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Abstract
BACKGROUND
Exposure to high sustained +Gz (head-to-foot inertial load) is known to have
harmful effects on pilots’ body in flight. Although clinical data have shown that
liver dysfunction occurs in pilots, the precise cause has not been well defined.

AIM
To investigate rat liver function changes in response to repeated +Gz exposure.

METHODS
Ninety male Wistar rats were randomly divided into a blank control group (BC
group, n = 30), a +6 Gz/5 min stress group (6GS group, n = 30), and a +10
Gz/5min stress group (10GS group, n = 30). The 6GS and 10GS groups were
exposed to +6 Gz and +10 Gz, respectively, in an animal centrifuge. The onset
rate of +Gz was 0.5 G/s. The sustained time at peak +Gz was 5 min for each
exposure (for 5 exposures, and 5-min intervals between exposures for a total
exposure and non-exposure time of 50 min). We assessed liver injury by
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measuring the portal venous flow volume, serum alanine aminotransferase (ALT)
and aspartate aminotransferase (AST), liver tissue malondialdehyde (MDA), Na+-
K+-ATPase, and changes in liver histology. These parameters were recorded at 0
h, 6 h, and 24 h after repeated +Gz exposures.

RESULTS
After repeated +Gz exposures in the 6GS and the 10GS groups, the velocity and
flow signal in the portal vein (PV) were significantly decreased as compared to
the BC group at 0 h after exposure. Meanwhile, we found that the PV diameter
did not change significantly. However, rats in the 6GS group had a much higher
portal venous flow volume than the 10GS group at 0 h after exposure. The 6GS
group had significantly lower ALT, AST, and MDA values than the 10GS group 0
h and 6 h post exposure. The Na+-K+-ATPase activity in the 6GS group was
significantly higher than that in the 10GS group 0 h and 6 h post exposure.
Hepatocyte injury, determined pathologically, was significantly lower in the 6GS
group than in the 10GS group.

CONCLUSION
Repeated +Gz exposures transiently cause hepatocyte injury and affect liver
metabolism and morphological structure.

Key words: Positive acceleration; +Gz; Liver function; Animal models; Liver metabolism;
Ischemia-reperfusion injury

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Some clinical data showed that liver dysfunction was observed in pilots.
However, the reason was not clear. We conducted this experimental study to investigate
rat liver function changes in response to repeated +Gz exposures, and to observe the
portal venous flow volume, liver function indexes, liver tissue malondialdehyde, Na+-K+-
ATPase activity, and changes in liver histology. We found that repeated +Gz exposures
transiently cause hepatocyte injury and affect liver metabolism and morphological
structure.

Citation: Shi B, Wang XQ, Duan WD, Tan GD, Gao HJ, Pan YW, Guo QJ, Zhang HY.
Effects of positive acceleration (+Gz stress) on liver enzymes, energy metabolism,
and liver histology in rats. World J Gastroenterol 2019; 25(3): 346-355
URL: https://www.wjgnet.com/1007-9327/full/v25/i3/346.htm
DOI: https://dx.doi.org/10.3748/wjg.v25.i3.346

INTRODUCTION
Exposure to high sustained +Gz (head-to-foot inertial load) is known to have harmful
effects  on pilots’  body in flight[1].  Along with fast  developments in aviation and
aerospace technologies, pilots are required to undertake sustained high G-acceleration
stress. The characteristics of modern high performance aircraft flight in particular
involve high acceleration (>9 Gz) that occurs repeatedly and is continued for 15-45 s,
and may transcend the physiological tolerance of flight personnel, even resulting in
pilot incapacitation and subsequent loss of life[2,3]. Repeated high-acceleration force
exposures  may  result  in  cumulative  adverse  stress  responses  in  the  body[4].
Accordingly, safe flying is an issue that is attracting broad attention[5].

The vascular beds that ensure hepatic circulation include two vascular systems, the
portal vein (PV) and hepatic artery (HA)[6]. Fighter pilots are frequently exposed to
high Gz acceleration with the vector oriented in the foot-head direction. Under these
conditions, blood and fluids are redistributed in the body and into the lower body[7].
There are some clinical  reports  in which liver  dysfunction has been observed in
pilots[8]. However, the reason for these abnormalities remains unclear. An important
question to address is whether or not changes in the blood flow direction after +Gz
exposure  impairs  liver  function.  Moreover,  the  manner  in  which  portal  venous
hemodynamics changes after repeated +Gz exposures, and whether or not oxidative
stress parameters increase the duration of these changes, are additional questions
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awaiting answers. To answer these questions, further studies on liver damage and the
mechanisms of liver damage induced by high +Gz exposure are needed to provide
evidence for effective preventative measures. In recent years, studies on the effects of
high +Gz on the heart, brain, and lung have been addressed in considerable numbers
of human and animal studies[9-11]. With the above in mind, we attempted to research
the effects of acceleration on liver blood flow, function, and histology.

MATERIALS AND METHODS

Animals
Healthy  male  Wistar  rats,  weighing  200-250  g,  were  raised  in  comfortable
environment, and fed and water naturally. All animal experiments and procedures
performed in this study were conducted in accordance with the Nursing Guidelines
and Usage Specification.

Experimental groups and animal exposure to acceleration
In this experiment, we chose +6 and +10 Gz as the acceleration test parameters, as
reported previously[12,13]. Ninety rats were divided randomly into three groups: blank
control group (BC group, n = 30), +6 Gz/5 min stress group (6GS group, n = 30), and
+10 Gz/5 min stress group (10GS group, n = 30). The animal centrifuge used has a
diameter of 2 m and has the capacity to generate a wide series of gravities, between +1
Gz and +15 Gz, with an initial rate of 0.1-6 Gz/s[14]. In the 6GS and 10GS groups, rats
were repeatedly exposed to +6 Gz or +10 Gz stress (each time for 5 min, initial rate of
approximately 1 G/s, 5 times with 0 Gz, at 5-min intervals), respectively. The rats in
the blank control group were placed in the centrifuge arm and were subjected to the
same process as the test groups, but were not exposed to acceleration. For sample
collection, the combined exposure and interval time was 50 min. At 0, 6 h, or 24 h after
the last centrifuge run, experimental rats were harvested and blood samples were
obtained from the infra-hepatic vena cava to measure hepatic enzyme levels (n = 10
per measurement point). Half of liver lobe was instantly stored in liquid nitrogen and
stored at -80 °C. The other half was fixed in 4% formalin, stained with hematoxylin
and eosin, and analyzed by a microscopic examination. At the end of the observation
period, all the rats were ultimately killed using chloral hydrate.

Determination of portal blood flow
Using color Doppler ultrasound, we evaluated blood vessel diameter and the blood
flow velocity in the PV. The blood flow volume of the PV was calculated with the
flow equation: Q = π × (D/2)2 × Vmean × 60 (Q: flow volume per minute; Vmean:
mean blood flow velocity; D: vessel diameter).

Liver function tests
The extent of liver damage and activity changes in serum alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) were quantified.

Malondialdehyde (MDA) level measurements
MDA is involved in the metabolism of lipid peroxidation products. The MDA content
was  determined  using  a  standardized  MDA  assay  kit  (Nanjing  Jiancheng
Biotechnology Institute, Nanjing, China), in accordance with the operation manual. A
peach red color is generated during the condensation reaction between thiobarbituric
acid (TBA) and MDA. The results are expressed as nmol/mg protein.

Measurement of Na+-K+-ATPase activity levels
Hepatic Na+-K+-ATPase activity was measured using an ATPase assay kit (Nanjing
Jiancheng Biotechnology Institute, Nanjing, China). The measurement of the Na+-K+-
ATPase activity was based on the quantification of inorganic phosphate that is formed
by adenosine triphosphate decomposition[15].

Morphological assessment
Liver specimens were deparaffinized for morphological assessment. The histologic
damage severity was stratified using Suzuki’s  criteria[16].  Liver tissue slices were
microscopically examined in a blinded method by an experienced histologist.

Statistical analysis
Statistical analyses were performed using SPSS version 13.0 statistical software (SPSS,
Chicago,  IL,  United  States).  Experimental  results  are  expressed  as  the  mean  ±
standard deviation (SD). Differences were regarded as statistically significant at P <
0.05.
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RESULTS

Portal venous flow after repeated +Gz exposures
The normal portal  venous flow in Wistar rats was 11.468 ± 0.237 mL/min.  After
repeated +Gz exposures in the 6GS and the 10GS groups, the velocity and flow signals
in the PV were significantly reduced compared to the BC group (P < 0.01 at 0 h post
exposure;  Figure 1).  Meanwhile,  we found that  the PV diameter  did not  change
significantly. However, rats in the 6GS group had a much higher portal venous flow
volume than those in the 10GS group (P < 0.01 at 0 h post exposure). All rats exhibited
normal portal venous flow 6 h after repeated +Gz exposure. To summarize, as the G
force increased, the portal venous blood flow decreased significantly, but transiently.

Liver function after repeated +Gz exposures
To assess liver cell damage in rats, plasma ALT and AST levels were determined 0, 6,
and 24 h after repeated +Gz exposures. ALT and AST levels in the BC group were 46.6
± 4.7 IU/L and 110.5 ± 7.6 IU/L, respectively.

After  repeated +Gz exposures,  ALT and AST values  in  the 6GS and the 10GS
groups were higher than those in the BC group (P < 0.01 at 0 and 6 h time-points after
exposure). However, rats in the 6GS group exhibited lower ALT and AST levels than
those in the 10GS group at 0 and 6 h post exposure (P  < 0.01, 6GS group vs  10GS
group).  The experimental  groups showed normal ALT and AST levels 24 h after
exposure (Figure 2). These consequences display that the degree of damage to the
liver function positively correlated with the increase in G-value, but the abnormalities
were transient.

Tissue MDA levels after repeated +Gz exposures
MDA concentration in both the 6GS and the 10GS groups had increased 0 h and 6 h
after exposure. The MDA concentration in the 6GS group was lower than that in the
10GS group at 0 h (2.89 ± 0.24 nmol/mg protein vs 3.32 ± 0.25 nmol/mg protein, P <
0.01) and 6 h (2.64 ± 0.18 vs 3.18 ± 0.19; P < 0.01) post exposure (Figure 3). Notably, the
6GS and 10GS group MDA concentrations  did  not  recover  to  normal  24  h  after
exposure. Based on these data, it was concluded that repeated +Gz exposures may
induce lipid peroxidation in the rat liver.

Evaluation of Na+-K+-ATPase activity
Na+-K+-ATPase  is  a  cell  membrane  enzyme  that  is  highly  susceptible  to  lipid
membrane peroxidation and free radical reactions[17]. Loss of its activity is a signal of
indirect membrane damage. Na+-K+-ATPase activity decreased significantly after
exposure in both the 6GS and the 10GS groups, compared to the BC group. The 6GS
group had higher Na+-K+-ATPase activity than the 10GS group at 0 h (0.85 ± 0.04
μmolPi/mg protein/h vs 0.73 ± 0.05 μmolPi/mg protein/h, P < 0.01) and 6 h (0.87 ±
0.03  μmolPi/mg protein/h  vs  0.78  ±  0.05  μmolPi/mg protein/h,  P  <  0.01)  post
exposure. There was no significant difference between the 6GS and the 10GS groups
at 24 h after exposure (Figure 4).

Histopathological observations in the liver after repeated +Gz exposures
The hepatic pathological injury after repeated +Gz exposures was assessed and scored
according to Suzuki’s criteria[16]. The structures of the hepatic lobules and liver antrum
were clear, and cellular edema was not obvious in the BC group (Figure 5B, Suzuki’s
score = 2.12 ± 0.35). At the 0 h time-point after exposure, the hepatic sinus cord-like
structure was maintained in the 6GS group (Figure 5C, Suzuki’s score = 3.21 ± 0.13),
whereas  it  was  less  well  maintained  in  the  10GS  group,  which  presented  with
hepatocyte edema (Figure 5D, Suzuki’s score = 4.63 ± 0.25). At the 6 h time-point post
exposure, hepatocyte edema had been significantly relieved in the 10GS group (Figure
5F, Suzuki’s score = 3.53 ± 0.31, P < 0.01). There was no significant score difference
between the 0 and 6 h time-points after exposure in the 6GS group (Figure 5C and E,
Suzuki’s score = 3.21 ± 0.13 vs 3.24 ± 0.28, P < 0.01). The hepatic histology profiles in
both the 6GS and the 10GS groups were nearly normal 24 h after exposure (Figure 5G,
Suzuki’s score = 2.14 ± 0.33; Figure 5H, Suzuki’s score = 2.13 ± 0.36).

DISCUSSION
In  this  study,  the  effects  of  high  +Gz  acceleration  on  rat  liver  function  was
investigated. To this end, we devised an animal model of short-term repeated +Gz
exposures. We chose Wistar rats as the experimental subjects because the human
Glisson’s capsule is similar to that of rats and the model is simple and easy to control.
Hepatic energy metabolism and an optimal intracellular environment rely on an
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Figure 1

Figure 1  Comparison of the rat portal venous blood flow at 0, 6, and 24 h after repeated +Gz exposures in the blank control group, +6 Gz/5 min stress
group, and +10 Gz/5 min stress group. A: Portal vein blood flow; B: Portal flow velocity.

adequate blood supply. Hepatocytes are very sensitive to ischemia and/or hypoxia in
liver tissue[18,19]. Therefore, factors related to ischemia and/or hypoxia will definitely
influence  their  metabolism[20].  Direct  action  and  stress  reaction  caused  by  +Gz
exposure can result in obvious hemodynamic changes between the upper and the
lower body, in important organs, and on the body surface, which is similar to hepatic
ischemia-reperfusion (I/R). Indeed, repeated +Gz exposures may cause hepatic I/R.
Ischemia is defined as inadequate blood supply to an organ or part of an organ as a
result of obstructed blood flow[21]. Our findings were consistent with those reported
effects, with some significant differences between the acceleration exposed and the
control rats observed.

Color Doppler ultrasound is a well-established method for assessing hemodynamic
changes in liver circulation that occur under various physiological conditions[22,23]. As
described by Kim et al[24], exposure to high +Gz accelerating force acting along the
body axis from the head to the feet severely reduces blood supply to the internal
organs.

Levels of ALT and AST can be used as measures of hepatic damage, and were used
in this study to assess damage incurred due to repeated +Gz exposures. The 6GS
group was associated with less cellular damage than the 10GS analogue; this was
reflected by the lower serum ALT and AST levels.  The results indicated that the
degree of functional liver damage increased gradually with increasing G value. Zhang
et al[25] reported that repeated +10 Gz stress had some impact on the oxygen radical
metabolism in the rat liver. MDA is widely used as an indicator of oxidative stress,
which is one of the end products of lipid peroxidation in the liver[26]. The results of our
study displayed that rats in the 10GS group had more hepatic MDA than those in the
6GS group. After repeated +10 Gz exposures, the oxygen and nutrients supplied to
the liver were reduced. After exposure, rats in the 6GS group presented with less
oxidative stress-induced damage than rats in the 10GS group, as manifested by the
lower MDA levels. In this study, changes in the MDA levels were in accordance with
those caused by ischemia and/or hypoxia in rat livers[27], which also points toward
ischemia or hypoxia as one of the main causes of high +Gz stress-induced liver injury.

Early  research  in  this  field  found  that  positive  acceleration  affected  the
physiological  indexes  of  the  liver.  Daligcon et  al[28]  reported that  hyper-G stress
increased levels of circulating catecholamines and glucagon, both effective stimulators
of hepatic gluconeogenesis, and that continued hyperglycemia may be due, in part, to
the control of the insulin-stimulated uptake by muscle tissues. They also found that
hyper-G stress  not  only increased circulating and blood glucose levels,  but  also
increased the content of liver glycogen. This was attributed to an increased rate of
gluconeogenesis and the key role that epinephrine plays during the beginning of
centrifugation exposure[29]. Later research reported that hypergravity exposure caused
significant injury to the liver[30].

Our study has some limitations. First, we did not measure the blood flow changes
in  the  HA due  to  technical  limitations.  This  may  be  possible  through  technical
advances in the future or the use of larger animal models, and we plan to actively
pursue  this  research  avenue  in  the  near  future.  Additionally,  other  serum liver
parameters such as alkaline phosphatase, gamma-glutamyl transferase, bilirubin, and
serum lactate were not measured. We also plan to assess these parameters in future
work. Moreover, physiological differences between rats and humans may render the
data obtained herein non-transferable to human pilots under similar conditions of
exposure.

In summary, the main findings of the study can be summarized as follows: first,
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Figure 2

Figure 2  Comparison of rat serum alanine aminotransferase and aspartate aminotransferase levels at 0, 6, and 24 h after repeated +Gz exposures in the
blank control group, +6 Gz/5 min stress group, and +10 Gz/5 min stress group. A: Alanine aminotransferase; B: Aspartate aminotransferase. ALT: Alanine
aminotransferase; AST: Aspartate aminotransferase.

short-term repeated exposures to either +6 Gz or +10 Gz temporarily reduced the
portal venous flow. Second, ALT and AST levels only slightly increased in response to
G exposure and soon reverted back to normal. An increase in G force resulted in
additional liver damage. Third, evidence of oxidative damage was found, which may
have been due to liver ischemia. Finally, repeated exposures were associated with a
transient decrease of the liver energy, as indicated by the decrease in Na+-K+-ATPase
activity. Although the rat data may not be directly extended to that of pilots, because
of similar conditions of +Gz exposure, this model may be helpful in identifying more
potential adverse effects of high +Gz stress on the human liver, and help develop
practical effective protective measures. In the future, we will  further expand our
study to explore the effects of +Gz exposure over longer durations on liver function,
with  a  view to  elucidating  the  underlying  pathophysiological  mechanisms  and
proposing  feasible  protection  to  decrease  adverse  +Gz  effects.  This  could  be
accomplished by applying an understanding of aviation medicine to aeronautical
engineering technology development. This would be significant in aviation progress
by ensuring flight safety, extending pilot flying-life, promoting good performance of
combat aircrafts, and improving fighting capacity. These factors are essential for the
development of a new generation of high-performance fighter aircrafts.
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Figure 3

Figure 3  Comparison of the liver tissue malondialdehyde levels at 0, 6, and 24 h after repeated +Gz exposures in the blank control group, +6 Gz/5 min
stress group, and +10 Gz/5 min stress group. MDA: Malondialdehyde.

Figure 4

Figure 4  Comparison of the rat liver Na+-K+-ATPase activity at 0, 6, and 24 h after repeated +Gz exposures in the blank control group, +6 Gz/5 min stress
group, and +10 Gz/5 min stress group.
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Figure 5

Figure 5  Pathological changes in the liver tissue at 0, 6, and 24 h after repeated +Gz exposures in the blank control group, +6 Gz/5 min stress group, and
+10 Gz/5 min stress group. A: The hepatic pathological injury after repeated +Gz exposures was assessed and scored according to Suzuki’s criteria. B: The
structures of the hepatic lobules and liver antrum were clear, and cellular edema was not obvious in the BC group. C: At the 0 h time-point after exposure, the hepatic
sinus cord-like structure was maintained in the 6GS group. D: It was less well maintained in the 10GS group, which presented with hepatocyte edema. E: There was
no significant score difference between the 0 and 6 h time-points after exposure in the 6GS group. F: At the 6 h time-point post exposure, hepatocyte edema had been
significantly relieved in the 10GS group. G and H: The hepatic histology profiles in both the 6GS and the 10GS groups were nearly normal 24 h after exposure.

ARTICLE HIGHLIGHTS
Research background
Some clinical data show that liver dysfunction was observed in pilots. However, there are many
reasons for this: hepatitis virus, drug abuse, excessive drinking and so on. The objective of this
study was to probe into whether positive acceleration affects rat liver function.

Research motivation
Exposure to high sustained +Gz (head-to-foot inertial  load) is  conclusively known to have
harmful effects on the human body during aviation activities. High-acceleration force exposures,
particularly when occurring repeatedly, may result in accumulative adverse stress responses in
the body, and safe flying is a social problem that has attracted broad attention. An important
question to address is whether changes in the blood flow direction after +Gz exposure impair
liver function in rats. Moreover, the manner in which the portal venous hemodynamics changes
after repeated +Gz exposures, and whether oxidative stress parameters increase the duration of
these changes are additional questions awaiting answers. To clarify these questions, further
studies on liver damage and the mechanisms of liver damage induced by high +Gz exposures
are needed, and this will provide evidence to take effective preventive measures.

Research objectives
In this article, an animal centrifuge model was used to study whether positive acceleration
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impairs liver function. This research may help find more potential adverse effects of high +Gz
stress on the human liver, and help develop practical,  effective protective measures. In the
future,  we will  further expand our study to explore the effects of +Gz exposures of longer
duration  on  the  liver  function,  to  illuminate  the  pathophysiological  mechanisms  that  are
involved.

Research methods
Completely random grouping design and exploratory experimental research were performed
based on the experimental animals. We adopted the method of acceleration exposure in rats. The
difference of experimental data was detected by analysis of variance using SPSS version 13.0
statistical software (SPSS, Chicago, IL, United States). Experimental results are expressed as the
mean ± standard deviation.

Research results
The main findings of the study showed that repeated +Gz exposures not only transiently impair
liver function but also affect liver metabolism and morphological structure. Although there are
some gaps between experimental animal model and real flight environment, this research may
help find more potential adverse effects of high +Gz stress on the human liver, and help develop
practical effective protective measures.

Research conclusions
While fighter pilots are frequently exposed to high Gz acceleration with the vector in the foot-
head direction, the blood and fluid of the body will be redistributed and flow along the direction
of inertia force to the lower body.  Many studies have demonstrated the harmful effects  of
repeated +Gz stress on the cardiac ultrastructure, metabolism, and function. It was, however, of
scarcity  that  to  investigate  the  effect  of  high  +Gz  exposure  on  the  hepatobiliary  system.
Therefore, we propose some doubts: Do high +Gz exposures impair liver function of rats? How
does the portal venous hemodynamics change after repeated +Gz exposures? Do oxidative stress
parameters increase? Well then, should the changes of blood flow direction after +Gz exposure
cause hepatic ischemia, so as to affect the liver function? We hypothesized that repeated +Gz
exposures could transiently impair the liver function in rats.

The main findings of the study can be summarized as follows: First, short-term repeated
exposures to either +6 Gz or +10 Gz reduced the portal  venous flow. Blood redistribution
between the liver and body surface or other organs is similar to liver ischemia reperfusion.
Repeat  +Gz  exposures  may  result  in  liver  ischemia-reperfusion  injury.  Second,  alanine
aminotransferase and aspartate aminotransferase levels were only slightly increased and could
soon revert back to normal. With an increase in the G force, additional damage also occurred in
the liver function of the rats. The results showed that this damage should be functional and
reversible. Third, oxidative damage might be engaged in the pathophysiologic process during
liver ischemia. After repeated +Gz exposures, the blood and nutrient substance supplied to the
liver were reduced. The exposed group had oxidative stress injury, as reflected in the higher
malondialdehyde (MDA) levels. In addition, the MDA levels increased as the G value increased.
Fourth, repeated +Gz exposures had something to do with a temporary reduction of the liver
metabolism, as indicated by a decrease in the Na+-K+-ATPase activity. The main role of the Na+-
K+-ATPase is to maintain the structure and function of mitochondria. When the activities of the
Na+-K+-ATPase decline,  the structure of mitochondria is  likely to change.  Morphologically
mitochondria became swelling and matrix density decreased.

Research perspectives
Although trained pilots  may not  use the same way as the rats  under similar  conditions of
exposure due to species difference, the research method in rats may help in investigating the
pathophysiological mechanism of high +Gz stress in humans. In addition, this research may aid
discovery of  more  potentially  harmful  effects  of  high +Gz stress  on the  human liver,  and
subsequently, help to prevent liver injury. Flight crews will be the research subject of the project
in the future. Prospective study will be the best research method.
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