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Abstract
Glutathione (GSH) is a tripeptide that constitutes one of 
the main intracellular reducing compounds. The normal 
content of GSH in the intestine is essential to optimize 
the intestinal Ca2+ absorption. The use of GSH depleting 
drugs such as DL-buthionine-S,R-sulfoximine, menadione 
or vitamin K3, sodium deoxycholate or diets enriched in 
fructose, which induce several features of the metabolic 
syndrome, produce inhibition of the intestinal Ca2+ ab
sorption. The GSH depleting drugs switch the redox 
state towards an oxidant condition provoking oxida
tive/nitrosative stress and inflammation, which lead to 
apoptosis and/or autophagy of the enterocytes. Either 
the transcellular Ca2+ transport or the paracellular Ca2+ 
route are altered by GSH depleting drugs. The gene 
and/or protein expression of transporters involved in the 
transcellular Ca2+ pathway are decreased. The flavonoids 
quercetin and naringin highly abrogate the inhibition of 
intestinal Ca2+ absorption, not only by restoration of the 
GSH levels in the intestine but also by their anti-apoptotic 
properties. Ursodeoxycholic acid, melatonin and glutamine 
also block the inhibition of Ca2+ transport caused by GSH 
depleting drugs. The use of any of these antioxidants to 
ameliorate the intestinal Ca2+ absorption under oxidant 
conditions associated with different pathologies in humans 
requires more investigation with regards to the safety, 
pharmacokinetics and pharmacodynamics of them.

Key words: Glutathione; Transcellular and paracellular 
Ca2+pathways; DL-buthionine-S,R-sulfoximine; Fructose 
rich diet; Menadione; Sodium deoxycholate; Glutamine; 
Ursodeoxycholic acid; Melatonin; Quercetin; Naringin
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Core tip: The normal content of glutathione (GSH) in 
the intestine is essential to optimize the intestinal Ca2+ 
absorption. The use of GSH depleting drugs such as DL-
buthionine-S,R-sulfoximine, menadione or vitamin K3, 
sodium deoxycholate or diets enriched in fructose, which 
induce several features of the metabolic syndrome, pro
duce inhibition of the intestinal Ca2+ absorption. The flavo
noids quercetin and naringin highly abrogate the inhibition 
of intestinal Ca2+ absorption, not only by restoration of the 
GSH levels in the intestine but also by their anti-apoptotic 
properties. Ursodeoxycholic acid, melatonin and glutamine 
also block the inhibition of Ca2+ transport caused by GSH 
depleting drugs.

Moine L, Rivoira M, Díaz de Barboza G, Pérez A, Tolosa de 
Talamoni N. Glutathione depleting drugs, antioxidants and 
intestinal calcium absorption. World J Gastroenterol 2018; 
24(44): 4979-4988  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v24/i44/4979.htm  DOI: http://dx.doi.
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INTRODUCTION
Ca2+ absorption is one of the most important intestinal 
functions since the intestine is the only entrance gate 
of the cation into the body. This physiological process 
together with the renal Ca2+ reabsorption and the bone 
Ca2+ resorption maintain the Ca2+ homeostasis. An ap­
propriate Ca2+ homeostasis preserves bone integrity, 
metabolic balance and avoids epithelial cancers such as 
breast, colon and prostate cancer[1-3]. A poor intestine 
absorption caused by infection, inflammation or a pa­
thology in the intestine morphology may cause an ad­
verse Ca2+ balance[4], which under chronic conditions 
leads to a deleterious bone mineralization. The intestinal 
Ca2+ absorption occurs along the entire intestine, but the 
small intestine is responsible for about 90% of overall 
Ca2+ absorption, and the order of Ca2+ absorption rate 
is duodenum > jejunum > ileum. The colon is only re­
sponsible for less than 10% of the total Ca2+ absorbed, 
but it appears to become important under pathological 
conditions[5]. 

Ca2+ is absorbed in the intestine by active and 
passive transport systems. The transcellular Ca2+ ab­
sorption is an active process and occurs via cation 
influx into the enterocyte, intracellular shuttling, and 
basolateral extrusion[6]. Ca2+ absorption can also occur 
via a passive, paracellular route, where the movement 
of the cation between epithelial cells is made through 
tight junction (TJ) proteins, which facilitate or block the 
Ca2+ movement[7]. The active transport of Ca2+ is mainly 
regulated by the biologically active form of vitamin D, 
1,25(OH)2D3 (calcitriol)[8], by previous activation of a 
vitamin D receptor (VDR)[9]. When VDR was deleted 
specifically in the intestine (VDRint-) of mice, the intestinal 

Ca2+ absorption was decreased, the bone mineralization 
is inhibited and bone fractures were increased[10]. Thus, 
intestinal VDR is not only essential for intestinal Ca2+ 
absorption, but also for bone formation.

As previously reported, the transcellular Ca2+ move­
ment involves the participation of transient receptor 
potential vanilloid type 6 (TRPV6) and transient receptor 
potential vanilloid type 5 in the step across the brush 
border membrane from enterocytes, calbindin D9k (CB 
D9k) as a ferry from one pole to the other pole of the cells 
and the plasma membrane Ca2+-ATPase (PMCA1b) and 
the Na+/Ca2+ exchanger (NCX1) for cation extrusion[11]. 
The molecules involved in the paracellular Ca2+ move­
ment are not completely known, but there is certain evi­
dence that the proteins of the TJ such as claudin-2 and 
claudin-12 facilitate the Ca2+ transport[12,13]. In contrast, 
either gene or protein expression of cadherin-17 are 
decreased in mice´s and rat´s intestines during low Ca 
intake[14], as well as in Caco-2 cells after treatment with 
calcitriol[15].

When Ca2+ intake is low, the cation entry occurs 
through the transcellular pathway; whereas high luminal 
Ca2+ content (> 2-6 mmol/L) switches on the paracellular 
route due to a short sojourn time in the intestine and a 
down-regulation of molecules involved in the transcellular 
pathway[16,17]. The expression of paracellular TJ genes 
seems to be regulated by the calbindin protein, which 
suggests that the active and passive Ca2+ transport path­
ways may work cooperatively[18]. A reduction in more 
than 70% in the active intestinal Ca2+ absorption, 55% 
in CB D9k expression and 90% in TRPV6 expression was 
observed in VDR null mice[19].

Although calcitriol is the main regulator of intestinal 
Ca2+ absorption, other hormones also contribute to alte­
ring this process as parathyroid hormone, glucocorticoids, 
estrogen, growth hormone, etc. In addition, many 
dietary and pharmacological compounds also modify 
the intestinal Ca2+ transport[20]. We have demonstrated 
that the normal content of the tripeptide glutathione 
(GSH) in enterocytes is essential for an optimal intestinal 
Ca2+ absorption, which was proved either in birds or in 
mammals[21,22]. GSH depletion produced by different 
ways generates a low GSH/glutathione disulfide (GSSG) 
ratio leading to oxidative stress and apoptosis of entero­
cytes by exacerbation of reactive oxygen species (ROS) 
production[23]. Clausen et al[24] have reported that GSH 
plays an important role in the opening of the TJ of intes­
tinal epithelia enhancing the paracellular transport. In this 
review we will analyze the role of GSH in the intestine, 
the molecular mechanisms by which GSH depleting 
drugs inhibit the intestinal Ca2+ absorption and the 
prevention or restoration of these effects by drugs that 
act through normalization of intestinal GSH content. 

GSH SYNTHESIS AND ITS 
PHYSIOLOGICAL ROLE IN THE INTESTINE
The intestinal mucosa comprises the surface monolayer 
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of self-renewing epithelial cells and the lamina propria 
with the vascular, immune and structural components[25]. 
In the small intestine there are invaginations called crypts 
of Lieberkuhn and prominences into the lumen called villi 
with differentiated cells. The crypts contain proliferative 
stem cells and Paneth cells responsible for the innate 
immunity and antibacterial defense and for providing 
essential signals to intestinal stem cells. The intestinal 
epithelium is a single heterogeneous layer of different 
cells: enterocytes (80% of total cells), enteroendocrine 
cells (1% of all epithelial cells), Goblet cells (4% in 
duodenum, secretory cells) and tuft cells (secretory cell 
type). They originate in the crypts, migrate toward the 
villi during differentiation and then suffer spontaneous 
apoptosis and shedding when reaching the villus tip 
after terminal differentiation[26]. Only enterocytes are 
involved in the Ca2+ transport from the intestinal lumen 
to the lamina propria. Although Ca2+ uptake occurs in all 
enterocytes, the mature cells from the tip and the middle 
part of the villi are mainly involved in the transcellular 
Ca2+ movement. Ca2+ uptake is stimulated by calcitriol 
or low Ca diets either in the mature enterocytes or in 
the undifferentiated cells from the crypt, but the most 
differentiated cells exhibit a higher response[27]. The 
GSH content in the intestine is in the millimolar range 
as occurs in other cells[28,29]; however, the tripeptide con­
centration varies according to the degree of maturation 
of cells. Surprisingly, mature enterocytes have lower GSH 
content than the immature cells[30]. GSH exists as the 
biologically active reduced-thiol form, and its oxidation 
to GSSG is associated with oxidative stress (OS). The 
GSH/GSSG ratio is around 100/1; when GSSG increases, 
this ratio decreases causing an oxidative shift in the 
cellular redox state[31]. Intestinal GSH redox homeostasis 
is maintained by de novo synthesis[32], regeneration from 
GSSG[33] and GSH uptake that derives from the dietary 
intake and mainly from the biliary output because the 
bile is enriched in GSH (1-2 mmol/L)[34,35]. The dietary 
GSH comes from fresh fruits, vegetables, and many 
types of meat, but the luminal GSH is lower (250 μmol/L 
in rats) than that from the intracellular compartment[36]. 
In the enterocytes and in the proximal tubular cells from 
kidney, the enzyme γ-glutamyl transpeptidase plays an 
important role in GSH homeostasis. It is located in the 
outer surface of plasma membranes of epithelial cells 
and cleaves the extracellular GSH to glutamate and 
cysteinyl-glycine, which is subsequently hydrolyzed by a 
dipeptidase to yield the constituent amino acids[37]. The 
biosynthesis of GSH occurs in the cytosolic compartment 
through two consecutive adenosine triphosphate (ATP)-
dependent reactions. First, the glutamate cysteine ligase 
(GCL) catalyzes the formation of a dipeptide constituted 
by glutamate and cysteine, and then the GSH synthetase 
catalyzes the addition of glycine to form GSH[38], the 
former being the rate-limiting step. GCL has a catalytic 
subunit and a modulatory subunit. The control of GCL 
function is regulated at transcriptional levels of both 
subunits and through product feedback[39]. The γ-glutamyl 
cycle comprises the enzymatic reactions involved in the 

intracellular GSH synthesis and the extracellular GSH 
degradation, which could be considered as a mechanism 
to preserve cellular GSH homeostasis in transport epi­
thelial cells. The reduction of GSSG by glutathione 
reductase (GR) to form GSH depends on the supply of 
the reductant nicotinamide adenine dinucleotide phos­
phate, which is provided by the pentose phosphate 
shunt[40]. The redox couple GSH/GSSG assures a redox 
environment that allows the maintenance of the gut 
microbiota, the adequate nutrient absorption, the re­
versal of oxidant-induced epithelium damage and the 
modulation of intestinal cell transformation and apop­
tosis[41]. The regulation of the GSH metabolism by the 
gut microbiota in mice has also been suggested[42], but 
it needs further investigation. GSH from the intestinal 
lumen plays different important roles such as reduction 
of dietary disulfides, detoxification of xenobiotics, meta­
bolism of peroxidized lipids and maintenance of the 
mucus fluidity[29,34,41]. Tsunada et al[43] have shown that 
chronic administration of lipid peroxides interferes with 
the regulation of enterocyte death and proliferation in 
vivo; these disruptive effects were reversed by GSH 
supplementation after normalization of GSH/GSSG redox 
balance (Figure 1).

Intracellular GSH is distributed in different com­
partments. Cytosolic GSH is the source of GSH pool of 
the mitochondria, endoplasmic reticulum and nucleus. 
The GSH/GSSG ratio in the cytoplasm varies between 
30/1 to 100/1, whereas in the endoplasmic reticulum 
(ER) is between 3/1 and 1/1, which indicates that in 
ER the system GSH/GSSH is more oxidized than that 
from the cytoplasm. The steady-state redox potential of 
the GSH/GSSG system is about -330 mmol/L to -300 
mmol/L in the mitochondrial matrix and -260 mmol/L to 
-200 mmol/L in the cytoplasm. The endoplasmic reticular 
GSH/GSSG redox potential is about -150 mmol/L, which 
is in midway between cytoplasmic and plasma values[44]. 
The nuclear GSH/GSSG redox potential remains un­
known but there is certain evidence that it can be 
somewhat more reducing than that from the cytoplasm. 
Proliferative cells have more negative steaty-state redox 
potential and differentiated cells have more positive 
cells and cells undergoing apoptosis and necrosis have 
a more oxidized steady-state potential (around -170 
mmol/L to -150 mmol/L)[45]. In other words, the cellular 
compartments have different GSH/GSSG ratios, and the 
life cell cycle is also associated with different thiol redox 
potentials, which can alter the cellular functions. Since 
enterocytes show different degrees of differentiation and 
then suffer apoptosis and shedding in a range of 4-7 d, 
the redox potential of GSH/GSSG couple must change 
quite rapidly in order to facilitate the variety of functions 
of those cells during the lifespan. 

GSH DEPLETION AND THE INTESTINAL 
CALCIUM ABSORPTION
Many years ago, Mårtensson et al[46] demonstrated that 
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carries Ca2+ outside the cell, as mentioned above. The 
enzyme inhibition might be due to alterations produced 
by ROS, which are triggered by GSH depletion caused 
by its consumption in the redox cycle of the quinone[50]. 
When MEN is metabolized, it may undergo one or two-
electron reduction. If it suffers one-electron reduction, 
there is formation of a very unstable semiquinone radical, 
which reacts rapidly with molecular oxygen resulting in 
regeneration of the parent compound and production 
of a superoxide anion that yields H2O2 via enzymatic or 
spontaneous dismutation. Two-electron reduction of MEN 
produces a hydroquinone, a pathway that constitutes a 
detoxification mechanism[51]. In both cases, GSH is the 
electron donor, which explains the tripeptide depletion 
after MEN treatment. Since the intestinal Ca2+ absorption 
is an active process, which requires ATP that is mainly 
provided by the mitochondria, we have analyzed the 
functionality of these organelles in the intestinal mucosa 
when animals were treated with MEN. In fact, we have 
detected that MEN produces mitochondrial dysfunction 
caused by GSH depletion, which alters the mitochondrial 
permeability resulting in the release of cytochrome c and 
DNA fragmentation, biomarkers of apoptosis through 
the intrinsic pathway. In other words, mitochondrial 
dysfunction is also involved in the mechanisms by which 
MEN inhibits transiently the intestinal Ca2+ absorption[49]. 
Later on, the system FASL/FAS/caspase-3, indicators 
of apoptosis via the extrinsic pathway, was also demon­
strated to be activated by MEN[52]. 

Sodium deoxycholate (NaDOC) is another GSH 
depleting drug that produces OS, as indicated by ROS 
generation and mitochondrial swelling leading to inhi­
bition of intestinal Ca2+ absorption[53]. The effect of 

GSH was required for intestinal function. They observed 
that chronic depletion of mucosal GSH by buthionine 
sulfoximine (BSO), a specific inhibitor of GCL[47], caused 
severe degeneration of epithelial cells from jejunum 
and colon, which was prevented by oral GSH or GSH 
monoester. We have shown that BSO alters the Ca2+ 
transfer from intestinal lumen-to-blood in vitamin D 
supplemented chicks but does not affect that of vitamin 
D-deficient chicks, which indicate that the effects of 
BSO on intestinal Ca2+ absorption were dependent on 
the vitamin D status of the animal. The reversibility of 
this inhibition was proved by adding GSH monoester, 
an indication that intestinal GSH is essential to have an 
optimal intestinal Ca2+ absorption[21]. At that time, the 
molecular mechanisms involved in the effect of BSO 
on the intestinal Ca2+ absorption remained unknown. 
Later on, we have demonstrated that GSH depleting 
drugs inhibit the intestinal Ca2+ transport not only in 
birds but also in mammals[48]. The tripeptide depletion 
might increase the oxidation of sulfhydryl groups that 
are important to maintain the functionality of proteins 
involved in the Ca2+ transport, such as occurs with the 
PMCA1b

[21]. In addition, other GSH depleting drug such 
as vitamin K3 or menadione (MEN) causes inhibition of 
intestinal Ca2+ absorption, which is related to OS, as 
judged by a decrease in GSH content and an increment 
in the total carbonyl group content. This inhibitory ef­
fect of MEN on intestinal Ca2+ absorption begins in half 
an hour, lasts for several hours and finishes after 10 
h of treatment[49]. The quinone inhibits two enzymes 
presumably involved in Ca2+ transcellular pathway such 
as the intestinal alkaline phosphatase (IAP), located in 
the brush border membrane, and PMCA1b, protein that 
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Figure 1  Intestinal glutathione metabolism. The γ-glutamyl cycle comprises the enzymatic reactions involved in the extracellular glutathione (GSH) degradation 
and the intracellular GSH synthesis: The enzymes γ-glutamyl transpeptidase and dipeptidase, localized in plasma membrane of enterocytes, cleave the extracellular 
GSH to their constituent amino acids. Within the enterocytes the GSH is synthesized de novo by two reactions that consume adenosine triphosphate that are 
catalyzed by glutamate cysteine ligase and glutathione synthetase, sequentially. In the redox couple that ensures the maintenance of the cellular redox state 
participates the enzymes glutathione peroxidase and glutathione reductase. GSH: Glutathione; GSSG: Glutathione disulfide; GGT: γ-glutamyl transpeptidase; GCL: 
Glutamate cysteine ligase; GS: Glutathione synthetase; GR: Glutathione reductase; GPX: Glutathione peroxidase; DP: Dipeptidase.
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NaDOC is time and dose-dependent and is higher in 
mature enterocytes[53,22]. NaDOC exerts its effect altering 
the transcellular Ca2+ pathway; the gene and protein 
expression of PMCA1b and the protein expressions of cal­
bindin D28k (CB D28k) and NCX1 are decreased by this 
hydrophobic bile salt. NaDOC is a major component of 
the bile; in high concentrations it provokes liver damage 
during cholestasis and promotes colon carcinogenesis in 
experimental animals[54,55]. The molecular mechanisms by 
which NaDOC alters the protein expression of molecules 
involved in the intestinal Ca2+ absorption seem to be also 
related to nitrosative stress, as indicated by increment 
in NO• content and in induced nitric oxide synthase 
(iNOS) protein expression, and apoptosis, as shown 
by enhancement of the system FASL/FAS/caspase-8/
caspase-3. In addition, an increase in acidic vesicular 
organelles (AVOs) and in LC3 Ⅱ protein expression 
produced by NaDOC means that autophagy might be 
another mechanism triggered by this bile salt associated 
with the inhibition of the intestinal Ca2+ absorption[22] 
(Table 1). 

The administration of fructose rich diets (FRD) to nor­
mal rats, which induce several features of the metabolic 
syndrome, inhibit the intestinal Ca2+ absorption and 
induce vitamin D insufficiency[56,57]. In our laboratory, 
we have found that the VDR protein expression is also 
diminished by the FRD[58]. Since 1,25(OH)2D3 and its re­
ceptor are depleted, the inhibition in the cation transport 
could be explained due to 1,25(OH)2D3 is the main 
stimulator of the intestinal Ca2+ absorption. FRD alter 
both the transcellular and the paracellular pathways. 
The protein expression of TRPV6, CB D9k and PMCA1b as 
well as the enzyme activity of IAP are lower in animals 
fed FRD than in rats fed a normal diet. Similarly, the 
protein expressions of Claudin-2 and Claudin-12, mole­
cules located in intestinal TJ, are also decreased in rats 
fed FRD[58]. The intestinal GSH levels are decreased 
by the FRD, which would explain the increment in the 
superoxide anion and in the protein carbonyl content. 
This scenario is worsened by a decrease in the activities 
of superoxide dismutase and catalase, enzymes of the 

antioxidant defense, which result in impairment of the 
redox equilibrium contributing to altering the intestinal 
Ca2+ absorption. Other authors have also demonstrated 
that FRD decrease the GSH content and the antioxidant 
enzyme activities as well as vitamin C and vitamin E 
levels in rat liver and skeletal muscle[59]. In addition, we 
have demonstrated that FRD increase the NO• content 
and the nitrosylation of proteins of 22 and 38 kDa from 
rat intestine. He et al[60] have demonstrated that FRD 
increase the expression of inducible NO• synthase in the 
liver. Kannappan et al[59] have shown that FRD augment 
nitrosothiols in the plasma, liver and skeletal muscle. 
All these findings indicate that an intake rich in fructose 
triggers nitrosative stress in a variety of tissues. 

The inflammation is another mechanism triggered 
by FRD in rat intestine, as suggested by an increment in 
the intestinal protein expression of nuclear factor (NF)-
κB and interleukin (IL)-6. NF-κB is a transcription factor 
that controls over 100 genes activated direct or indirectly 
by inflammation[61]; IL-6 is a cytokine, whose gene has 
a promotor region with a site of binding for NF-κB. In 
addition, IL-6 has been suggested to be associated with 
metabolic syndrome and each of its components and 
it could be added as a biomarker of progression of that 
condition[62]. Therefore, the inhibition of the intestinal 
Ca2+ absorption by FRD is also mediated through the 
enhancement of inflammatory molecules[58].

In conclusion, any drug or disease associated with 
intestinal GSH depletion causes inhibition of intestinal 
Ca2+ absorption. This response is mediated by OS/
nitrosative stress and inflammation, which could lead to 
cell death of enterocytes with capability to transport Ca2+ 
across the cells and in the paracellular route.

REVERSION/PREVENTION OF THE 
INHIBITION OF INTESTINAL CALCIUM 
ABSORPTION CAUSED BY GSH 
DEPLETION
The first approaches to revert or prevent the inhibition 

Oxidative stress markers Effect on intestinal Ca2+ absorption

BSO ↓GSH ↓Ca2+ transfer from lumen-to-blood
MEN ↓GSH ↑ROS and protein carbonyl ↑Mn2+-SOD and GPX Mitochondrial 

dysfunction
↓Ca2+ transfer from lumen-to-blood ↓IAP and PMCA1b activities

NaDOC ↓GSH ↑ROS ↓Intestinal Ca2+absorption
Mitochondrial swelling. ↓mRNA PMCA1b

↑SOD, CAT and GPX ↓PMCA1b, CBD28k and NCX1 protein expression
↑NO• ↑iNOS protein

FRD ↓GSH ↑.O2
− ↓Intestinal Ca2+ absorption

↑protein carbonyl and nitrotyrosine content ↓IAP activity
↓SOD and CAT ↓TRPV6, PMCA1b, CBD9k, CLDN 2, CLDN12 and VDR protein 

expression↑NO•

Table 1  Glutathione depletion and the intestinal calcium absorption

BSO: DL-buthionine-S,R-sulfoximine; CAT: Catalase; CBD28k: Calbindin D28k; CBD9k: Calbindin D9k; CLDN 2: Claudin 2; CLDN12: Claudin 12; FRD: 
Fructose rich diet; GPX: Glutathione peroxidase. GSH: Glutathione; IAP: Intestinal alkaline phosphatase. MEN: menadione. Mn2+-SOD: Mn2+-superoxide 
dismutase. NaDOC: sodium deoxycholate.NCX1: Na+/Ca2+ exchanger; NO•: Nitric oxide; PMCA1b: Plasma membrane Ca2+ATPase; SOD: Superoxide 
dismutase; TRPV6: Transient receptor potential vanilloid type 6; VDR: Vitamin D receptor. 
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of intestinal Ca2+ absorption caused by GSH depletion 
consisted in the use of GSH monoester in order to 
replenish the intestine with the tripeptide[21]. In fact, this 
treatment leads to the normalization of the intestinal 
Ca2+ absorption. In addition, other strategies were also 
assayed because the intestinal GSH depletion could 
be generated not only by drugs but also by patholo­
gical conditions such as cholestasis and metabolic syn­
drome[58,63]. 

Since GSH depletion causes exacerbation of ROS 
production, inflammation, apoptosis and autophagy, the 
reversion or prevention was thought to be blocked by fla­
vonoids, molecules derived from natural sources with anti­
oxidant, anti-inflammatory and antiapoptotic properties. 
Flavonoids are a class of phenolic metabolites produced 
by plants and fungi[64]. Among them, quercetin (QT) is 
largely present in fruit, red wine, tea, vegetables and aro­
matic plants[65], and exhibits all the biological properties 
mentioned above. Hence, QT is considered as a potential 
therapeutic agent for different diseases such as cancer, 
hypertension, inflammation, diabetes, thrombosis[66-68]. 
Inoue et al[69] have suggested that QT might improve 
the intestinal Ca2+ absorption because they have demon­
strated in Caco-2 cells that QT increases the gene expres­
sion of TRPV6, which is a VDR target gene. We did not 
find that QT alone ameliorates the Ca2+ transport in 
the intestine, but we demonstrated that QT blocks the 
inhibition of the intestinal Ca2+ absorption caused by MEN 
via GSH depletion. Similarly, QT by itself does not change 
the intestinal GSH content, but it prevents the GSH dep­
letion produced by the quinone[52]. Boots et al[70] have 
also observed that the effects of QT supplementation in 

patients with sarcoidosis appear to be more pronounced 
when the baseline levels of oxidative (malondialdehyde) 
and inflammatory (tumor necrosis factor α, IL-8, IL-10) 
markers are increased. So, it appears that the extent 
of the QT effects depends on the baseline of OS and 
inflammation. The protective mechanisms of QT on the 
intestinal Ca2+ absorption under oxidant conditions could 
be summarized in: (1) Normalization of intestinal redox 
state, (2) blockage of alterations in the mitochondrial 
membrane permeability (swelling), and (3) interference 
with the FASL/FAS/caspase-3 cascade activation. Taken 
together, it could be concluded that QT might be useful to 
prevent the inhibition of intestinal Ca2+ absorption caused 
by pro-oxidants or conditions that deplete GSH leading to 
OS and apoptosis[52].

Naringin (NAR) is another flavonoid that abrogates 
the inhibition of intestinal Ca2+ absorption caused by 
oxidant conditions such as an experimental metabolic 
syndrome produced in rats by FRD[58]. NAR is chemically 
known as naringenin 7-O-neohesperidoside and is pre­
sent in different citrus being responsible for the bitterness 
in grapefruit, which is one of the richest sources of this 
flavonoid[71]. NAR has been demonstrated to increase 
the GSH content either in the liver or in the intestine 
from mice exposed to whole-body irradiation[72]. A meta-
analysis also showed that NAR restores the GSH content 
in different parts of brain in various neurological ailments 
in rodents[73]. We have demonstrated that NAR (40 
mg/kg bw) can protect the intestinal Ca2+ absorption 
by blocking all the alterations in the redox state of the 
intestinal mucosa caused under oxidant conditions such 
as the intake of FRD by rats[58]. With regard to GSH, NAR 

Drugs Normalized OS markers Effect on inhibition 
of ICaA

Normalized component of 
ICaA

Apoptosis markers References

GSH monoester GSH total Restoration Tolosa de Talamoni et al[21]

MEL GSH, ˙O2− Protein carbonyl 
SOD, CAT and GPX activities 

iNOS gene and protein 
expression

Prevention 
restoration

PMCA1b, CBD9k, NCX1, 
CLDN 2 and CLD 12 

protein expression

↓TUNEL index
↓Caspase 3 activity/
protein expression

Carpentieri et al[80]

Areco et al[81]

QT GSH total. GPX activity Prevention ↓Caspase 3 activity ↓
FAS, ↓FASL. Blocks mit 

swelling

Marchionatti et al[52]

GLN GSH, ˙O2
−. Protein carbonyl

SOD and CAT activity
Prevention 
restoration

CBD28k and PMCA1b 
protein expression.

↓TUNEL index.
↓FAS, ↓FASL ↓Caspase-3 

activity

Moine et al[88]

NAR GSH, ˙O2− NO•

Protein carbonyl and 
nitrotyrosine content. SOD and 

CAT activity

Prevention IAP activity (partially)
PMCA1b, CBD9k, NCX1, 

VDR, CLDN2 and CLD12 
protein expression

Rodríguez et al[58]

UDCA GSH, NO• protein carbonyl 
SOD activity

iNOS protein expression

Increase restoration IAP activity
↑PMCA1b, CBD28k, NCX1, 

VDR gene and protein 
expression

↓Mit swelling
↓FAS, ↓FASL gene/

protein content
Caspase 8 protein content

Caspase 3 activity

Rodríguez et al[22,48] 

Table 2  Antioxidants that preserve/ restore the inhibition of intestinal Ca2+ absorption caused by glutathione depletion

CAT: Catalase; CBD28k: Calbindin D28k; CBD9k: Calbindin D9k; CLDN 2: Claudin 2; CLDN12: Claudin 12; GLN: Glutamine; GPX: Glutathione peroxidase; 
GSH: Glutathione; IAP: Intestinal alkaline phosphatase; ICaA: Intestinal Ca2+ absorption; MEL: Melatonin; MEN: Menadione; Mit: Mitochondrial; NAR: 
Naringin; NCX1: Na+/Ca2+exchanger; NO: Nitric oxide; OS: Oxidative stress; PMCA1b: Plasma membrane Ca2+-ATPase; QT: Quercetin; SOD: Superoxide 
dismutase; TRPV6: Transient receptor potential vanilloid type 6; UDCA: Ursodeoxycholic acid; VDR: Vitamin D receptor.
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not only blocked its depletion produced by FRD but also 
increased almost twice the normal intestinal GSH content 
by a mechanism that needs to be clarified. NAR was able 
to abrogate all the described alterations provoked by FRD 
in rats through its anti-oxidant, anti-nitrergic and anti-
inflammatory properties. The use of NAR to ameliorate 
the intestinal Ca2+ transport under oxidant conditions 
associated with different pathologies holds a remarkable 
potential, but there are some obstacles in NAR clinical 
translation related to the extensive in vivo metabolism, 
low bioavailability and irregular absorption[74]. On the 
other hand, it has been demonstrated that various phe­
nolic antioxidants exhibit pro-oxidant properties at high 
doses[75]. In fact, both flavonoids, quercetin and naringin, 
have antioxidant and pro-oxidant effects[76].

Melatonin (MEL) is one of the natural human anti­
oxidant that has gained increasing attention. MEL is a 
hormone secreted by the pineal gland and other tissues 
such as bone marrow, skin and gastrointestinal tract. 
MEL is a lipophilic antioxidant of broad spectrum that has 
a high membrane permeability[77]. The molecular mecha­
nisms triggered by MEL seem to be different from those 
of the classical antioxidants such as vitamin C, vitamin 
E and GSH; however, MEL synergizes with them in the 
scavenging of free radicals. The classical antioxidants 
undergo redox cycling so they have the potential to 
promote oxidation or prevent it. In contrast, MEL does 
not display redox cycling, thus, it does not stimulate 
oxidation; therefore it could be considered as a suicidal or 
terminal antioxidant. MEL may interact with free radicals 
forming several stable end products, which are excreted 
in the urine[78]. MEL content is 400 times larger in the 
intestine than in the pineal gland[79], but the physiological 
significance of this is not very clear. Similarly to QT, MEL 
alone does not affect the intestinal Ca2+ absorption, 
but it avoids or reverses the inhibitory effect of MEN 
or BSO[80,81]. The GSH depletion caused by MEN was 
also prevented by MEL, counteracting the oxidative 
stress and apoptosis provoked by the quinone. MEL 
protects either the intestinal transcellular Ca2+ pathway 
or the paracellular Ca2+ route, but only under oxidant 
conditions. The modulation of transporters of Ca2+ by 
MEL has also been reported in pancreatic acinar cells[82] 
and in rat pituitary GH3 cells[83]. In conclusion, MEL 
could be a drug for reversal of impaired intestinal Ca2+ 
absorption produced by OS and apoptosis that occurs 
under pathophysiological conditions such as aging, celiac 
disease, intestinal bowel disease, cancer or other gut 
disorders, or by GSH depleting drugs (Table 2). 

Since the amino acid glutamine (GLN) in the intestine 
is a fuel and a source of glutamate, substrate for GSH 
synthesis[84,85], and it has antioxidant and antiapoptotic 
properties[86], and has the advantage of being an oral 
nutritional supplement[87], we have thought that it 
could be used to prevent or reverse the intestinal Ca2+ 
absorption inhibited by GSH depleting drugs. Similarly 
to other antioxidants, GLN alone does not modify the in­
testinal Ca2+ absorption but it reverses the inhibition of 
the intestinal cation transport caused by MEN. The GLN 

protective action is dose and time dependent and also 
occurs when it is administered previous to MEN treat­
ment. The normalization of the protein expression of CB 
D28k and PMCA1b by GLN indicates that this amino acid 
protects the transcellular Ca2+ pathway. The protection 
may be achieved because GLN restores the intestinal 
GSH content, normalizes the enzymatic activities of the 
antioxidant defense system and decreases the activation 
of the apoptotic pathway FASL/FAS/Caspase-3[88]. In 
other words, the antioxidant and antiapoptotic properties 
of GLN facilitate the normalization of the intestinal Ca2+ 
absorption under oxidant conditions. Whether GLN 
alters or not the intestinal Ca2+ paracelluar route and/or 
other mechanisms are involved in the protection of the 
intestinal Ca2+ absorption is under investigation. 

Ursodeoxycholic acid (UDCA) is a minor component 
of the bile and has hydrophilic properties[48]. It is known 
that UDCA blocks the reactive oxygen species formation, 
the mitochondrial dysfunction and the death receptor 
induced apoptosis[89]. It has been widely used for treat­
ment of cholestatic liver diseases, mainly primary biliary 
cirrhosis (PBC)[90]. In our laboratory, we have explored 
the possibility that UDCA could prevent the inhibition 
of intestinal Ca2+ absorption caused by NaDOC, a 
hydrophobic bile acid that causes GSH depletion in the 
duodenum, as mentioned in the previous section. Verma 
et al[91] have demonstrated that UDCA therapy enhances 
fractional Ca2+ absorption in PBC. In agreement with 
these data, we have observed that UDCA alone improves 
the intestinal Ca2+ absorption by increasing the amount 
of Ca2+ transporters involved in the transcellular Ca2+ 
pathway via activation of the VDR gene and protein 
expression. The effect of UDCA on Ca2+ uptake by en­
terocytes has been shown to depend on the degree 
of differentiation of these cells, being higher in mature 
enterocytes. When UDCA is given simultaneously with 
NaDOC, the intestinal Ca2+ absorption is similar to that 
from the control animals, which means that UDCA pre­
vents the inhibition in the Ca2+ transport caused by 
NaDOC. Although UDCA alone decreases FASL and FAS 
protein expression without changing the Caspase-8 
protein expression and caspase-3 activity, it avoids the 
apoptotic effects of NaDOC through normalization of 
the protein expression of FASL, FAS, Caspase-8 and the 
enzyme activity of Caspase-3. Similarly, UDCA per se 
does not alter the intestinal NO• content, but it abrogates 
the increase in NO• and in iNOS protein expression 
provoked by NaDOC. In addition, UDCA avoids efficiently 
the enhancement in LC3Ⅱ protein expression and in the 
number of AVOs in enterocytes caused by NaDOC, which 
means that UDCA attenuates the biomarkers of auto­
phagy[22]. The physiological significance of this response 
is not quite clear and needs to be clarified.

CONCLUSION
The Ca2+ entrance to the organism is very important to 
maintain the Ca2+-dependent functions and the correct 
mineralization of the skeleton. An optimal intestinal 
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Ca2+ absorption is reached when the GSH content in the 
intestine is in the normal range. Conditions associated 
with intestinal GSH depletion arising from administration 
of certain drugs or different diseases may inhibit the in­
testinal Ca2+ transport. This response could be prevented 
or restored by using flavonoids (QT, NAR), MEL, UDCA 
or GLN, which block the effects of the GSH depletion 
mainly through their antioxidant, antiapoptotic and anti-
inflammatory properties. However, the use of these 
drugs to improve the intestinal Ca2+ absorption under 
oxidant conditions associated with different pathologies in 
humans requires more investigation with regards to the 
safety, pharmacokinetics and the pharmacodynamics of 
them.
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