
Epidemiologic studies indicate that diet plays a vital 
role in the development of colorectal cancer risk in 
humans[54]. Many studies have examined the influence 
of typical western diets on the incidence of colorectal 
cancer. About 12 wk of feeding these western diets 
to rats and mice promotes hyperplasia in colonic cry-
pts[55,56]. Approximately 70% of the mice fed with this 
Western diet exhibited nuclear atypia in their colonic 
epithelia, and 40% of the mice showed features of 
dysplastic crypts at the end of two years[57,58]. These 
reports suggest the involvement of a Western diet in 
eliciting CRC.

EPITHELIAL-MESENCHYMAL 
TRANSITION IN COLORECTAL CANCER
Epithelial cells: targets of colorectal cancer
CRC is believed to originate in epithelial cells that 
line the colon and rectum. The epithelium is highly 
vulnerable to mutation and carcinogenesis, as the 
replication rate of cells in the epithelium of the colon 
and rectum is relatively high, with a replication rate of 
1010 cells every day[59]. The abnormal accumulation of 
epithelial cells can cause mutations in oncogenes and 
tumour suppressor genes, which may lead to neoplastic 
growth. Thus, these abnormal changes in cells of the 
colon and rectum, which form benign lesions, have the 
potential to further develop into cancer and metastasize 
to other organs[60].

Epithelial-to-mesenchymal transition: a complex 
mechanism in cancer metastasis
Epithelial-to-mesenchymal transition (EMT) repre-
sents a well-organized mechanism in which epithelial 
cells alter their cellular characteristics and behaviour, 
and reform into a mesenchymal-like phenotype[61]. 
Polarized epithelial cells are tightly-packed through 
tight junction molecules such as claudin, occludin, and 
zonula occludens; adherens junction molecules such as 
E-cadherin and desmosomes form a sheet-like structure 
in the normal epithelium[62]. In contrast to epithelial cells, 
mesenchymal cells do not possess cell-cell adhesion 
molecules, which give mesenchymal cells migratory 
capacity and invasiveness. The dissolution of cell ad-
hesion molecules results in loss of apical-basolateral 
cell polarity in mesenchymal cells. Another important 

Especially in recent times, animal models have con-
tributed towards our understanding of CRC patho-
genesis and yielded insights into the development of 
novel chemotherapeutic drugs. In spite of this, murine 
models have become a key tool in understanding 
the effects of genetic modifications that occur during 
the process of CRC formation[35,36]. Researchers have 
developed and modified murine models of CRC, which 
is a resource with immense potential. Murine models 
have been segregated into three different classifications, 
namely genetically-modified, western diet-induced, and 
chemically-induced models[37].

APCmin/+ mouse model
Studies over the past few decades involving preclinical 
CRC research utilize the APCmin/+ mouse[38]. The APCmin/+ 
mouse is a genetically-engineered model of mouse co-
lon carcinogenesis. When these mice reach the age of 
4 wk old, they spontaneously develop tumors in the 
intestine and colon. It is a well-known phenomenon 
that about 80% of CRCs arise due to mutations in the 
APC gene. Researchers removed one allele of the APC 
gene, thus creating the APCmin/+mouse model. The 
APCmin/+model of intestinal/colorectal cancer has been 
extensively studied in the context of developing novel 
chemotherapeutic drugs[39,40].

Dimethyl hydrazine and azoxymethane
Azoxymethane (AOM) and 1,2 dimethyl hydrazine 
(DMH) are the two notorious chemical carcinogens used 
to induce and study CRC in rat and mouse models[41,42]. 
AOM and DMH are alkylating agents that produce free 
radicals that bind to DNA and cause mutations. These 
accumulating mutations will develop into tumours. 
These agents are injected either intraperitoneally (i.p.) 
or subcutaneously (s.c.) into animals for several weeks 
to induce colonic tumors[43]. Detailed analysis of colo-
nic tumours from these chemically- induced rodents 
harbour mutations in the β-catenin gene, which is quite 
similar to Human Non Polyposis Colorectal Cancer [44]. 
In our laboratory, we extensively use this model to 
develop many natural chemotherapeutic agents[45].

DSS/DMH model of ulcerative colitis-induced CRC
Chronic inflammatory bowel disease, where the colon 
is extensively injured over a prolonged period of time 
due to inflammation, increases the risk of CRC. The 
most common forms of inflammatory bowel disease are 
ulcerative colitis and Crohn’s disease[46]. A combination 
of Dextran sodium sulfate (DSS) and DMH are now used 
to induce CRC in Fisher rats[47]. A single dose of AOM 
and three cycles of 2% DSS in drinking water for seven 
days results in tumor formation within 8 wk. These 
AOM/DSS or DMH/DSS mouse models are largely used 
by researchers to screen drugs.

N-methyl-N-nitro-N-nitrosoguanidine and N-methyl-N-
nitrosourea 
Chemically-induced N-methyl N-nitro-N-nitrosoguani-
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feature of these mesenchymal cells is resistance to 
cellular senescence and apoptosis. Mesenchymal 
cells are characterized by the enhanced expression of 
extracellular proteases and transcription factors, such as 
snail, slug and twist, which activate the cells to produce 
collagen, fibronectin, vimentin, α-smooth muscle actin 
(α-SMA), etc[63]. Interestingly, the shift from an epithelial 
to mesenchymal state is complex. Upon triggering by 
mediators, these events begin with the dissolution of cell-
cell adhesion, which results in the loss of microvilli and 
cilia at the apical surface of epithelial cells. At this stage, 
cytoskeletal reorganization takes place, which releases 
α-smooth muscle actin and matrix metalloproteinases. 
These secreted matrix metalloproteinases degrade the 
extracellular matrix, which facilitates the dissolution of 
cells from the basement membrane and allows cells to 
move along the matrix[64].

EMT plays a key role in the spreading of cancer 
throughout distant parts of the body. Newly-produced 
cells by EMT display several properties associated with 
cancer metastasis. Reports suggest that EMT cells can 
avoid cellular senescence by inhibiting tumour-sup-
pressor proteins[65]. Furthermore, research evidence 
shows that high levels of vimentin in EMT cells makes 
these cells more resistant to chemotherapeutic drugs[66]. 
The mechanism of EMT in colorectal cancer metastasis 
is depicted in Figure 2. The mechanism of EMT is con-
sidered to be complex because of the heterogeneity 
within this population. Interestingly, not all epithelial cells 
in a mutated epithelium undergo EMT. Moreover, not all 
EMT cells facilitate metastasis. Several environmental 
factors as well as signalling cascades regulate these 
mechanisms of EMT[67]. A successful metastasis is 
achieved through the involvement of another mech-
anism called mesenchymal-to-epithelial transition. The 
invasive mesenchymal cells produced by EMT travel 
through systemic circulation and anchor themselves in 
other distant parts. For this, cells must regain their epi-
thelial features and thereby undergo a mesenchymal-
to-epithelial transition. The modulation of cells between 
EMT and mesenchymal-to-epithelial transition states 
facilitates cancer metastasis[68].

Interestingly, E-cadherin, a hallmark for EMT, is 
reported as a biomarker for colorectal cancer[69]. Re-
cently, a research group reported that the silencing 
of ubiquitin-specific protease 47, a deubiquitinating 
enzyme, augments the proteasomal degradation of 
Snail, the transcription factor involved in EMT, to prevent 
the progression of colorectal cancer[70]. A molecular 
genetic approach towards the involvement of EMT in 
colorectal cancer revealed that the epithelial nature of 
colon cancer cells might be sensitive to several drugs, 
including Src, Notch, and epidermal growth factor 
receptor inhibitors[71]. Further studies are warranted to 
identify novel regulators of EMT in order to find novel 
cellular targets of colorectal cancer.

CELL DEATH IN COLORECTAL CANCER: 
“CUTS TWO WAYS” PROCESS FROM 
WOMB TO TOMB
Although Carl Vogt reported the incidence of cell death 
in metamorphic toads in 1842, the mechanisms of 
cell death was recognized in the middle of the 19th cen-
tury[72]. However, research attempts have yet to come 
out with a clear picture of the phenomena of cell death, 
and confusions still remain between the alternative 
forms of cell death. As an essential physiological process 
required to maintain tissue homeostasis, the different 
modalities of cell death are intensively studied[73]. The 
decision of a cell to live or die is important and can be 
the determining factor in the progression of cancers[74]. 
Chemotherapies targeting cell death mechanisms 
are highly encouraged in order to prevent cancer pro-
gression and metastasis[75,76]. Dysregulated cell death 
signalling cascades are considered to be fundamental to 
the progression and worsening of CRC. Considering this 
notion, a conceptual understanding of the involvement 
of different modes of cell death in colon carcinogenesis 
and its progression would shed light on novel cellular 
targets against colorectal cancer. 

Death-triggering environmental cues in the colorectum
The urogenital system and hindgut, which include the 
colon and rectum, begin to divide in the 4th week of 
human gestation and become separate units by the 
7th week[77]. Cell death, particularly apoptosis in the me-
senchyme, plays a predominant role in this process. 
Research evidence shows that apoptotic cells are con-
centrated in the mesenchyme of the terminal rectum 
during the formation of the anal canal in the 7th week 
of gestation[78]. A number of developmental regulatory 
signalling molecules such as Wnt 5a, Cdx1, Hoxd-13, Tcf4 
and Shh actively participate in the up- and downregula-
tion of apoptotic cell death during the formation of the 
colorectum[79,80]. Interestingly, researchers have reported 
the decisive role of autophagy in the activation of cellular 
signals that are required for the phagocytic engulfment 
of apoptotic cells during embryonic development[81]. Yet 
another research group has reported that alternative 
cell death mechanisms such as autophagy, cornification, 
entosis, and necroptosis exist when apoptosis machinery 
fails during embryogenesis[82]. Previous reports clearly 
point out that cell death mechanisms are not only impor-
tant in shaping the embryo, but also for maintaining adult 
tissue homeostasis, and can therefore be considered as 
key machinery from womb to tomb.

TYPES AND CHARACTERIZATION OF 
CELL DEATH
According to the 2018 nomenclature committee on cell 
death, all cell death processes taken together can be 
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classified into fourteen or more subgroups based on their 
morphological characteristics, enzymological criteria, 
functional phases, and immunological reactions. These 
subgroups include apoptosis, necrosis, necroptosis[83], 
ferroptosis[84], pyroptosis[85], parthanatos[86], entosis[87], 
NETosis[88], autophagy[89], and mitotic catastrophe[90]. 
Genetically-programmed mechanisms for the targeted 
eradication of permanently-damaged and destructive 
cells or organs are collectively termed as regulated cell 
death mechanisms. The major classifications of different 
cell death modalities with each of stheir functional as-
pects are depicted in Figure 3. 

Targeting cell death in colorectal cancer: implications 
for therapy
An interesting finding about cancer is that several 
genes that are responsible for cancer development 
are very much active during embryogenesis and fetal 
development, particularly regulating embryonic growth 
and organ formation. These genetic programs remain 
silent throughout the rest of the life of an organism; 
however, they are turned on in cells during cancer for-
mation[91]. The genetic paradigm of colorectal cancer 
reveals that APC or β-catenin is responsible for the initial 
changes in normal mucosa that form dysplastic aberrant 
crypt foci. COX-2 mainly regulates the formation of 
early adenomas, and K-RAS regulates the formation of 
intermediate adenomas. CPC4/SMAD4 is responsible 
for late adenomas and p53 is majorly responsible for 
carcinomas[92]. During these sequential events from 
benign polyp formation to adenomas and finally carci-
nomas, cell death plays an essential role. 

A low rate of apoptosis in the base of the crypt, 
where stem cells are expected to reside, is fundamental 

to the function of the normal intestine. It is interesting 
to note that epithelial cells residing in the villi of the 
small intestine and colon are resistant to apoptosis[93]. 
Changes in the expression patterns of several apoptotic 
proteins during the transformation of adenomas into 
carcinomas reveal the importance of apoptosis during 
colon cancer progression[94]. Since 70% of reported 
CRCs are associated with mutations in the tumour 
suppressor p53 gene, the transition from adenomas 
to carcinomas in the colorectal region is considered to 
involve a mechanism whereby apoptosis machinery 
fails[95]. Therefore, chemotherapies intended to stimulate 
apoptosis in colon cells would be central to controlling 
disease progression[96]. With this notion, our laboratory 
is interested in elucidating the apoptosis-inducing effect 
of certain phytochemicals in order to eradicate cancer 
cells and provide protection against CRC progression. 
We have provided evidence that the bioflavonoid 
luteolin has strong anti-proliferative activity. Luteolin 
inhibits the Wnt/β-catenin signalling cascade, which 
induces apoptosis and cell cycle growth arrest in the 
G2/M phase in HCT-15 colon cancer cells[97]. In addition, 
azoxymethane induces colon carcinogenesis in BALB/c 
mice[98]. Our reports suggest that apoptosis is an efficient 
parameter in preventing malignant transformation since 
it eradicates harmful cells. On the contrary, apoptosis can 
also promote cancer growth by preventing the removal 
of certain genetic variants that have a high potential to 
induce malignancy. Yet another interesting hypothesis 
about cancer is that tumour tissues possess a higher 
apoptotic index than normal tissues. Notably, a higher 
apoptotic index in tissue indicates more a malignant 
tumour[99]. Therefore, apoptosis can be considered as a 
double-edged sword in cancer progression. However, the 
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Figure 2  Mechanism of epithelial-to-mesenchymal transition in colorectal cancer. External stimuli or mutations in cancer cells induce epithelial-to-mesenchymal 
transition (EMT), where epithelial cells undergo phenotypic changes and transit into an invasive mesenchymal cell state. Mesenchymal cells invade the systemic 
circulation and undergo a mesenchymal-to-epithelial transition (MET) in distant organs, thus facilitating metastasis. 
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mechanism linking a high apoptotic rate with increased 
cancer cell proliferation and metastasis needs to be 
further elucidated. 

Apart from apoptosis, other cell death modes are 
also gaining attention in cancer research in order to find 
better therapeutic targets. From this point of view, the 
pro-and anti-metastatic effects of autophagy have been 
studied in several cancers including brain, liver, pancreas, 
colon etc. Several signalling cascades are known to re-
gulate autophagy. Among these, PI3K/Akt/mammalian 
target of rapamycin (mTOR) is an important signalling 
pathway that acts as a checkpoint in autophagy and 
promotes cancer progression. Interestingly, PI3K/Akt 
hyperactivation, PIK3CA mutations, and both PTEN 
mutations and deletions have been reported in the in-
cidence of CRC[100]. Autophagy is reported as an anti-
metastatic mechanism in the early stages of cancer 
metastasis by preventing both the infiltration of infla-
mmatory cells as well as tumour cell necrosis, thus helps 
reduce cancer cell invasion and metastasis. However, 
autophagy may act as a promoter of metastasis 
during advanced cancer stages by enhancing EMT, cell 
survival and metastasis[101]. Moreover, high expression 
of LC3I/Ⅱ, which is a key regulator of autophagosome 
nucleation and is known to downregulate Beclin 1, has 
been reported in the advanced stages of CRC[102]. This 
research evidence points out that autophagy machinery 
influences all stages of cancer progression, including 
initiation, proliferation and metastasis, while its effect on 
inhibiting or promoting cancer metastasis seems to be 
context-dependant. 

Targeted therapies for necroptosis, a caspase-inde-
pendent, receptor-interacting protein kinase-mediated 
form of regulated cell death, has recently been postula-
ted as a novel strategy for cancer prevention. Very few 
reports are available concerning the role of necroptosis 
in regulating CRC progression. Moriwaki and colleagues 
have shown a significant downregulation in RIPK1 and 
RIPK3 expression in colon cancer tissues when compared 
with normal colon tissues[103]. Interestingly, dimethyl 
fumarate, an approved drug for the treatment of multiple 
sclerosis, is reported to induce necroptosis through the 
depletion of glutathione in colon cancer cells[104]. Colon 
cancer cell resistance against the 5-fluorouracil drug 
is sensitized by the usage of pan-caspase inhibitors, 
which facilitate 5-fluorouracil-induced necroptosis in CRC 
cells[105]. However, more research should be conducted 
to identify the possible regulatory role of necroptosis in 
the prevention of CRC. Altogether, these reports shed 
a limelight on colon cancer research by revealing a pro-
mising therapeutic target against cancer progression. 

SIGNALLING PATHWAYS IN 
COLORECTAL CANCER
The development of colorectal involves various signalling 
pathways that regulate cellular proliferation, differen-
tiation and immortalization. Signalling activation of Wnt/

β-catenin, inactivation of transforming growth factor 
β (TGFβ) and epidermal growth factor receptor, and 
mutation in k-ras signalling all play a vital role in the pro-
gression of CRC[106,107].

Wnt/β -catenin signalling in colon cancer
Wnt signaling plays divergent biological roles, such as 
regulating cellular homeostasis and maintaining cell self-
renewal throughout embryogenesis and adulthood. 
This pathway particularly promotes intestinal epithelial 
proliferation and differentiation of the intestinal crypt[108]. 
In the presence of Wnt ligand, the receptor frizzled 
inhibits the phosphorylation of Glycogen synthase kina-
se-3 beta, thus impeding the degradation of β-catenin 
by ubiquitins. Accumulated cytoplasmic β-catenin trans-
locates to the nucleus and transcribes target genes (Figure 
4). The activity of this signalling pathway depends on 
the cellular localization of β-catenin. Among 90% of 
colonic tumours have a mutation in the APC and β-catenin 
genes[109]. Mutations in the cluster region of APC leads to 
the generation of truncated protein, which fails to prevent 
complex formation. This mutational dysregulation in Wnt 
signalling stabilizes cytoplasmic β-catenin, and its nuclear 
translocation promotes β-catenin-dependent transcription 
of Wnt target genes, which therein contributes to CRC 
progression[110]. Nuclear β-catenin favours peripheral 
cellular changes that impact cell adhesion and migration. 
Interestingly, Wnt signaling is necessary for the initial 
activation of intestinal stem cells. This plays a crucial 
role not only for stem cell maintenance but also for crypt 
homeostasis. Research evidence shows that experi-
mental abolition of Wnt signalling in cells leads to the spe-
cific loss of proliferative crypts[111,112]. 

PI3K/Akt/mTOR signalling in colorectal cancer
PI3K/Akt/mTOR is the second most frequently muta-
ted oncogenic signalling network in human cancers. 
The dysregulation of PI3K is observed in almost 30% 
of human cancers, making this signalling cascade an 
important therapeutic target in controlling cancer pro-
gression[113]. The involvement of PI3K/Akt /mTOR signa-
lling in colon carcinogenesis has been intensively studied. 
Overexpression of p-Akt and impaired expression of 
PTEN, a tumor suppressor negative regulator of Akt, have 
been reported in 70% of colorectal cancer patients[114]. 
The carotenoid Lycopene has been reported to supress 
leptin-mediated cell invasion in CRC HT-29 cells through 
the inhibition of Akt phosphorylation[115]. Yet another 
research group has reported that aspirin, an inhibitor of 
mTOR and activator of AMP-activated protein kinase, 
induces autophagy and protects against the progression 
of colorectal cancer[116]. 

TGFβ  / Smad signalling in colorectal cancer
TGFβ and related bone morphogenetic proteins belong 
to the family of cytokines involved in the governing 
of various cellular processes, including proliferation, 
differentiation, and apoptosis[117]. The TGFβ superfamily 
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of cytokines contains many proteins, including TGFβ1, 
TGFβ2, TGFβ3, and activins. TGFβ conducts its signals via 
numerous intracellular signalling molecules, including the 
Smad family of proteins, mainly Smads 2 and 3[118,119]. 
TGFβ enhances the expression of several fibrogenic and 
pro-inflammatory cytokines, such as platelet-derived 
growth factor, tumor necrosis factor α or interleukin 
1β, and promotes the development and progression of 
the fibrotic reaction[120]. Three major isoforms of TGFβ 
have been identified in mammals, namely TGFβ1, 
TGFβ2, and TGFβ3. In general, TGFβ is secreted in an 
inactivated form through its attachment to a latent 
TGFβ-binding protein[121]. The downstream regulation of 
TGFβ signalling is activated upon ligand binding to type 
Ⅱ receptors, which phosphorylates the type Ⅰ receptor, 
which then further phosphorylates Smads 2 and 3. The 
phosphorylated Smads heterodimerize with Smad4 
and translocate into the nucleus to promote gene trans-
cription (Figure 5)[122]. TGFβ plays a dual role in early 
cancer progression. TGFβ can perform as a tumor-
suppressor pathway in normal colon epithelial cells by 
regulating cell proliferation and apoptosis. In later stages 
of cancer, however, TGFβ promotes cell migration by 
increasing EMT events and supressing the immune res-
ponse[123,124]. The involvement of TGFβ signalling in CRC 
was described earlier[125-127].

Epidermal growth factor receptor and Ras-Raf-MEK-ERK 
signalling 
Epidermal growth factor receptor, a membrane-bound 
receptor tyrosine kinase, plays a vibrant role in the de-
velopment and progression of many cancers. Ligand-

activated receptors form homo and heterodimers with 
the other ErbB family members and autophosphory-
late their tyrosine residues[128]. Once ligand binds to 
the receptor, it triggers the activation of downstream 
signalling such as Ras, MAPK, ERK, NFκB and PI3K/Akt. 
These pathways are very critical to CRC development. 
The overexpression of epidermal growth factor receptor 
and its ligands correlates with the development of 
human cancer and its poor prognosis[129].

P53 AND COLORECTAL CANCER
p53 is well known gene for its tumor suppressor role 
and is one of the most mutated genes in all forms of 
human cancer. Activation of the p53 DNA damage 
stress response induces DNA repair and regulates the 
cell cycle to prevent oncogenic mutation[130]. Alteration 
of p53 signalling in colon cancer, which results in the 
loss of apoptosis and cellular checkpoints while alter-
ing genetic integrity, ultimately leads to malignancy. 
Accumulation of mutations in cancer-related genes, 
such as K-ras, p53 and APC, instigates the transition 
from normal epithelium to adenomatous to colorectal 
cancer[131].

NOTCH SIGNALLING IN COLORECTAL 
CANCER
In mammals, the major components of Notch signalling 
include five ligands (Delta like ligands 1, 3 and 4, and 
Jagged 1 and 2 (Sterrate-like ligands)), four Notch 
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Figure 4  Wnt/β-catenin pathways. In the absence of Wnt, cytoplasmic β-catenin forms a complex with Axin (yellow), APC (blue), GSK3 (red), and CK1 (purple). 
Phosphorylated β-catenin undergoes ubiquitin-mediated proteosomal degradation. In the presence of Wnt, Wnt binds to the frizzled receptor, which in turn recruits the 
Axin complex. This disrupts Axin-mediated proteosomal degradation of β-catenin. Cytoplasmic β-catenin then travels to the nucleus and functions as a co-activator 
with TCF to activate Wnt-regulated gene expression. GSK: Glycogen synthase kinase; APC: Adenomatous polyposis coli; CK1: Casein kinase 1.
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receptors (Notch 1-4), and several downstream tar-
get genes[132]. Signal-transduction is initiated by the 
interaction of a notch ligand that is present on one cell 
with the transmembrane Notch receptor that is present 
on a neighbouring cell. This binding interaction activa-
tes metalloproteases that cleave the transmembrane 
domain of the Notch receptor, resulting in the release 
of the constitutively-active Notch intracellular domain. 
Translocation of this domain to the nucleus regulates 
transcriptional complexes to induce expression of 
target genes (Figure 6)[133]. Alhough currently available 
reports provide little information about cell-specific 
functions of Notch signalling in CRC when compared 
with other solid tumours, aberrant activation of Notch 
signalling has been reported in CRC. In a recent study, 
the superior therapeutic effect of targeting both Notch 
and MAPK signalling on colon cancer growth, as well 
as its role in regulating tumor cell plasticity, has been 
reported[134]. Notch signalling has been reported to in-
duce cellular resistance to chemotherapeutic drugs. It 
was demonstrated that Notch signalling is significantly 
upregulated in SW480 cells that are resistant to the 
experimentally-generated Regorafenib drug, a multi-
kinase inhibitor. Interestingly, the inhibition of Notch 
signalling in resistant cells restored their sensitivity to 
Regorafenib, thus suggesting the important role of Notch 
in promoting resistance to chemotherapeutic drugs[135]. 
The dysregulation of Notch signalling in colon cancer 
metastasis has been studied in detail[136]. These reports 
strongly suggest the importance of Notch signalling in 
the pathogenesis and progression of CRC. 

Nrf2/Keap signalling in colorectal cancer
Oxidative stress is denoted as an imbalance between 
oxidant production and antioxidant defences, where 
oxidants dominate and lead to cellular dysfunction and 
tissue damage. Oxidative stress caused by harmful 
reactive oxygen species are involved in colorectal cancer. 
Reactive oxygen species cause cellular damage, leading 
to the progression of many diseases such as cancers, 
fibrosis, neurodegenerative disorders etc. In turn, cells 
possess detoxification genes (Phase Ⅱ) and antioxidant 
genes to counterbalance the lethal effects of reactive 
oxygen species[137]. In many disease settings, NF-E2-
related factor 2 (Nrf2), which is a basic leucine zipper 
transcription factor, plays a crucial role in protecting 
tissues against free radical-mediated insults including 
carcinogens, drugs, inflammation, etc[138]. Nrf2 is a 
member of the Cap-N-collar transcription factor family. 
It recognizes the antioxidant response element in the 
promoter of target genes[139,140]. Under basal conditions, 
Nrf2 is restricted to the cytoplasm by Kelch like ECH 
associated protein 1. Kelch like ECH associated protein 1 
is very critical, as it serves as a linker protein substrate 
between the Cul3-based E3-ubiquitin ligase complex 
and Nrf2, leading to the ubiquitination and proteosomal 
degradation of Nrf2[141]. Certain conditions, such as the 
induction of the antioxidant response element, promote 
the detachment of Nrf2 from its partner Kelch like ECH 
associated protein 1, thereby facilitating the translocation 
of Nrf2 to the nucleus. Inside the nucleus, Nrf2 dimerizes 
and associates with small Maf proteins, leading to the 
binding of Nrf2 to antioxidant response elements, which 
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Figure 5  TGF/Smad pathway. TGFβ signalling is initiated via the binding of the TGFβ1 ligand to receptor Ⅱ, which promotes dimerization between receptor Ⅱ and 
receptor Ⅰ and the subsequent transphosphorylation of TGFβRⅠ. Activated TGFβRⅠ therein phosphorylates and activates receptor-regulated Smads (Smad2 and 
Smad3). Phosphorylated Smads, along with co-Smads, form a trimeric complex and translocate to the nucleus to induce the transcription of target genes and promote 
cell growth and survival. TGF: Transforming growth factor.

September 15, 2018|Volume 10|Issue 9|

Pandurangan AK et al . Cell death mechanisms in colon cancer



254

therein promotes transcriptional activation of these 
genes. In colorectal cancer, the chemopreventive effect 
of many drugs greatly depends on this signalling[142-144].

Hippo signalling and colorectal cancer
The origin of the hippo pathway began with observa-
tions in Drosophila melanogaster flies with concomitant 
mutations that led to tissue overgrowth[145]. Hippo signa-
lling has gained attention in cancer biology because of 
its crosstalk with oncogenic signalling pathways[146]. Yes 
associated protein 1 is the key transcriptional regula-
tor of the Hippo pathway. This protein, along with its 
partner PDZ-binding domain taffazin, orchestrate the 
Hippo pathway[147]. In principle, hippo signalling plays an 
important role in the regulation of tissue homeostasis, 
development, regeneration, and cancer[148]. Three protein 
components in mammals are depicted: Mammalian 
Ste 2 like kinase 1 and 2, and large tumor suppressor 
kinase 1 and 2. These kinases phosphorylate Yes ass-
ociated protein 1 and PDZ-binding domain taffazin, 
which leads to their nuclear exclusion and ubiquitin-
mediated proteosomal degradation in the cytoplasm, 
thus promoting the suppression of Yes associated protein 
1/ PDZ-binding domain taffazin-targeted genes[149,150]. 
Recently, a huge body of evidence suggests the critical 
role of Hippo signalling in CRC[151,152]. The Hippo signalling 
pathway has been reported to crosstalk with other 
signalling pathways [153,154].

MiRNAs AND COLORECTAL CANCER
Over the years, several molecular mechanisms have 

been identified to be involved in CRC[155]. In recent years, 
the discovery of microRNAs (miRNAs) has attracted con-
siderable attention in different disease conditions. An 
understanding of the roles of miRNAs in development 
and disease, especially in cancer, have made miRNAs 
both an attractive tool and novel therapeutic target[156]. 
Generally, miRNAs are non-coding RNAs that are 20-24 
nucleotides in length and were classified into Oncomirs, 
including the tumor-suppressor miRNAs that are related 
to cancer. According to recent research relating miRNAs 
and cancer, miRNAs impact several vital processes such 
as the cell cycle, proliferation, differentiation, metabolism 
and apoptosis[157]. It was reported that miRNAs such as 
miR-21, miR-181b1, miR-101, the let7 family, miR-133b, 
and miR-126 were dysregulated in CRC[158,159]. Recen-
tly, miR-760 was found to suppress human colorectal 
cancer growth by targeting BATF3/AP-1/cyclinD1 
signalling[160]. MiR-422a acts as a tumor-suppressor in 
colorectal cancer, and its expression is limited to CRC 
tumours. Increasing the expression of miR-422a could 
inhibit CRC cell growth and promote cell apoptosis in 
colorectal cancer cells. It was also reported that miR-
422a restricts colorectal cancer by inhibiting the p38/
MAPK pathway[161]. Therefore, miRNAs are emerging as 
potential targets in CRC. 

CONCLUSION
Research attempts to develop more effective therapies 
against CRC progression are of outstanding importance, 
as the effectiveness of mono-therapeutic approaches in 
CRC treatment are very limited. However, combinational 
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therapies are gaining attention due to their ability to 
manipulate certain signalling cascades and induce 
different modalities of cell death to prevent cancer 
metastasis. The regulation of both cell signalling pa-
thways and cell death represents a promising tool to 
improve patient responses to chemotherapy. When the 
normal orchestra of cellular signalling is dysregulated, 
cells become pathological and ultimately decide whether 
to die or survive. A subset of novel signalling pathways, 
and their association with colorectal cancer progression 
and metastasis, was discussed in this review. A better 
understanding of anticancer agents that target these 
cellular pathways and induce cell death modalities will 
hopefully provide more insights into the complicated 
molecular mechanisms that underlie colorectal cancer, 
thus facilitating the development of more effective 
treatments. 
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