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Abstract
Hepatocellular carcinoma (HCC) is one of the most 
prevalent malignancies worldwide and the second 
leading cause of death among all cancer types. Dere
gulation of the networks of tissue-specific transcrip
tion factors (TFs) observed in HCC leads to profound 
changes in the hepatic transcriptional program that 
facilitates tumor progression. In addition, recent reports 
suggest that substantial aberrations in the production 
of TF isoforms occur in HCC. In vitro  experiments have 
identified distinct isoform-specific regulatory functions 
and related biological effects of liver-specific TFs that 
are implicated in carcinogenesis, which may be relevant 
for tumor progression and clinical outcome. This study 
reviews available data on the expression of isoforms of 
liver-specific and ubiquitous TFs in the liver and HCC 
and their effects, including HNF4α, C/EBPs, p73 and 
TCF7L2, and indicates that assessment of the ratio 
of isoforms and targeting specific TF variants may be 
beneficial for the prognosis and treatment of HCC.

Key words: Alternative isoforms; Transcription factors; 
Hepatocellular carcinoma; Alternative splicing;Hepatic 
differentiation; Personalized treatment

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This paper aims to analyze existing data on 
the spectrum of isoforms of liver-specific transcription 
factors produced in the liver and hepatocellular 
carcinoma (HCC) and implicated in carcinogenesis, their 
distinct regulatory functions and subsequent isoform-
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dependent biological effects which may be relevant 
for tumor progression and clinical outcomes in HCC 
patients.

Krivtsova O, Makarova A, Lazarevich N. Aberrant expression 
of alternative isoforms of transcription factors in hepatocellular 
carcinoma. World J Hepatol 2018; 10(10): 645-661  Available 
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INTRODUCTION
According to the current estimations of The Human 
Genome Sequencing Consortium, the human genome 
is predicted to comprise less than 20000 protein-
coding genes[1]. Due to concerted efforts of The Human 
Proteome Project, 85% of the predicted proteins have 
already been identified[2]. Multiple sources of evidence 
suggest that this amount may be underestimated due to 
the existence of protein isoforms arising from the usage 
of alternative promoters or translation start sites (TSSs), 
alternative splicing regulated by ubiquitous and tissue-
specific splicing factors, which affects the transcripts 
of 92%-94% of genes, and alternative cleavage and 
polyadenylation[3-5]. Interestingly, the occurrence of both 
alternative promoters and multiple conserved TSSs 
positively correlates with alternative splicing events[4,6,7]. 
However, although most multi-exon genes produce 
several alternative isoforms, 85% of the transcriptome is 
generally represented by a single major gene transcript[8]. 

Deregulation of gene expression[9] and the generation 
of aberrant alternative isoforms are commonly observed 
in multiple cancer types[10,11]. Mechanisms underlying the 
misregulation of the production of alternative isoforms in 
cancer have been thoroughly described elsewhere[12-15] 
and are beyond the scope of this review.

Distinct transcriptional programs of particular 
cell types are principally controlled by tissue-specific 
transcription regulators[16]. Due to alternative promoter 
usage, transcription factors (TFs) produce a tissue-
specific pattern of alternative isoform expression that 
may be altered in carcinogenesis[12], and the imbalance 
of isoform production in tumors contributes to a flexible 
context‑dependent diversification of cell phenotypes[17,18]. 
Somatic mutations and abnormal activation of signaling 
pathways in cancer may cause a differential regulation of 
the abundance and activity of splicing factors and lead to 
an increase in the production of alternative transcripts, 
including those for TFs[14]. Additionally, the transcripts of 
genes encoding TFs tend to contain multiple conserved 
TSSs, which may contribute to the production of protein 
isoforms. In the case of TFs, these complex regulatory 
mechanisms specifying alternative isoform production 
frequently affect functional domains[19], and their dis
ruption in cancer may result in the misregulation of 
networks of their target genes (Figure 1).

Hepatocellular carcinoma (HCC) is the most frequent 

type of liver cancer and the second leading cause of death 
among all cancer types. Although recurrent driver genes 
and somatic mutations have been identified in HCC, most 
of them cannot yet be considered as druggable targets 
for therapy[20]. Massive deregulation of the liver-specific 
TF network[16] and aberrant alternative splicing[14,21,22] 
have been reported in HCC. The latter arises from 
abnormal expression, altered transcript splicing and a 
high mutation rate of genes encoding splicing factors 
that exert an effect in hepatocarcinogenesis and result in 
profound changes in the isoform balance compared with 
the normal liver. Importantly, up to 9% of differentially 
spliced transcripts in HCC originate from TF-coding 
genes[23,24]. These profound changes in the ratios of TF 
isoforms should likely result in a substantial modification 
of gene expression programs and therefore produce 
tumor phenotype alterations with a distinct clinical 
impact. Thus, data on the induction of expression 
of tumor-specific TF variants may be useful for the 
prognosis and development of approaches to isoform-
specific therapy for HCC.

Nevertheless, current data concerning the regulation 
of the TF network in hepatocarcinogenesis by alteration 
of their isoform balance are rather diverse. In this review, 
we consider structural properties, biological effects and 
the clinical impact of the most investigated TF isoforms 
specific to liver and HCC. Essential features of these TFs 
and their isoforms are summarized in Table 1.

HNF4α: DIFFERENTIATION IS THE KEY 
Nuclear receptor HNF4α (NR2A1) is a key regulator 
of hepatocyte differentiation. Bound to DNA as a 
homodimer, it modulates the expression of nearly 42% 
of the genes expressed in hepatocytes, including a wide 
spectrum of hepato-specific genes, either directly or 
through activation of other liver-enriched TFs[25,26]. Apart 
from the regulation of differentiation and morphogene
sis, HNF4α acts as a tumor suppressor in the liver. It 
has been shown to inhibit proliferation through the 
induction of CDKN1A and repression of BMP7 and MYC, 
to regulate the expression of the p53/p63-dependent 
apoptotic effector PERP and to interfere with epithelial-
mesenchymal transition (EMT) via repression of SNAI1, 
SNAI2 and HMGA2 and the upregulation of CDH1[27,28]. 

HNF4A is transcribed from one of its alternative 
promoters, P1 or P2, which are regulated in a tissue- and 
developmental stage-specific manner. Additional exon 
inclusion and alternative splicing result in the generation 
of up to 12 HNF4α variants sharing common DNA-binding 
(DBD) and ligand-binding domains (LBD) and differing 
in the trans-activation domain (TAD) and repressor F 
domain[29]. The isoforms transcribed from P2 (HNF4α7- 
α12) are devoid of the TAD activation function (AF)-1 
region involved in the interaction with co-activators, while 
demonstrating a significant decrease in trans-activation 
(TA) properties[30]. The full-length F domain of HNF4α1 
and HNF4α7 variants impair their TA potential because 
it masks the AF-2-independent co-factor binding site. In 
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early stages of hepatocarcinogenesis, moderately 
differentiated HCC cells are characterized by activation of 
the expression of embryonic HNF4aP2 isoforms, which 
is associated with vascular invasion and poor overall 
survival in HCC patients[36]. In advanced dedifferentiated 
HCCs, which lose epithelial morphology, the expression 
of both P1 and P2 variants is repressed[34,37,38]. 

Exogenous expression of HNF4α1 in dedifferentiat
ed HCC cells results in the restoration of epithelial 
morphology via the upregulation of epithelial markers 
(E-cadherin, connexin32, ZO-1), decrease in proliferation 
and reactivation of genes specific to differentiated 
hepatocytes, and decrease in in vivo tumor growth 
and metastatic potential[37,39,40]. Overall, these data 
indicate that HNF4αP1 reactivation might be beneficial 
as a therapeutic approach for HCC treatment. Further 
experiments are required to elucidate the role and clinical 
impact of particular HNF4α isoforms and to implement 
these findings into the development of therapeutic and 
prognostic approaches to HCC treatment.

ERα BALANCE IS SHIFTED TOWARDS 
DOMINANT-NEGATIVE VARIANTS 
DURING TUMOR PROGRESSION
Nuclear receptor ERα encoded by the ESR1 gene 
induces proliferation and exhibits anti-apoptotic and 

contrast, the 10-amino-acid (AA) insert in the proline-
rich F domain region of HNF4α2/α8 isoforms prevents 
masking, which increases the effectiveness of target 
gene activation[31]. Thus, the structural diversity of HNF4α 
variants determines a lower transcriptional activity of 
Р2-derived isoforms (HNF4α7-α12) that lack AF-1, 
compared to Р1-derived variants (HNF4α1-α6), and a 
higher transcriptional activity of isoforms that are devoid 
of the F domain, compared to HNF4α1/α7.

HNF4α3/α9 isoforms derive from skipping a splice site 
in exon 8 and contain an extended reading frame with 
an alternative termination site, thus encoding a protein 
with a completely different C-terminal F domain with 
undetermined function[32]. The existence of HNF4α4-α6 
variants containing additional exons 1B and 1C has not 
been clearly proven[32]. HNF4α10-α12 isoforms bearing 
extended TAD due to exon 1E translation are expressed 
in various hepatoma cell lines, but their functions remain 
unclear[33].

P1 variants are predominant in the normal liver and 
regulate the expression of hepatocyte differentiation 
markers[32,34]. HNF4αP2 isoforms are prevalent at the 
early stages of embryogenesis; they preferentially 
activate promoters of early hepatic genes[35]. In the 
postnatal liver, the P2 promoter is repressed due to the 
binding of HNF4αP1 isoforms. 

Deregulation of the expression of HNF4α isoforms 
is a frequent event in hepatocarcinogenesis. At the 
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anti-inflammatory activities[41] via estrogen-dependent 
binding to estrogen response elements of target genes. 
Non-canonical activation of ERα target genes via 
secondary messengers, activation of membrane-bound 
ERα isoforms or protein-protein interactions have also 
been described[42].

Canonical 66-kDa ERα (ERα-66) matches the 
conventional structure of nuclear receptors. Additionally, 
numerous ERα splice variants that differ in promoter 
usage and the presence of exons encoding TAD, DBD, 
LBD and the nuclear localization signal (NLS) region have 
been reported in normal and tumor tissues[42]. Apart 

from ERα-66, the expression of 3 dominant-negative (DN) 
isoforms has been reported in the liver, namely, ERα-46 
lacking AF-1 TAD, ERαΔ5 harboring an incomplete LBD, 
and ERα-36, which is transcribed from an alternative 
promoter and is deficient in both AF-1 and LBD[41].

Investigation of the properties of truncated isoforms in 
various cell lines has demonstrated that the dimerization 
of a shorter isoform with the full-length one represses 
its transcriptional activity. Membrane-bound fractions of 
ERα-46 and ERα-36 are believed to interfere with the 
function of ERα-66. Moreover, ERα-36 lacks the NLS but 
is able to activate the MAPK/ERK cascade upon treatment 

October 27, 2018|Volume 10|Issue 10|

TF No. of 
isoforms 
expressed 
in the liver

Types of 
isoforms

Regulated 
processes 
(canonical 
isoform)

Upstream 
signaling 
pathways

Target genes expressed 
in the liver

Isoforms that 
presumably promote 
hepatocarcinogenesis

Isoforms that 
exhibit tumor-

suppressive 
effects

Ref.

C/EBPβ 3 TA, DN Metabolism 
POS: apoptosis, 
inflammatory 

response 
NEG: 

proliferation

TNF UP(LAP1): cytochrome 
p450 genes 

UP(LIP): GADD45B 
DOWN (LAP1): CCNA, 
CCNE, CDK2, PCNA 
DOWN (LIP): CLU, 

NUMB

C/EBPβ-LIP C/EBPβ-LAP1, 
C/EBPβ-LAP2

[59,65,74,76,77, 78,139]

ERα 4 DN POS: 
proliferation

Estrogen 
signaling

UP: CCND1, 
HNRNPH2, MYC, RET, 

WWC1

ERα-36, ERα-46, ER-
αΔ5

ERα-66 [41,43,44,47,139,140]

HIF1α 3 DN NEG: apoptosis, 
inflammatory 

response

PI3K/Akt, 
mTOR

UP: VEGFA HIF1α1.1 HIF1α516, 
HIF1α736

[125,131,133,134,139]

HNF4α 9-12 TA POS: 
angiogenesis

AMPK, 
Hippo, TGFβ

UP: CDH1, CDKN1A, 
HNF1a, PERP 

DOWN: BMP7, 
HMGA2, MYC, SNAI1, 

SNAI2

HNF4α7-α9 HNF4α1-α3 [28,29,37,139,141,142]

KLF6 3 TA, DN POS: 
differentiation, 
morphogenesis, 

apoptosis

TGFβ UP(wtKLF6): ССND1, 
CDH1, CDK4 

UP(SV2): CDKN1A 
DOWN(wtKLF6): 

MDM2 
DOWN(SV1): CDKN1A

SV1 wtKLF6, SV2 [105,108-114,143]

p73 3 TA, DN NEG: 
proliferation, 

invasion, 
metastases

p53, Hippo, 
mTOR

UP: BCL2 family genes, 
caspases, CD95, TNF-R, 

TRAIL-R

ΔN-p73, ΔEx2p73, 
ΔEx2/3p73

TA-p73 [87-91,139,144]

PGC1α 3 TA, DN POS: 
proliferation, 

differentiation, 
apoptosis

AMPK, 
Insulin 

signaling

UP: GLUT4, PDK4, 
PEPCK, PPARA, 

PPARG

PGC‑1α1-a, L‑PGC‑1α, NT-Pgc 1α-a* 
(*promote replication and assembly 

of in HBV and HCV)

[49,52,54-56,139]

TCF4 
(TCF7L2)

17 TA POS: apoptosis Wnt, Hippo UP: AXIN2, CCND1, 
IRS1, JUN, MMP7, 

WISP1

TCF-4J, TCF-4C TCF-4B, 
TCF-4K

[98-102,139,145]

WT1 4 DN NEG: cell cycle 
progression

UP: BCL2 family genes, 
cFLIP 

DOWN: FADD, 
HNF4A, NF-κB

WT1(+/)
17АА(+)KTS

WT1(-)KTS [119-122,146]

ZIP 
(ZGPAT)

2 DN POS: 
gluconeogenesis

DOWN: CDC25A, 
EGFR, FGF5, FGF14, 

PDGFB, PTEN, RGS3, 
TBPL1, VCAM1

sZIP ZIP(fl) [135-137]

Table 1  Transcription factors and their isoforms deregulated in hepatocarcinogenesis

C/EBP: CCAAT enhancer binding protein; TF: Transcription factor; TA: Isoforms with differential transactivation properties; DN: Dominant-negative; POS: 
Positive regulation; NEG: Negative regulation; UP: Up regulation; DOWN: Down regulation.
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with estrogens or tamoxifen[41-45]. A constitutively active 
ER-αΔ5 variant exhibits approximately 10%-15% of the 
ligand-bound ERα-66 activity[46].

ERα-66 is highly expressed in the normal liver and, to 
a lesser extent, in cirrhotic tissue, while its transcription 
in HCC is substantially or completely suppressed. Higher 
ERα-66 expression is associated with a better overall and 
recurrence-free survival of HCC patients and is negatively 
correlated with the tumor size and extra-hepatic 
metastasis. The mRNA of DN ERα-46 is detected in non-
tumor, cirrhotic and tumor liver tissues. Upregulation of 
ERαΔ5 in HCC causes repression of ERα-66 transcriptional 
activity through heterodimerization. An increase in 
ERα-36 isoform production has been reported in HCC and 
hepatoma cell lines; it correlates with the downregulation 
of the full-length isoform[43,44,47] and may arise from ESR1 
promoter hypermethylation, which is frequently observed 
in HCC[48]. Thus, the shift in balance of ERα variants 
towards truncated isoforms with DN properties can 
essentially modulate the impact of the estrogen receptor 
signaling pathway in hepatocarcinogenesis and is likely 
associated with an unfavorable HCC prognosis. 

PGC-1α, A CO-FACTOR OF NUCLEAR 
RECEPTORS THAT REGULATE 
METABOLISM AND INFLAMMATION
PGC-1α (PPARGC1A) is an inducible adaptor of the PPARγ 
co-activator 1 family. It has been shown to regulate 
adaptive reactions of energy metabolism in brain, cardiac 
and skeletal muscles, adipose tissue and liver[49]. PGC-1α 
is a key inducer of gluconeogenesis in the fasted liver[50]. 
A significant decrease in PGC-1α expression has been 
reported in primary human HCCs[51].

The N-terminus of PGC-1α protein contains a TAD 
with co-activator and nuclear receptor (HNF4α, PPARα, 
PPARγ, LXRα) binding sites[52] followed by phosphorylation 
and acetylation sites that modulate PGC-1α activity[53]. 
The NLS region, an arginine-serine-rich domain that 
enables binding to TFs and RNA-recognition motifs, is 
located in the C-terminal part of PGC-1α. C-terminal 
domains are involved in mRNA processing and splicing[53].

PGC-1α transcription is controlled by several tissue-
specific promoters and is often coupled with alternative 
splicing. Processed alternative transcripts give rise to a 
set of TA-competent isoforms and DN variants lacking 
C-terminal domains or with truncations in their co-
activator and co-repressor regions[53]. In human tissues 
with intense energy metabolism, the full-size PGC-
1α1-a is a prevalent isoform[52]. In murine liver, mRNAs 
encoding Pgc‑1α1‑a and NT-Pgc‑1α‑a are transcribed 
from the proximal promoter. The NT-Pgc‑1α‑a variant 
preserves the co-activator binding domain and a portion 
of the co-repressor binding domain, but it lacks the 
C-terminal part[54]. Although less effective, NT-Pgc‑1α‑a 
is sufficient to stimulate gluconeogenesis in PGC-1α1-a-/- 
hepatocytes[55]. The hepato-specific promoter located 
downstream of the proximal one is active in human 

fasted liver[52] or in response to hepatitis C virus (HCV) 
induced endoplasmic reticulum (ER) stress. Its activation 
stimulates the expression of a liver-specific TA-isoform, 
L-PGC-1α, which is deficient in the first 127 aa but is 
able to co-activate most PGC-1α-interacting nuclear 
receptors except liver X receptor α (LXRα)[56]. LXRα 
has been shown to repress the FOXM1 transcriptional 
regulator and its target genes CCNB1 and CCND1 in HCC 
cells[57]. Thus, the reduced LXRα activity may stimulate 
proliferation in hepatoma cell lines. The reduced LXRα 
activity also causes the deregulation of cholesterol 
metabolism, resulting in liver damage and inflammation, 
which facilitates HCC progression[58]. Hence, the 
elevated L-PGC-1α level is likely to be implicated in 
hepatocarcinogenesis. However, PGC-1α1-a induction 
occurs along with L-PGC-1α upregulation in the fasted 
liver and during HCV-induced ER stress. As the result, a 
higher PGC-1α1-a/L-PGC-1α ratio abolishes the effects of 
the alternative isoform. Currently, the expression of PGC-
1α isoforms has been investigated in HCC cell lines but 
not in HCC clinical samples. Further research is required 
to determine a possible impact of the imbalance of PGC-
1α isoforms in hepatocarcinogenesis.

INTERPLAY BETWEEN CCAAT 
ENHANCER BINDING PROTEINS AFFECTS 
PROLIFERATION AND HEPATIC DRUG 
METABOLISM
CCAAT enhancer binding proteins (C/EBPs) belong 
to a liver-enriched bZIP TF family; they regulate the 
expression of genes involved in proliferation, differenti
ation, inflammatory response and metabolism. C/
EBPs bind to DNA as homo- and heterodimers, and 
the heterodimerization of C/EBPs can alter target site 
recognition[59].

Two C/EBP family members are predominant in 
normal liver. CEBPA is highly expressed in adult liver 
under normal conditions, whereas the expression of 
CEBPB is low in hepatocytes and can be induced by pro-
inflammatory cytokines, hormones, cAMP and other 
agents[59,60]. The induction of hepatocyte proliferation is 
accompanied by C/EBPα downregulation and increases 
C/EBPβ levels[61]. Inactivation of the CEBPB gene 
significantly reduces the regenerative response in mice 
after a partial hepatectomy, whereas CEBPA-deficient 
murine hepatocytes demonstrate a high proliferative 
activity[59]. While CEBPA is mainly considered as a tumor 
suppressor that is downregulated in HCC[62], Lu et al[63,64] 
reported its upregulation in liver cancer, which was 
associated with escape from starvation-induced cell death 
and a poor prognosis. CEBPB expression is not altered in 
HCC, albeit the C/EBPβ protein level is decreased[65]. 

The N-termini of C/EBPα and C/EBPβ proteins contain 
a number of activation domains and negative regulatory 
regions that significantly differ between these TFs, 
while their C-termini contain a highly homologous basic 

October 27, 2018|Volume 10|Issue 10|

Krivtsova O et al . Isoforms of transcription factors in hepatocarcinoma



650WJH|www.wjgnet.com

sequence-specific DNA recognition region and leucine 
zipper dimerization domain. Both CEBPA and CEBPB are 
intronless genes. Alternative protein isoforms arise due to 
the alternative usage of TSSs or regulated proteolysis[59].

The 42-kDa and 30-kDa C/EBPα isoforms differ in 
their amino termini with the p30 isoform possessing 
a lower activation potential than the predominant full-
length variant due to the absence of two activation 
domains[59,62]. Apart from the DN activity, p30 has been 
proposed to bind and regulate a distinct set of target 
genes[66]. While both the p42 and p30 variants have 
been detected in liver, to date, the changes in the isoform 
ratio in HCC have not been quantitatively investigated, 
and reports of CEBPA upregulation leading to poor 
outcomes in НСС patients might arise from an isoform 
imbalance. Indeed, the induction of CEBPA expression in 
various models of liver disease leads to disease reversal 
and results in lower levels of liver damage markers and 
reduced tumor burden in rodents with cirrhotic HCC[67].

C/EBPβ isoforms are subdivided into 2 classes. Liver-
enriched activating protein isoforms are able to induce 
the expression of target genes. C/EBPβ-LAP1 (LAP*) 
exhibits a stronger TA potential than C/EBPβ-LAP2 
(LAP), which is deficient in the short N-terminal portion 
of the activation domain. C/EBPβ-LIP, a liver-enriched 
inhibitory protein, lacks the TAD but preserves a part 
of the negative regulation domain, and bZIP and acts 
as a DN regulator of transcription[59]. LAP1 is the major 
C/EBPβ variant expressed in hepatocytes[65]. According 
to Fang et al[65], LAP1 is significantly downregulated 
in HCC, whereas the LAP2 level is unaltered, and LIP 
is underrepresented. These observations are partly in 
line with reports on LAP1 isoform downregulation in 
squamous cell carcinoma[68] and breast cancer[69]. Albeit 
LAP1 variant expression is reduced in HCC, its expression 
is even weaker in liver cancer stem cells[70]. Conversely, 
LAP2 and LIP are induced in these tumor types, and a 
high LIP/LAP ratio is indicative of an advanced stage and 
poor prognosis in breast cancer[71]. 

In murine liver regeneration models, C/EBPβ regulates 
the proliferation of hepatocytes via activation of the 
transcription of E2F-regulated genes that are essential 
for DNA replication (Mcm3, Cdc6) and reparation (Msh2, 
Msh5) and Cebpa repression[72,73]. C/EBPβ-LAP expression 
leads to a delay of the G1/S transition, which results 
in the synchronization of hepatocytes after a partial 
hepatectomy due to the downregulation of CCNA, CCNE, 
PCNA and CDK2, whereas the expression of C/EBPβ-
LIP induces proliferation. Intriguingly, overexpression of 
LAP leads to an increase in the C/EBPα p30/p42 ratio, 
while expression of the LIP variant upregulates both C/
EBPα isoforms[74]. Exogenous expression of C/EBPβ-LAP 
(but not the –LIP variant) arrests cell cycle progression 
in HepG2 and Hep3B hepatoma cells[75,76]. C/EBPβ-
LIP contributes to the survival of tumor cells. Drug-
induced apoptosis is significantly reduced in Hep3B cells 
overexpressing the C/EBPβ-LIP but not the C/EBPβ-LAP 
variant[76]. 

Emerging data also link C/EBPβ expression to the 

metastatic potential of tumor cells. LAP1/2 overexpre
ssion represses Huh7 migration in vitro and metastasis 
in vivo via the induction of orsomucoid 2 (ORM2) gene 
expression, whereas LIP does not affect ORM2 levels[65]. 
In vivo experiments also demonstrate that LAP1-
transfected hepatoma cells possess a reduced ability to 
form subcutaneous tumors in nude mice and that the 
expression of Ki-67 and cancer stem cell markers is 
reduced in tumors originating from these cells[70].

The complex impact of CEBP isoform variants on the 
fine regulation of liver-specific gene expression can be 
illustrated by the regulation of the CYP3A4 gene encoding 
the most abundant type of cytochrome P450 in the 
liver. CYP3A4 expression is modulated by liver-specific 
TFs, including C/EBPα and C/EBPβ, which have multiple 
binding sites in their regulatory region[77,78]. While TA-
competent isoforms induce the expression of CYP3A4, 
the DN variant LIP inhibits it, and an increase in the LIP/
LAP ratio results in the repression of CYP3A4 in HepG2 
cells[78]. As both TFs, including their DN variants, are able 
to heterodimerize, not only the levels of C/EBP proteins 
themselves but also the interactions between their 
isoforms, may affect the regulation of the metabolism of 
xenobiotics. 

Taken together, the data on the abundance of C/
EBPα and C/EBPβ variants in HCC remain limited and 
contradictory. CEBPA has previously been identified as 
a tumor suppressor that tends to be downregulated 
in HCC. Although there are limited data on the ratio of 
C/EBPα isoforms and their distinct effects in HCC, the 
capability of TA-competent and DN C/EBPα variants 
to form dimers with C/EBPβ isoforms increases the 
complexity of the network of target gene regulation 
and should be further investigated. In contrast, growing 
evidence of a variety of diverse effects arising from the 
regulation of expression by individual C/EBPβ isoforms 
indicates that evaluation of the ratio of LAP/LIP isoforms 
and their functions may be of value for HCC prognosis 
and treatment. 

SEVERAL ISOFORMS OF p53 FAMILY 
PROTEINS ARE OVEREXPRESSED IN HCC 
AND FAVOR PROLIFERATION AND CELL 
DEATH EVASION
p53, p63 and p73 TFs of the p53 family regulate cell cycle 
progression and induce programmed cell death. Proteins 
of the p53 family have a similar domain structure, with 
TAD in their N-terminus followed by a proline-rich region, 
DBD and oligomerization domain. p63 and p73 possess 
a longer C-terminus encompassing the sterile α motif[79]. 
Since DBD shares substantial homology among the 
p53 family members, these TFs are able to regulate 
the expression of common target genes, including the 
regulation of each other’s expression, although each 
transcription factor has specific target genes[80]. 

The p53 family proteins bind DNA as tetramers. The 
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wild-type p53 forms tetramers only with p53 variants, 
while mutant p53 variants can oligomerize with p63 and 
p73, thus reducing the activation of their target genes[81]. 
p63 and p73 can form mixed tetramers with varying 
transcriptional activity[82]. 

Alternative transcription and translation start sites 
and alternative splicing of the first exons encoding 
TAD result in the generation of a wide spectrum of 
N-terminally truncated (ΔN-) p53 family proteins that 
generally exert a DN effect over the full-length isoform 
activity. Additionally, the resultant proteins vary in their 
C-terminal domains due to alternative splicing[80]. p53 is 
frequently mutated or inactivated in cancer[80]. While p53 
dysfunction is clearly associated with HCC progression, 
the only isoform proposed to play a significant role in 
hepatocarcinogenesis is the Δ40p53α variant translated 
from the second in-frame AUG of TP53 mRNA and 
lacking 39 AA of TAD. Δ40p53α has been demonstrated 
to be induced after doxorubicin treatment. Its exogenous 
expression suppresses proliferation, colony formation 
and induced senescence in hepatoma cells[83]. p63 is not 
expressed in the normal liver; however, the expression 
of ΔN isoforms is detected in p53-null hepatocytes. A 
trans-activating p63 variant (TAp63) is expressed in 
hepatoma cell lines irrespective of p53 status[84]. The 
TAp63 knockdown in HepG2 and Hep3B hepatoma cells 
leads to increased proliferation and colony formation. 

TAp63 expression negatively correlates with tumor size, 
intrahepatic metastasis, and distant metastasis and, 
according to the results of a retrospective analysis, a 
low TAp63 level is associated with poor survival in HCC 
patients[85,86].

The activation-competent TAp73 is absent in normal 
hepatocytes but is widely expressed in hepatoma cell 
cultures and human HCC samples[87-89]. Intriguingly, 
alternative splicing of full-length TAD-encoding transcripts 
originating from the first promoter (TA-promoter) is 
the main source of TAD-deficient pro-oncogenic p73 
isoforms in HCC. The TA-promoter-driven and aberrantly 
spliced DN isoforms Δex2p73 and Δex2/3p73 that lack 
TAD, and ΔN’-p73 composed solely of TAD, are the most 
abundant p73 variants in HCC cells[88]. Both TAp73 and 
ΔTA variants including Δex2/3p73 are upregulated in 
hepatitis B virus-associated HCC[90]. ΔN-p73, an internal 
promoter-derived variant devoid of TAD, is detected both 
in hepatocytes and HCC and is overexpressed in 37% of 
tumors[87,89]. 

Normally, the induction of TAp73 expression inhibits 
cell proliferation; however, hepatoma cells tolerate its 
effects, presumably due to the co-expression of ΔTA 
variants[87]. The liver-specific expression of ΔNp73 
in transgenic mice causes the formation of hepatic 
adenomas and subsequently to development of HCC 
in most animals[91]. Overexpression of the DN ΔN-p73 
variant is associated with poor survival in HCC patients[89].

p63 and p73 initiate programmed cell death via 
a common mechanism. DNA damage induces TAp63 
or TAp73-dependent TA of genes encoding the death 
receptors CD95, TNF-R and TRAIL-R, caspases and pro-

apoptotic Bcl-2 proteins[91]. The expression of DN p63 
and p73 variants abolishes the induction of pro-apoptotic 
genes and may cause resistance to chemotherapy[89,92]. 
Thus, since pro-oncogenic p53-family TF isoforms are 
generally expressed at low levels or are absent in non-
transformed hepatocytes, targeting these variants may 
provide an option to counteract their DN effects on pro-
apoptotic p53, p63 and p73 isoforms to improve the 
efficiency of drug therapy in HCC patients.

TCF-4 (TCF7L2) MODULATES A 
WIDE SPECTRUM OF TUMOR CELL 
PROPERTIES VIA INTERACTIONS WITH 
THE Wnt SIGNALING PATHWAY AND 
COMPETITION WITH HNF4α
TCF-4 (TCF7L2) is a basic helix-loop-helix (bHLH) TF 
of the LEF/TCF family that modulates the expression 
of Wnt signaling pathway target genes involved in 
proliferation, differentiation, apoptosis, cell polarity 
and motility upon β-catenin binding[93]. The conserved 
domain structure of TCF-4 is characteristic of the LEF/
TCF family; it comprises the N-terminal β-catenin-
binding domain (BCBD), followed by the context-
dependent regulatory domain, high-mobility group DBD, 
and E-tail, which includes the second sequence-specific 
DBD, C-clamp and binding region for the transcriptional 
repressor CtBP[94].

The context-dependent regulatory domain harbors 
several regulatory motifs: LVPQ and SxxSS, implicated 
in the repression of β-catenin-mediated TA, and the 
Groucho/TLE co-repressor binding site. The C-clamp 
contains a 30 AA motif that is required for binding to 
weak Wnt response elements[93,95]. Approximately 20 
TCF-4 isoforms generated by alternative splicing and 
alternative transcription start site usage have been 
reported[96]. Variants transcribed from the internal 
transcription start sites 2 and 3 lack BCBD and act as 
transcriptional repressors of β-catenin target genes[97]. 
Additionally, alternatively spliced isoforms differ by 
the presence of exon 4, which confers transcription 
repressor function, LPQV- and SxxSS motifs, and by the 
splicing pattern of exons 13-17 encoding a part of the 
C-clamp[98,99].

TCF-4 is highly expressed in hepatocytes. The pattern 
of expression of TCF-4 variants depends on the degree 
of cell differentiation[98]. The isoform TCF-4B that is 
predominant in normal liver lacks exon 4, the SxxSS, 
C-clamp and CtBP-binding region, which makes it a 
potent β-catenin-mediated trans-activator[98]. TCF-4B 
expression is maintained in HCCs and in differentiated 
hepatoma cell lines[98,100]. 

LPQV and SxxSS motif-containing variants expressed 
in normal liver are not substantially altered in liver 
tumors[100], except for a TCF-4K isoform. TCF-4K retains 
a portion of the C-clamp and the full CtBP-binding site[98]; 
it is significantly downregulated in HCC[100]. Conversely, 
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TCF-4C and -4J are upregulated in HCC, specifically in 
poorly differentiated tumors. Along with TCF-4B, TCF-
4C demonstrates the highest transcriptional activity 
among the TCF-4 isoforms due to the lack of any 
repressor motifs and domains. TCF-4J, that is deficiency 
in most repressor units, preserves the LVPQ motif and 
CtBP-binding region, which results in a reduced TA 
ability[98,99,101]. 

The exogenous expression of TCF-4J in hepatoma 
cell cultures induces the expression of genes that 
are overexpressed in poorly differentiated HCCs and 
are distinct from SxxSS-containing TCF-4K activated 
targets. Additionally, TCF-4J has been demonstrated to 
interact with the liver-specific master regulator HNF4α, 
affecting its target gene expression[96]. Thus, hepatic 
differentiation may be affected by the balance of certain 
TCF-4 isoforms[102]. Alternatively, it was proposed that 
HNF4α competes with TCF-4 for its binding sites in vitro 
in human colorectal cancer cells in an isoform-dependent 
manner, where the HNF4α2, but not the HNF4α8, 
P2-driven variant, might displace TCF-4 in the AP-1 
transcriptional complex[103]. Although there are no data 
on their interplay in the liver, this possible interaction 
may also be important for the indirect regulation of gene 
expression mediated by the Wnt signaling pathway and 
relevant for hepatocarcinogenesis. 

The exogenous expression of SxxSS-deficient TCF-4B, 
-4C and -4J isoforms in hepatoma cell lines results in the 
upregulation of Wnt-responsive genes, thus promoting 
cell proliferation. TCF-4C and -4J overexpression also 
induces colony formation and promotes cell migration 
in hepatoma cell lines. In contrast, a SxxSS-containing 
TCF-4K variant reduces the proliferation rate and colony 
formation but stimulates cell migration[98,99,101,102]. 

TCF-4J-expressing hepatoma cells demonstrate 
higher tumorigenicity than TCF-4K-overexpressing ones. 
Tumors derived from TCF-4J-overexpressing cells also 
express high levels of HIF-2a and EGFR, which confer 
hypoxia resistance characteristic of an aggressive tumor 
phenotype[100]. Overall, these data indicate that the 
imbalance of TCF-4 isoforms observed in HCC contributes 
to multiple processes including dedifferentiation, 
increased proliferation, survival and metastatic potential 
of tumor cells and thus confers an aggressive tumor 
phenotype.

FULL-LENGTH KLF6 ACTS AS A 
TUMOR SUPPRESSOR IN LIVER AND 
IS DOWNREGULATED EARLY IN 
HEPATOCARCINOGENESIS
The tumor suppressor KLF6 belongs to the C2H2 zinc 
finger domain Sp1/KLF family of TFs, which are es
sential regulators of proliferation, differentiation and 
migration. Biological functions of KLFs are disrupted in 
a wide variety of tumors[104]. In HCC, KLF6 is frequently 
inactivated due to the loss of heterozygosity or point 

mutations[105].
The KLF6 molecule contains N-terminal TAD region, 

an NLS and three zinc fingers located in the C-terminus 
that allow DNA binding. Several KLF6 isoforms are 
produced in vivo due to the activation of cryptic splice 
sites[104]. In the liver, the full-length wtKLF6 isoform 
is prevalent, while truncated SV1 and SV2 variants 
are also expressed[106]. In contrast to wtKLF6, which 
is accumulated in the nucleus, SV1 and SV2 proteins 
lacking the NLS are mainly localized in the cytoplasm[107]. 
The SV1 variant is also defective in DNA-binding due to 
the absence of all zinc fingers[104]. The downregulation 
of wtKLF6 in dysplastic nodules is an early event in 
hepatocarcinogenesis, while its further decrease is 
observed in highly malignant HCCs and is associated 
with a poor prognosis[108,109]. The downregulation of 
wtKLF6 in HCC is often accompanied by a decrease in 
SV2 production and upregulation of the SV1 isoform, 
while higher SV1/wtKLF6 ratios correlate with an 
advanced tumor stage[106,108,110].

Several mechanisms regulating the balance of 
SV1 and wtKLF6 in HCC have been proposed. HGF- or 
Ras-dependent activation of the PI3K/AKT signaling 
pathway induces alterations of KLF6 splicing, which 
leads to enhanced generation of the SV1 variant[111,112]. 
In addition, miRNA-1301, which is abundant in HCC 
samples, and miRNA-210 have been found to specifically 
target wtKLF6 but not the SV1 variant[113]. 

The SV1 isoform counteracts wtKLF6 and SV2 and 
demonstrates obvious oncogenic properties. It has been 
proposed to carry out DN functions via the cytoplasmic 
sequestration of wtKLF6, which leads to its subsequent 
proteasomal degradation[110]. Both wtKLF6 depletion 
and SV1 overexpression significantly accelerate 
tumorigenesis in diethylnitrosamine-treated mice[110]. 
In human hepatoma cell lines, wtKLF6 depletion and 
SV1 exogenous expression enhance proliferation via 
the downregulation of CDKN1A and CCNB1 target 
genes[110-112], whereas SV2 expression has an opposite 
effect[106]. 

KLF6 variants are implicated in the regulation of 
apoptosis. The exogenously expressed wtKLF6 induces 
transcriptional repression of the MDM2 gene, thus 
securing the stabilization of the p53 level[109]. SV2 
overexpression results in p53-dependent upregulation of 
the apoptosis inducers Bax and PUMA[106].

SV1 promotes the migration of hepatoma cell lines; 
it is proposed to favor metastasis via inhibition of the 
function of wtKLF6 implicated in the regulation of Rho 
family GTPase activity[114]. Overexpression of SV1 also 
upregulates the expression of mesenchymal marker 
genes, whereas wtKLF6 is essential for the maintenance 
of E-cadherin expression but does not affect other EMT-
associated markers[113,114]. Thus, since the DN SV1 
isoform of the KLF6 tumor suppressor performs obvious 
pro-oncogenic functions and is upregulated in HCC, it 
can be considered as a prognostic factor and candidate 
target for siRNA-mediated therapeutic inactivation in 
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liver tumors. Alternatively, targeting miRNAs implicat
ed in wtKLF6 downregulation may also result in the 
restoration of the KLF6 isoform balance to reduce the 
pro-oncogenic effects of the SV1 TF variant.

ACTIVATION OF THE PRODUCTION OF 
MAJOR WT1 ISOFORMS IN HCC
WT1, a TF of the C2H2-type zinc-finger protein family, 
is involved in the regulation of cell differentiation, 
proliferation and apoptosis. Depending on the tissue-
specific context, WT1 exhibits either tumor-suppressive 
or oncogenic properties[115], but in most solid tumors, 
including HCC, the upregulation of WT1 is associated 
with a poor prognosis[116,117]. The N-terminal proline-
rich region of WT1 contains a homodimerization domain 
and trans-repression and trans-activation domains that 
are responsible for co-factor binding. The C-terminus 
comprises DBD with 4 C2H2-type Zn-fingers[115].

Although up to 36 alternative isoforms of WT1 
produced by a combination of alternative start codon 
usage, alternative splicing and RNA editing have been 
predicted, 4 major isoforms that vary in exon 5 (17-AA 
insertion - “17AA”) and/or exon 9 (3 AA insertion - “KTS”) 
splicing have mostly been investigated[115,118]. The 17AA 
insertion located between the proline-rich region and the 
first zinc finger and the KTS triplet between the third and 
fourth Zn-fingers have been demonstrated to change the 
DBD conformation and diminish WT1 DNA-binding[115]. 
Therefore, the WT1 isoforms harboring these insertions 
have been suggested to be less transcriptionally 
active[119]. While WT1 expression in the normal liver is 
very low, in the cirrhotic liver and HCC tissue, all 4 major 
WT1 variants are upregulated[116,120,121].

The functional differences in the KTS-variable 
WT1 isoforms have been investigated in HCC model 
systems. In HepG2 and Hep3B hepatomas, exogenously 
expressed WT1 KTS(-) isoforms, but not KTS(+), act 
as tumor suppressors, triggering a p53-independent 
apoptotic program[119]. Conversely, in Huh7 and HLE cells, 
the major 17AA(+) KTS(+) isoform inhibits apoptosis via 
transcriptional activation of the cFLIP apoptotic inhibitor 
and repression of FADD, a caspase cascade activator[122]. 
These data imply that cell fate decisions may be 
dependent on the ratio of KTS(+)/KTS(-) isoforms in 
HCC cells.

The WT1 knockdown in PLC/PRF/5 HCC cells sti
mulates differentiation through upregulation of the 
key hepato-specific regulator HNF4α and leads to the 
loss of resistance to apoptosis[121]. In contrast, ectopic 
equimolar expression of 4 major WT1 variants in a 
primary rat hepatocytes culture induces a decrease in 
HNF4α expression and dedifferentiation[120]. Overall, 
the existing ambiguity regarding the impact of WT1 
on different tumors could be explained not only by the 
tissue-specific context but also by a different spectrum 
of expressed WT1 variants. Importantly, the expression 
of minor WT1 isoforms, in addition to the major ones, 

and their impact on HCC development, progression and 
prognosis has not been thoroughly investigated. Thus, 
further investigation of WT1 isoform properties and the 
development of approaches for WT1 silencing or shifting 
the balance towards DN variants that counteract its 
pro-oncogenic and apoptosis resistance functions may 
benefit HCC prognosis and treatment. Apart from gene 
silencing, enforced expression of DN WT1 variants may 
be considered a therapeutic option for HCC to oppose 
the dedifferentiation and acquisition of resistance to 
apoptosis conferred by extrinsically expressed WT1. 

MINOR ISOFORMS OF HIF1α FOUND 
IN HEPATOMA CELLS ARE ABLE 
TO COUNTERACT THE ADAPTIVE 
RESPONSE TO HYPOXIA
bHLH-PAS protein HIF1α promotes tumor progression 
through the regulation of the adaptive response to 
hypoxia[123]. HIF1α has been proven to be the most 
potent inducer of the expression of vascular endothelial 
growth factors and other hypoxia-responsible element-
containing genes in various cell type-dependent 
contexts[124-126]. HIF1α is not detected in hepatocytes 
under normoxia; its expression is triggered by low oxy
gen levels in the murine liver[127]. HIF1α expression is 
induced in dysplastic liver nodules during malignization 
and is further increased in HCC[128], where its upregu
lation correlates with vascular invasion and a poor 
prognosis[129]. In Hep3B hepatoma cells, HIF1α mo
dulates the expression and alternative splicing of 
its target genes to facilitate tumor cell metabolism 
adaptation to hypoxia[130]. 

The amino-terminal region of HIF1α harbors a 
bHLH DBD followed by the PAS domain, which enables 
its heterodimerization with HIF1β, a component of 
the TA-competent HIF1 complex, and by the oxygen-
dependent degradation domain (ODDD). ODDD 
contains proline residues that are modified under 
normoxia and potentiate binding to VHL ubiquitin ligase 
to provide ubiquitin-dependent degradation of the TF. 
The C-terminal part of HIF1α contains 2 TADs and the 
NLS region[125,131]. 

HIF1α transcription is regulated by the universal I.1 
promoter that drives expression of the major HIF1α1.1 
isoform or by two tissue-specific promoters, I.2 and 
I.3, which give rise to minor HIF1α1.2 and HIF1α1.3 
variants[132]. Alternative splicing of the HIF1α1.1 
transcript leads to frameshifts and generates isoforms 
with impaired activity. DN cytoplasm-localized HIF1α516 
and HIF1α557 variants are devoid of the NLS and both 
TADs as a result of the exclusion of exons 11/12; thus, 
they escape hypoxia-induced nuclear translocation 
and lack TA properties. The HIF1α736 variant lacks the 
C-terminal TAD due to the exclusion of exon 14 and 
demonstrates weaker TA properties compared with 
HIF1α1.1[123,133,134]. 
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HIF1α1.1 is a predominant isoform generated under 
hypoxic conditions in hepatoma cell lines. The expression 
of minor fractions of HIF1α516 and HIF1α736 that 
inhibit the activity of HIF1α1.1 through competitive 
binding to HIF1β and thereby reduce the expression of 
HIF1 target genes has also been identified in hepatoma 
cells[123,134]. Although the biological role of these variants 
in hepatocarcinogenesis is underexplored and no survival 
analysis addressing their impact has been carried out 
to date, further investigation of DN HIF1α variants is 
required to define the possible utility of distinct isoforms 
in prognosis and therapy. 

TRANSCRIPTIONAL REPRESSOR ZIP 
(ZGPAT)
ZIP (ZGPAT) is a DNA-binding transcriptional repressor 
that contains a C3H1-type zinc finger, TUDOR, G-patch, 
coiled-coil domains. ZIP-mediated transcriptional 
repression of target genes is achieved through the 
recruitment of the nucleosome remodeling and dea
cetylase (NuRD) complex[135]. Dimerization of ZIP is 
essential for its DNA binding ability[136]. ZIP target 
genes encode growth factors and their receptors, cell 
cycle regulators, components of the MAPK signaling 
pathway, actin cytoskeleton, and tight and gap junc
tions, particularly EGFR, PTEN, CDC25A, FGF5, FGF14, 
PDGFB, RGS3, and VCAM1[135]. 

Two ZIP isoforms have been identified. The full-
length one acts as a transcriptional repressor, whereas 
a truncated sZIP variant deficient in DBD but capable 
of competitive binding with NuRD and, presumably, 
of dimerizing with ZIP decreases the inhibitory effect 
of ZIP[136,137]. Unlike most cell types, hepatocytes ex
press both truncated and full-length ZIP variants[135]. 
Induced ZIP overexpression in HepG2 cells result in 
EGFR transcriptional downregulation, growth inhibition 
and a reduced clonogenic potential. In contrast, sZIP 
overexpression or ZIP/sZIP co-expression induce clearly 
opposite effects, indicating that the shortened isoform 
can counteract the tumor-suppressing activity of ZIP[137].

CONCLUSION
Aberrant alternative splicing has recently been proposed 
to be an additional hallmark of cancer[138]. We believe it 
reasonable to consider this hallmark in a broad sense, 
i.e., as the generation of transcripts and protein variants 
that are not characteristic of a particular cell type. Such 
an interpretation stems from the observation that 
the mechanism of isoform generation is not limited 
to alternative splicing and can be based on additional 
mechanisms that are listed above or, frequently, on their 
combination. The production of aberrant isoforms is 
certainly not only a hallmark of cancer but also the cause 
of the development of other distinguishing characteristics 
of tumor cells. This statement is particularly relevant in 
regard to TF isoforms since TFs act as hubs that convert 

various incoming signals to a wide variety of target 
genes to modulate their expression, and the processes 
presumably regulated by these atypical isoforms might 
also be relevant for hepatocarcinogenesis (Figure 2). 

The existence of TF isoform variants enables their 
functional diversification for the tight tissue- and 
condition-specific regulation of target genes. In contrast, 
aberrant production of TF variants with different TA 
properties can result in a significant alteration of the 
transcriptional program of the cell and, eventually, 
in its malignization. For instance, the overproduction 
of DN isoforms of TFs that are able to dimerize with 
functionally active variants of the corresponding TFs 
or compete for co-factors and/or binding to target 
gene promoters causes a reduction or inhibition of 
the functional activity of such TFs. The abnormal 
isoform production may result in mRNA degradation or 
structural changes that cause cytoplasmic localization, 
constitutive activation of TFs or enhanced TA ability and 
other alterations that eventually affect the expression of 
target genes. 

The rapid development of transcriptome sequencing 
and proteomic technologies facilitates the detection, 
quantitative assessment and acquisition of statistically 
significant data on alterations of TF isoform ratios. 
Recently, global profiling of alternative splicing in 
hepatitis-associated and virus-free HCCs using a TCGA-
LIHC dataset revealed deep perturbations in RNA splicing 
concomitant with altered expression levels and isoform 
patterns of splicing factors. Among the spectrum of 
alternatively spliced transcripts, those that are common 
for HCC or those that change depending on hepatitis 
infection status have been identified[24]. Notably, 7.6% to 
9.0% of differentially spliced transcripts in HCCs originate 
from TF-encoding genes, including those involved in the 
regulation of the specification, differentiation or malignant 
transformation of hepatocytes (HNF1B, FOXM1, PPARA, 
NR1I3/CAR, NR3C1/GR)[24]. However, very few of the 
identified TFs have been previously investigated with 
regard to the biological effects or clinical implications of 
their isoforms. The available data on TF isoforms that are 
produced in the liver and HCC are summarized in Table 1.

The application of methods that allow the differential 
detection of TF isoforms appears to be crucial for the 
identification of clinically relevant alterations. Data 
based on the evaluation of the total level of gene 
expression or protein synthesis may be ambiguous, as 
such approaches mask the contribution of individual 
TF isoforms possessing distinct transcriptional activities 
to the overall pool of the corresponding TF. For 
example, several oncogenic TCF4 isoforms implicated in 
hepatocarcinogenesis are substantially upregulated in 
HCC, whereas the expression of other variants is usually 
decreased or unaltered. 

Additionally, the ratio and functional impact of TF 
isoforms may significantly depend on the tissue-specific 
context. In the liver, HNF4a isoforms that are translated 
from mRNA transcribed from the P1 promoter are 

October 27, 2018|Volume 10|Issue 10|

Krivtsova O et al . Isoforms of transcription factors in hepatocarcinoma



655WJH|www.wjgnet.com

predominant and clearly demonstrate tumor-suppressive 
properties[37]. In the colon epithelium, HNF4A isoforms 
transcribed from both promoters are normally expressed. 
Unlike HCC cells, non-isoform-specific HNF4A knockdown 
in colorectal carcinoma cell lines inhibits proliferation[147], 
while HNF4αP1 downregulation in vivo is associated 
with a higher metastatic potential in CRC, raising 
the possibility that this isoform group nevertheless 
implements a tumor suppressive function[148]. Thus, the 
isoform-discerning approach may resolve the existing 
contradictions in understanding the roles of certain TFs 
that are believed to exert opposing effects in different 
types of tumors. 

Overall, knowledge of the effects of particular 
isoforms, their tissue-specific expression profiles and 
shifts in their ratios in disease may be of practical 
value for HCC prognosis and outlining potential 
therapeutic targets. Unfortunately, the available data 
on TF isoforms are mostly based on in vitro studies, 
the results of which are not to be directly extrapolated 
since gene expression, splicing and the effects of those 
variants may differ in vivo[149,150]. Few of the isoforms 
discussed above have been investigated in terms of 
their prognostic significance in HCC, although their 
aberrant production is associated with clinical features 
and outcomes in other types of cancer. To date, only 
the overproduction of HNF4αP2, ΔN-p73 and the 
downregulation of the TAp63 and ERα-66 isoforms 
have been reported to be significantly associated with 
the poor survival in HCC patients. A comprehensive 
understanding of the functions and regulation of 
particular isoforms may be further applied to the 
development of new therapeutic approaches. For 
instance, the upregulation of the anti-apoptotic Bcl-x(L) 
isoform of Bcl-2-like protein 1 is frequently observed 

in HCC. Its knockdown in hepatoma cell lines through 
RNA-interference has been demonstrated to induce 
apoptosis after staurosporine treatment in originally 
resistant cells[151]. A similar approach may be applied 
to inhibit isoforms that exert definite oncogenic effects, 
such as SxxSS-deficient TCF4 variants, which are 
overexpressed in HCC and possess high transcriptional 
activity due to the absence of co-repressor binding or 
posttranslational modifications that normally decrease 
TCF4 activity. 

Identification and targeting of the regulators that 
control the production of particular TF variants would 
also be beneficial. For instance, tumor-suppressive 
HNF4α and KLF6 isoforms are frequently downregulated 
in HCC and can induce at least partial reversion of 
the malignant phenotype. In contrast, c-MET- and 
EGFR-mediated activation of signaling pathways 
that are essential for hepatocarcinogenesis has been 
demonstrated to drastically alter the expression of 
multiple splicing factors and induce the production of 
DN KLF6 and p73 isoforms[14]. Thus, targeted inhibition 
of the indicated signaling pathways may be considered 
as an additional strategy to prevent aberrant isoform 
synthesis. Since the expression of genes encoding 
splicing machinery components is altered in HCC, their 
inhibition may be considered as an additional way 
to reduce aberrant splicing. Several small molecule 
splicing modulators targeting basal splicing machinery 
or splicing factors and their regulators have been 
identified. Such modulators effectively inhibit tumor 
growth in vivo, but they lack specificity; in addition, 
they have been demonstrated to be toxic in xenograft 
experiments and clinical trials[152]. Alternatively, 
whereas some components of the splicing regulatory 
network are recurrently mutated in HCC[23], targeting 
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Figure 2  The key processes implicated in hepatocarcinogenesis that are regulated by transcription factors or their specific isoforms. TFs with stimulatory 
effects on these properties are depicted in green color, and TFs acting as repressors are colored in red. Sharp arrows indicate the stimulation of HCC development, 
and inhibition is indicated by blunt arrows. TF: Transcription factor; HCC: Hepatocellular carcinoma; EMT: Epithelial-mesenchymal transition.
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these mutant proteins with specific small molecules or 
antibodies may be relevant. Thus, further expansion of 
knowledge on the functions of TF variants, mechanisms 
of their generation and switching in HCC should shed 
light on additional mechanisms of hepatocarcinogenesis. 
Hopefully, it will also facilitate the discovery of new 
clinically relevant prognostic markers and therapeutic 
targets and contribute to the development of novel 
approaches to cancer treatment. 
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