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Abstract
Flupirtine is the first representative in a class of triaminopyridines that exhibits
pharmacological properties leading to the suppression of over-excitability of
neuronal and non-neuronal cells. Consequently, this drug has been used as a
centrally acting analgesic in patients with a range of acute and persistent pain
conditions without the adverse effects characteristic of opioids and non-steroidal
anti-inflammatory drug and is well tolerated. The pharmacological profile
exhibited involves actions on several cellular targets, including Kv7 channels, G-
protein-regulated inwardly rectifying K channels and γ-aminobutyric acid type A
receptors, but also there is evidence of additional as yet unidentified mechanisms
of action involved in the effects of flupirtine. Flupirtine has exhibited effects in a
range of cells and tissues related to the locations of these targets. In additional to
analgesia, flupirtine has demonstrated pharmacological properties consistent
with use as an anticonvulsant, a neuroprotectant, skeletal and smooth muscle
relaxant, in treatment of auditory and visual disorders, and treatment of memory
and cognitive impairment. Flupirtine is providing important information and
clues regarding novel mechanistic approaches to the treatment of a range of
clinical conditions involving hyper-excitability of cells. Identification of molecules
exhibiting specificity for the pharmacological targets (e.g., Kv7 isoforms) involved
in the actions of flupirtine will provide further insight into clinical applications.
Whether the broad-spectrum pharmacology of flupirtine or target-specific actions
is preferential to gain benefit, especially in complex clinical conditions, requires
further investigation. This review will consider recent advancement in
understanding of the pharmacological profile and related clinical applications of
flupirtine.

Key words: Flupirtine; Kv7 channels; GABAA receptors; Analgesia; Seizures;
Neuroprotection; Myotonia; Memory; Tinnitus
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Core tip: Flupirtine exhibits pharmacological properties due to actions on Kv7 channels,
G-protein-regulated inwardly rectifying K channels and γ-aminobutyric acid type A
receptors leading to the suppression of over excitability of neuronal and non-neuronal
cells. Consequently flupirtine has demonstrated efficacy consistent with use as an
analgesic, an anticonvulsant, a neuroprotectant, skeletal and smooth muscle relaxant, in
treatment of auditory and visual disorders, and treatment of memory and cognitive
impairment. Flupirtine is providing important information and clues regarding novel
mechanistic approaches to the treatment of a range of clinical conditions involving
hyper-excitability of cells.

Citation: Lawson K. Pharmacology and clinical applications of flupirtine: Current and
future options. World J Pharmacology 2019; 8(1): 1-13
URL: https://www.wjgnet.com/2220-3192/full/v8/i1/1.htm
DOI: https://dx.doi.org/10.5497/wjp.v8.i1.1

INTRODUCTION
Flupirtine is  the first  representative in a  class  of  triaminopyridines that  exhibits
pharmacological properties leading to the suppression of neuronal over-excitability.
Consequently, this molecule has demonstrated to be beneficial in treating patients
with a  range of  pain conditions[1-4].  Flupirtine relative to other analgesics  on the
market exhibits unique chemical structure and modes of action that contribute to a
preferable  pharmacological  profile.  It  does  not  possess  the  adverse  effects
characteristic  of  opioids  and  non-steroidal  anti-inflammatory  drug  and  is  well
tolerated.

Flupirtine has been classified as a selective neuronal potassium channel opener due
to action on voltage-gated K channels belonging to the Kv7 subfamily (with selectivity
for the Kv7.2-Kv7.5 isoforms) and G-protein-regulated inwardly rectifying K (GIRK)
channels[5,6].  Channel activation by flupirtine will lead to hyperpolarization of the
membrane potential and attenuates the generation of action potentials, thus offering a
novel therapeutic approach for diseases associated with cellular hyperexcitability[5].

Flupirtine has been the subject of a few good reviews describing it’s history and
clinical profile as a treatment of pain[1-4]. In addition, flupirtine has been used as a
pharmacological tool to gain greater understanding of Kv7 channels as a therapeutic
target [7-9].  The  aim  of  this  review  is  to  consider  the  advancement  in  recent
understanding of the pharmacological profile and related clinical applications of
flupirtine. MEDLINE database, Web of Science and Google Scholar were used to
identify relevant studies and publications up to July 2018 using the term “flupirtine”.
Flupirtine exhibits an interesting pharmacological profile that offers clues of potential
targets that merit investigation as novel therapeutic approaches to a range of clinical
conditions.

ANALGESIA
Pain relieving activity in various animal models and humans has been demonstrated
with flupirtine  a  non-opioid analgesic  without  anti-inflammatory or  antipyretic
properties[1-3]. Effective analgesia by flupirtine has been demonstrated in a range of
persistent pain conditions such as musculoskeletal pain, postoperative pain, migraine
and neuralgia[2,3,10,11].  These effects of flupirtine are associated with restoration of
normal  sensitivity  of  over-excitable  nociceptive  pathways  and inhibition  of  the
stimulation of nociceptive neurons by factors such as inflammatory mediators (e.g.,
bradykinin)[12-15]. In small fibre neuropathy the efficacy of flupirtine was reported to be
sufficient  to  lead  to  the  discontinuation  of  first-line  drug  treatments,  such  as
gabapentin and amitriptyline,  which are often associated with adverse effects or
unsatisfactory pain relief[16].

Flupirtine stabilizes the membrane resting potential by activating KCNQ (Kv7)
potassium channels generating a neuronal hyperpolarizing current (M-current)[5].
Activation of  potassium channels  will  lead to  an indirect  N-methyl-D-aspartate
(NMDA) receptor antagonism, thus reducing hyperexcitation of nociceptive neurons.
In addition, Mg2+ block on NMDA receptors is maintained by an oxidizing action of
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flupirtine at the redox site of the receptor consistent with an indirect inhibition[17].
There is however no interaction with the binding site of the NMDA receptor[6].

Kv7 channels encompass five members of which Kv7.2–Kv7.5 are expressed and
distributed throughout peripheral nerves and the CNS, and co-assemble to form
either homo- or hetero-tetramers[18,19]. Agonist action at (Gq/11) G protein-coupled
receptors, such as acetylcholine at muscarinic receptors, can inhibit channel activity.
Kv7 channels are expressed in neurons forming the nociceptive pathways, such as
central terminals of primary afferents and dorsal horn neurons within the spinal
cord[20].  Long-term downregulation of Kv7 subunits following neuropathic injury,
whether  due  to  trauma  or  inflammation,  has  been  proposed  to  contribute  to
hyperexcitability of sensory fibres[21]. Increased levels of repressor element1-silencing
transcription factor leading to reduced density of Kv7.2, Kv7.3 and Kv7.5 is a delayed
feature of neuropathic injury with probable involvement in the maintenance rather
than  the  initiation  of  pain[22].  The  decreased  channel  density  was  functionally
compensated  by  the  activation  of  residual  Kv7  channels  by  flupirtine  resetting
neurons to a low-excitable state and suppressing pain[21]. Flupirtine exhibits efficacy
on all four subunits, Kv7.2, Kv7.3, Kv7.4 and Kv7.5, with an apparent preference for
Kv7.3. Interestingly, flupirtine appeared to evoke an effect specifically in injured
neurons  and  not  uninjured  fibres[21].  Associated  with  the  analgesic  activity  of
flupirtine  is  the  ability  of  inhibiting  the  release  of  neurotransmitters,  such  as
calcitonin-gene related peptide, from the brainstem following the opening of Kv7
channels[23].

Flupirtine  has  been  found  to  act  simultaneously  on  Kv7  channels  and  γ-
aminobutyric acid type A (GABAA) receptors which are both involved in the control
of nociception[24]. Thus, the combined stimulatory action in pain neural circuits may
contribute to the analgesic  activity of  flupirtine.  The subunit  composition of  the
GABA  receptor  defines  specific  pharmacological  characteristics  such  that
benzodiazepines modulate γ2-subunit containing receptors, whereas δ-subunits are
highly sensitive towards neurosteroids[25,26].  Preferential action by flupirtine at δ-
subunit containing GABAA receptors over γ-containing GABAA receptors has been
demonstrated[27]. The presence of α4 and α6 subunits renders δ-subunit containing
GABAA  receptors  insensitive to benzodiazepines[28,29].  Thus,  the pharmacological
properties of flupirtine due to interaction with GABA receptors will have a profile
that  differs  from that  exhibited  by  benzodiazepines.  Although the  induction  of
addictive behaviours in certain drugs is associated with agonism at GABAA receptors,
such properties of flupirtine have had limited anecdotal reporting[30,31].

Synergistic or additive effects with other analgesics have been suggested to be
likely for molecules that inhibit the NMDA receptor[32]. Flupirtine and opioids have
been reported to exhibit synergistic analgesic interactions[32,33]. Synergistic interactions
have also  been observed with flupirtine  and the  atypical  opioids,  tramadol  and
tapentadol, which exhibit the dual mechanisms of action of μ-opioid receptor agonism
and inhibition  of  noradrenaline  reuptake[33,34].  Such  co-administration  will  offer
benefits  such  as  enhanced  analgesic  efficacy  and prolonged analgesic  duration,
relative to the minimization of adverse effects and reduction in opioid tolerance.

ANTICONVULSANT
Disruption of the excitatory-inhibitory balance in brain neural networks leading to
synchronous activation and recurrent seizures characterises epilepsy. Consistent with
its  ability  to  suppress  neuronal  hyperexcitability  flupirtine  has  demonstrated
anticonvulsant activity in the Antiepileptic Drug Development program[7].

Studies have demonstrated flupirtine to be very effective against neonatal seizures
induced,  for  example,  by  hypoxia/ischaemic  injury  or  chemoconvulsants,  with
efficacy preferable to current anticonvulsant therapies, such as phenobarbital and
diazepam[35-37].  Pretreatment  with  flupirtine  prevented development  of  neonatal
electroclinical  seizures,  whilst  administration  after  the  generation  of  a  seizure
prevented subsequent seizures and thereby reduced overall seizure burden. In the
immature brain compared to that of an adult the GABAergic inhibitory system is
underdeveloped and has fewer GABAA receptors, different GABAA receptor subunit
composition  (e.g.,  low  levels  of  delta  subunits)  and  lower  GABA-mediated
currents[38,39].  A decreased efficacy of  drugs that  target  GABAA  receptors such as
phenobarbital  against  neonatal  seizures  is  consistent  with  the  brain
underdevelopment[38,39]. As described previously, flupirtine evokes stabilization of
neuronal hyperexcitability due to activation of Kv7 and GIRK channel activity, and
potentiation of GABA responses of the δ-subunit containing GABAA  receptor[24,27].
Although  the  mechanism  responsible  for  the  anti-neonatal  seizure  activity  of
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flupirtine is unknown, involvement of Kv7 activation is the more likely explanation of
providing  greater  efficacy  than  and  thereby  advantage  over  GABA  receptor
modulating drugs.

I n  n e o n a t a l  r a t s ,  f l u p i r t i n e  i n d u c e d  a  b u r s t  s u p p r e s s i o n - l i k e
electroencephalography (EEG) pattern[36].  Burst suppression is when high voltage
activity alternating with periods of  no activity in the brain characterize the EEG
pattern. Refractory status epilepticus can be terminated by the induction of the burst
suppression pattern by midazolam, and as observed with flupirtine[40]. In rat models
of  established  status  epilepticus  initial  data  indicated  that  the  combination  of
flupirtine and diazepam terminated seizures  preferentially  to  either  drug alone,
however efficacy of flupirtine alone appeared dependent on the animal model[41].
Thus, the potential benefit in the clinic available from treatment with flupirtine may
be dependent on the underlying aetiology of established status epilepticus.

Febrile seizures are the most common convulsive events in infants and young
children  where  recurrence  may  be  a  risk  factor  for  greater  likelihood  of  later
epilepsy[42].  Repetitive febrile seizures (RFS) have been associated with impaired
hippocampus-dependent  long-term  memory[43].  Current  anti-convulsant  drugs,
including diazepam, phenobarbital and sodium valproate, although have proven
effective at reducing seizure recurrence are limited due to adverse effects[44]. In a rat
model of RFS, flupirtine suppressed seizures and reduced risk of further seizures[45].
Further,  flupirtine  was  effective  against  RFS-induced  learning  and  memory
impairment and reduced RFS-induced neuronal degeneration. In this RFS model
improvement due to flupirtine treatment was greater than that observed with current
treatment for recurrent febrile seizures, phenobarbital[45]. Activation of Kv7 channels is
the probable property responsible for the efficacy of flupirtine for the treatment of
RFS. Consistent with this conclusion is the observation that the expression level of
Kv7.2  subunits  is  low  in  neonatal  neurons  and  after  the  first  post-natal  week
increases, which inversely correlates with the incidence of febrile seizures decreasing
with age[46].

NEUROPROTECTION
Neuroprotective  activity  has  been  exhibited  by  flupirtine  in  a  variety  of
neurodegenerative disease models and clinical trials with suggestion of utility as a
therapeutic approach in conditions such as Alzheimer’s disease, Parkinson’s disease,
Creutzfeldt-Jakob disease, prion disease, age-related macular degeneration and Batten
disease[2-4,47,48]. Indirect antagonism of the NMDA receptor and thereby glutamate-
induced intracellular Ca2+ increase, upregulation of the antiapoptotic protein B-cell
lymphoma 2 (Bcl-2) and antioxidant activity via increased glutathione levels and
reduced reactive oxygen species levels have all been suggested to be involved in the
neuroprotective properties of flupirtine[2-4].

In  experimental  models  of  stroke  flupirtine  evoked  neuroprotection  when
administered before or up to 9 hours post induction of cerebral ischaemia[49-51]. An
important signalling pathway contributing to post-ischaemic proteolysis and cell
death is an NMDA-induced intracellular calcium increase leading to activation of
calpain[52]. Calpain is involved in the degradation of signal-transducer-and-activator-
of-transcription-6 (STAT6) which in healthy brains inhibits c-Jun-N-terminal kinases
(JNK) and nuclear factor-κB (NF-κB) signalling pathways which are critical to the
progression of ischaemic brain injury[51]. As a consequence of indirect NMDA receptor
antagonism  flupirtine  at  clinically  relevant  concentrations  reduces  the  calcium
dependent calpain activation and restores the STAT6-induced inhibition of JNK and
NF-κB pathways and proteasomal activity[51]. Thus, following flupirtine treatment
infarct volumes were reduced, the blood brain barrier integrity stabilized and the
inflammatory response and oxidative stress within the ischaemic lesion site reduced.

Chronic stress increases the susceptibility of neurons in the brain to injury with the
induction  of  apoptosis  particularly  within  the  hippocampus,  which  has  been
proposed  to  contribute  to  impaired  brain  function  and  stress-related  cognitive
deficits[53].  In  a  chronic  stress  model,  flupirtine  prevented impairment  of  spatial
learning and memory, alleviated neuronal apoptosis and the reduction of dendritic
spine density in the hippocampus[54]. Flupirtine reversed the chronic stress-induced
increased expression of the pro-apoptoic regulator Bax, inactivation of the protein
kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway, which regulates
learning and memory,  synaptic plasticity and cell  survival,  and reduction in the
extracellular signal-regulating kinase 1/2 signalling pathway, which plays a role in
cognitive processing[54].  The role of Kv7 channels and/or GABAA  receptors in the
effects  of  flupirtine  in  chronic  stress  however  need  clarification.  Interestingly,
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flupirtine has also been shown to prevent acute stress-induced impairment of spatial
memory retrieval  and hippocampal  long-term potentiation[55].  Activation of  Kv7
channels by flupirtine was suggested to be responsible for the reduction in the acute
stress-induced impaired memory formation.

Bcl-2 protein complexes with beclin 1 leading to an inhibition of autophagy, thus
raised  expression  of  Bcl-2  will  influence  proteostasis  and  cell  death  in
neurodegenerative diseases[56]. The Prp106-126 fragment of the prion protein, which is
toxic to cortical neurons and involved in the development of prion diseases, reduced
levels of the anti-apoptotic proto-oncogene Bcl-2 and of glutathione[57].  Flupirtine
blocked the decrease in glutathione and induced the expression of Bcl-2 reducing cell
toxicity due to prion protein exposure[57]. Consistent with these findings the cognitive
decline in patients with Creutzfeldt-Jakob disease, in a randomized double-blind
clinical trial, was decreased following treatment with flupirtine although there were
no significant effects on survival[58].

SKELETAL MUSCLE RELAXANT
Flupirtine  evokes  a  reduction  in  skeletal  muscle  rigidity  and  akinesia  by  the
suppression  of  spinal  mono-  and  polysynaptic  reflexes  mediated  by  NMDA
receptors[59,60]. The monosynaptic Hoffmann reflex (H-reflex), which does not involve
NMDA receptors, was not influenced by flupirtine[59]. These properties of flupirtine
are  compatible  as  a  therapeutic  approach  to  the  treatment  of  muscle  rigidity,
spasticity and related musculoskeletal conditions.

The pharmacological properties of flupirtine have also been identified useful in the
treatment of  myotonia[61,62].  Myotonia and myotonic  membrane hyperexcitability
induced by anthracene-9-carboxylic acid in murine skeletal muscle was reduced by
flupirtine  following  the  activation  of  Kv7  channels[61].  All  KNCQ  isoforms  are
expressed  in  murine  myoblasts  with  Kv7.2  and  Kv7.3  localized  at  the  level  of
intracellular striations and Kv7.4 subunits restricted to the sarcolemmal membrane[63].
Peripheral nerve hyperexcitability associated with neuromyotonia or myokymia is a
consequence  of  inherited  mutations  in  the  human  KCNA1  gene,  which  encode
juxtaparanodal Kv1.1 channels, or acquired abnormal autoantibodies targeting Kv1
channel  subunits[64,65].  A  synergy  between  Kv1  and  Kv7  channels  in  regulating
neuronal excitability has been observed and activation of Kv7 channels with flupirtine
can reverse the axon hyperexcitability mediated by Kv1.1 channel deficiency[62]. Thus,
flupirtine could be a novel therapeutic approach to Kv1-related conditions involving
peripheral nerve hyperexcitability.

SMOOTH MUSCLE RELAXATION
Kv7 channels have been identified as important regulators of contractility of vascular,
gastrointestinal, urogenital, and tracheobronchial smooth muscle[66]. In smooth muscle
cells, Kv7 channels are basally active contributing to stabilizing the resting membrane
potential  at  lower  levels  and  counter  depolarizing  stimuli,  thus  reducing  cell
excitability  and  contractility.  Kv7  channels  contribute  to  the  resting  membrane
potential  in  smooth muscle  cells  due to  their  slow inactivation and low voltage
threshold for activation[66].

It is well established that resting membrane potential and contractility in various
blood vessels is regulated by Kv7 channels[67]. Expression of KCNQ1, KCNQ4 and
KCNQ5 has been reported in a diversity of human, rat and mouse arteries and veins,
with KCNQ2 and KCNQ3 expression observed less frequently[66-68]. Many pathological
conditions,  such  as  pulmonary  hypertension  and  hyperglycaemia,  have  been
associated with altered expression and function of Kv channels in coronary artery
myocytes[69-71]. In addition, reduced expression of Kv7.4 channels have been observed
in coronary, renal, and mesenteric arteries of hypertensive rats[72]. Flupirtine evoked
concentration-dependent relaxation of rat left and right coronary arteries, with an
increase in potassium channel current amplitude and membrane hyperpolarization in
myocytes from left  coronary arteries but not from right coronary arteries[73].  The
differential  effects  of  flupirtine on coronary arteries  may be associated with the
expression of Kv7.5 being significantly higher in left than in right coronary arteries,
whilst Kv7.4 expression was similar. The flupirtine-induced relaxation of porcine left
circumflex coronary artery was reduced following endothelial denudation[68].  The
flupirtine-induced relaxant response in intact,  but  not  that  in artery denuded of
endothelium, was inhibited by the non-selective Kv7 channel antagonist linopirdine
consistent with the activation of Kv7 channels by flupirtine. In contrast, structurally
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different Kv7 channels activators (S)-1, retigabine, BMS-254352 and ML213 evoked
linopirdine-sensitive relaxations of precontracted porcine and rat coronary arteries
that were not affected by removal of the endothelium[74,75]. In porcine left coronary
arteries  immunohistochemical  staining  for  Kv7.4  was  prominent  in  the  intimal
(endothelial)  layer,  but less in the medial (smooth muscle) layer[68].  Strong Kv7.4
immunostaining however was observed in the medial and intimal layers of porcine
right coronary artery, and Kv7.5 immunostaining was strong only in the intimal layer
with much weaker  intensity  in  the  intimal  layer[75].  The differential  endothelial-
dependent effects may be due to the distribution and density of channel subtype
expression combined with potential subtype selectivity profile of flupirtine relative to
other  Kv7  channel  activators.  Thus,  the  vasorelaxant  response  to  flupirtine  in
coronary arteries appears to involve endothelium based Kv7 channels and an as yet
unidentified mechanism in the smooth muscle cells.

Flupirtine evoked pulmonary vasodilation in lungs from hypoxic rats but not from
normoxic rats[76]. Consequently, raised pulmonary vascular resistance due to hypoxia
could  be  prevented  and  reversed  by  flupirtine [76 ,77 ].  Hypoxia  leads  to  the
downregulation of Kv7.4, but not Kv7.1 nor Kv7.5, channels and smooth muscle cell
depolarisation. Although the molecular target responsible for the actions of flupirtine
have not been identified, activation of the residual Kv7.4 channels, of Kv7.5 channels
or a combination of Kv7.4/7.5 needs further evaluation. The Kv7 activation exhibited
by flupirtine would be a potential treatment approach for pulmonary hypertension.

Activation of Kv7 channels in bladder smooth muscle cells will dampen electrical
activity and regulate excitability.  In guinea pig bladder detrusor smooth muscle
flupirtine  hyperpolarized  the  cell  membrane  with  a  simultaneous  cessation  of
spontaneous transient depolarizing electrical activity and suppression of myogenic
spontaneous contractions[78].  Takagi and Hashitani (2016) observed that flupirtine
abolished spontaneous action potential  discharge in guinea pig detrusor smooth
muscle cells without hyperpolarization with the suggestion that only modest opening
of Kv7 channels is required[79]. Interestingly Kv7 channels were suggested to only be
partial  responsible  for  the  flupirtine-induced  reduction  of  the  amplitude  of
spontaneous action potentials associated with spontaneous activity of guinea pig
muscularis  mucosae[80].  Flupirtine,  following  Kv7  channel  activation,  evoked
relaxations of the human detrusor muscle, of which overactivity is frequently present
in overactive bladder syndrome[81]. As with the guinea pig smooth muscle cells, all
five  KCNQ genes  which encode Kv7.1-7.5  channels  are  expressed in  the  human
detrusor with the Kv7.4 channel subunit showing the highest expression level[81,82].
Thus,  selective Kv7.4 channel activators would be preferential  novel therapeutic
treatments of urinary bladder overactivity conditions. Human overactive bladder or
detrusor overactivity in animal models are characterized by increases in spontaneous
activity, thus ideal treatment strategy of overactive bladder would be modulation of
the spontaneous excitability[83].

All KCNQ isoforms, except KCNQ5, are expressed in human myometrial smooth
muscle tissue with a predominance of KCNQ4 and KCNQ1[84]. Thus, the expression
profile of KCNQ genes in the uterus resembles other smooth muscles. Although all
KCNQ isoforms were expressed in myometrium from pregnant mice in early and late
gestation,  KCNQ1,  KCNQ2,  KCNQ4  and  KNCQ5  all  up-regulated  in  late
pregnancy[83]. Flupirtine suppressed myometrial contractile activity, with a partial
effect  in  early  gestation animals  and a  profound action in  late  gestation mice[84].
Although no teratogenic effects of flupirtine are known or have been reported in
animal  studies,  the  potential  risk  for  humans is  unknown[85].  Thus,  Kv7 channel
activation by flupirtine could be a novel approach for tocolysis for use in human
preterm labour.

Flupirtine has exhibited relaxing properties of gastrointestinal smooth muscle such
as rat stomach and human taenia coli[86,87]. In gastrointestinal tract tissues from animals
and humans Kv7.4 and Kv7.5 isoforms had the highest expression levels, with the
former being the predominant channel[88]. Thus, this property of flupirtine would be
relevant for the treatment of gastrointestinal disorders such as functional dyspepsia
and irritable bowel syndrome[88].

Flupirtine has been shown to enhance Kv7 currents in guinea pig airways smooth
muscle cells and evoke relaxation of precontracted human airways thereby indicating
utility  as  an  effective  bronchodilator[89].  In  human airways  smooth  muscle  cells
expression of KCNQ1, KCNQ4 and KCNQ5 has been reported, whilst KCNQ2 and
KCNQ3 were undetectable[90]. In mouse and rat tracheal smooth muscle cells where
the expression of KCNQ subtypes reflects that observed in human tissue, flupirtine
evoked Kv7 channel dependent hyperpolarization and relaxation[91].  Interestingly,
KCNQ2 was the most  abundant  isoform detected in guinea pig airways smooth
muscle cells, suggesting this species may not predict clinical efficacy of flupirtine and
similar drugs[89].
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AUDITORY AND OCULAR PROPERTIES
Reduction in Kv7.2 and Kv7.3 channel activity leading to hyperactivity in the dorsal
cochlear  nucleus  (an  auditory  brainstem nucleus)  has  been  associated  with  the
initiation of the auditory disorder tinnitus[92]. Flupirtine inhibited the spontaneous
activity in mouse auditory cortical networks which was suggested to involve Kv7
channel  activation[93].  These  findings  are  consistent  with  the  pharmacological
properties of flupirtine being relevant to the treatment of tinnitus.

Retinal ganglion cell hyperactivity is associated with photoreceptor dystrophic
disorders and blindness. Flupirtine decreased spontaneous firing and sensitivity to
optogenetic stimulation in mice retinal ganglion cells sensitive to channelrhodopsin2
stimulation[94-96]. Thus, an increase in activity or expression of Kv7 potassium channels,
the specific subtypes as yet have not been identified, in retinal amacrine cells would
result in decreased spontaneous activity and could be a therapeutic approach to visual
disorders.

ADVERSE EFFECTS AND TOLERABILITY
Most common adverse effects associated with flupirtine treatment (i.e.,  dizziness,
drowsiness, nausea, dry mouth, heartburn, fatigue, headache) which occurred within
6 mo of treatment were reported to be mild and transient[2-4]. Consequently flupirtine
has  been  viewed  as  well  tolerated  as  reflected  by  regular  use  since  it  was  first
approved in the 1980s.

Long-term flupirtine treatment has been associated with liver injury with rare cases
of liver failure and fatality[97,98]. Complex hepatic metabolism of flupirtine involving N-
glucuronidation, hydrolysis and N-acetylation leads to the formation of an active
metabolite  D13223[99,100].  Flupirtine  is  hydrolysed  by  carboxylesterase  and  N-
acetyltransferase 2 (NAT2) appears responsible for the acetylation of the hydrolysed
metabolite  of  flupirtine[100].  Reactive  quinone  diimines,  which  conjugate  with
glutathione,  however  appear  to  also  be  formed from the  hydrolysed metabolite
through non-enzymatic conversion. The quinone diimine intermediates of flupirtine,
like the quinone imines intermediates formed with paracetamol and diclofenac, are
candidates for the cellular toxicity[100-102]. Thus, acetylation by NAT2 or conjugation by
glutathione detoxify by preventing the build-up of quinone diimines[100]. The genetic
polymorphisms of  NAT2 which show a large inter-individual  variability  due to
genetic  polymorphisms and thereby variation in  acetylation efficiency could be
critical  for  flupirtine-induced  liver  injury [100 ,103].  Humans  that  exhibit  high
carboxylesterase  activity  with  slow  NAT2  acetylation  and  have  low  hepatic
glutathione stores appear to be highly susceptible to flupirtine-induced liver injury[100].
Other risk factors have been proposed such as single nucleotide polymorphisms of
human leukocyte antigen and myeloperoxidase[99,104].

The  flupirtine  related  hepatotoxicity  leads  to  extensive  perivenular  (zone  3)
necrosis  with  infiltration  of  ceroid-pigment  containing  macrophages  and
lymphocytes[97]. Vulnerability of zone 3 hepatocytes to necrosis appears to be related
to  stores  of  glutathione,  which  detoxifies  the  reactive  quinone  diimines,  being
depleted with a reduced ability to be replenished[97]. N-acetylcysteine, essential for the
replenishment of  depleted glutathione stores,  in combination with prednisolone
treatment in patients with flupirtine-induced liver injury has been shown to improve
serum  biochemistries  including  alanine  aminotransferase  and  aspartate
aminotransferase[105].

The potential of flupirtine-induced liver injury, although rare, led to the European
Medicines  Agency’s  Pharmacovigilance  Risk  assessment  committee  issuing risk
minimization measures (RMM)[106-108]. As a consequence of limited adherence to the
RMM by prescribers flupirtine containing medications were withdrawn from the
European market[106].

CONCLUSION
Flupirtine has been used extensively for more than 30 years in the management of
pain[2-4]. Effectiveness has been demonstrated in a range of neuronal and non-neuronal
biological systems consistent with therapeutic potential as treatment of a diversity of
clinical conditions (Table 1). The pharmacological profile exhibited involves actions
on several  cellular  targets,  including Kv7 channels,  GIRK channels  and GABAA

receptors. Although many effects can be accounted for as the result of activation of
Kv7 channels, there is suggestion that yet unidentified mechanisms of action may also

WJP https://www.wjgnet.com January 15, 2019 Volume 8 Issue 1

Lawson K. Pharmacology of flupirtine

7



be involved in the effects of flupirtine.
Flupirtine  is  providing  important  information  regarding  novel  mechanistic

approaches to the treatment of different clinical conditions. Molecules exhibiting
specificity for the pharmacological targets (e.g., Kv7 isoforms) involved in the actions
of flupirtine will provide further insight into their clinical potential. Whether the
broad-spectrum pharmacology of flupirtine or target-specific actions is preferential to
gain benefit, especially in complex clinical conditions, requires further investigation.

Whilst the rare hepatotoxicity associated with flupirtine may limit its use, at risk
subjects can be identified by hepatic enzyme screening and risk can be limited by
glutathione supplement to replenish stores. Investigation of the oxidative metabolites
of  flupirtine  have  been  reported  to  contribute  to  the  activation  of  Kv7.2/Kv7.3
channels  mechanism of  action,  but  not  to  hepatotoxicity[109].  Thus,  the  analgesic
activity, at least,  and cytotoxicity in hepatocytes appear separable in this class of
drugs.

In conclusion, flupirtine, in addition to use as an analgesic, shows potential for
repurposing  as  a  novel  approach  to  clinical  conditions  such  as  tinnitus,  visual
impairment, memory impairment, requiring neuroprotection or requiring smooth
muscle relaxation. Identifying new uses for existing drugs or repurposing bypasses
time and cost of drug development. Finally, the pharmacology of flupirtine can also
stimulate the identification of next generation related drugs exhibiting target specific
actions.
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Table 1  Summary of pharmacological profile and potential clinical applications of flupirtine

Molecular target Clinical condition Ref.

Analgesia Kv7.2, Kv7.3, Kv7.5 channels Persistent pain
[2,16,24,27]

GIRK channels Acute pain

GABAA receptors

Anticonvulsant Kv7.2, Kv7.3, Kv7.5 channels Neonatal seizures
[33-35,38,39,43]

GIRK channels Repetitive febrile seizures

Neuroprotection Kv7 channels - indirect NMDA receptor antagonism Stroke
[47-49,52,53,55,56]

Bcl-2 protein Chronic stress

Glutathione Prion diseases

Parkinson's disease

Alzheimer's disease

Skeletal muscle relaxant Kv7.2, Kv7.3, Kv7.4 channels Spinal Polysynaptic reflexes
[60-63]

Myotonia

Parkinson's disease

Vascular smooth muscle relaxation Kv7.4, Kv7.5 channels Coronary artery disease, angina
[69,74-76]

Unidentified mechanism Pulmonary hypertension

Urinary bladder smooth muscle relaxation Kv7.4 channels Overactive bladder
[78-80]

Detrusor overactivity

Myometrial smooth muscle relaxation Kv7 channels Preterm labour (tocolysis)
[83]

Gastrointestinal smooth muscle relaxation Kv7.4, Kv7.5 channels Functional dyspepsia
[84-86]

Irritable bowel syndrome

Respiratory smooth muscle relaxation Kv7.4, Kv7.5 channels Asthma
[88,89]

Auditory stabilization Kv7.2, Kv7.3 channels Tinnitus
[91]

Retinal stabilization Kv7 channels Photoreceptor dystrophic disorders
[92-94]

Age related macular degeneration

Blindness

Memory formation Kv7 channels Learning and memory impairment
[52,53]

Cognitive processing

GIRK: G-protein-regulated inwardly rectifying K+ channels; GABA: γ-aminobutyric acid; NMDA: N-methyl-D-aspartate.
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