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Abstract
Mounting evidence in stem cell biology has shown that 
microRNAs (miRNAs) play a crucial role in cell fate 
specification, including stem cell self-renewal, lineage-
specific differentiation, and somatic cell reprogramming. 
These functions are tightly regulated by specific gene 
expression patterns that involve miRNAs and transcrip-
tion factors. To maintain stem cell pluripotency, specific 
miRNAs suppress transcription factors that promote dif-
ferentiation, whereas to initiate differentiation, lineage-
specific miRNAs are upregulated via  the inhibition of 
transcription factors that promote self-renewal. Small 
molecules can be used in a similar manner as natural 
miRNAs, and a number of natural and synthetic small 
molecules have been isolated and developed to regu-
late stem cell fate. Using miRNAs as novel regulators 
of stem cell fate will provide insight into stem cell biol-
ogy and aid in understanding the molecular mecha-
nisms and crosstalk between miRNAs and stem cells. 

Ultimately, advances in the regulation of stem cell fate 
will contribute to the development of effective medi-
cal therapies for tissue repair and regeneration. This 
review summarizes the current insights into stem cell 
fate determination by miRNAs with a focus on stem cell 
self-renewal, differentiation, and reprogramming. Small 
molecules that control stem cell fate are also highlighted.

© 2013 Baishideng. All rights reserved.
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Core tip: Stem cells are important in regenerative medi-
cine applications due to their capacity to self-renew and 
differentiate into specific cell types. MicroRNAs (miRNAs) 
are short non-coding RNAs that negatively regulate 
gene expression at the post-transcriptional level. Recent 
studies suggest that miRNAs are key molecules in the 
regulation of stem cell fate decisions; this regulation is 
manifested as the fine tuning of cell- and tissue-specific 
gene expression. This review summarizes the current 
insights into stem cell fate determination by miRNAs 
and focuses on stem cell self-renewal, differentiation, 
and reprogramming. Small molecules that control stem 
cell fate are also highlighted.
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INTRODUCTION
Stem cells are a potential source for regenerative medi-
cine and tissue engineering applications. These cells have 
the dual capacity to self-renew and differentiate into mul-
tiple distinct cell lineages[1,2]. These cells are classified as 
embryonic stem cells (ESCs), non-embryonic adult stem 
cells, and induced pluripotent stem cells (iPSCs). ESCs 
are pluripotent cells produced within the inner cell mass 
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of  a blastocyst stage embryo 4-5 d post-fertilization and 
can differentiate into all three germ layers: ectoderm, 
endoderm, and mesoderm[3]. In contrast, adult stem 
cells are found in various tissues and organs, including 
the brain, bone marrow, peripheral blood, blood vessels, 
skeletal muscle, and skin[4]. Some adult stem cells are mul-
tipotent; they can produce a limited number of  differen-
tiated cell types from their specific tissue of  origin. iPSCs 
are reprogrammed to be embryonic-like stem cells from 
adult somatic cells[5,6]. 

Stem cell fate is controlled by transcription factors, 
epigenetic regulation, and non-coding RNAs[7,8]. Tran-
scription factors are well-known for regulating gene ex-
pression, by either directly or indirectly binding DNA ele-
ments, and for their role in epigenetic regulation, such as 
DNA methylation and histone modification. The control 
of  gene expression also occurs during the post-transcrip-
tion process. Recent findings have shown that small non-
coding RNAs are involved in cell fate decisions, including 
the maintenance and differentiation of  stem cells[7,9].

MicroRNAs (miRNAs) are single-stranded, small 
non-coding RNA molecules. miRNAs modulate gene 
expression by either inhibiting mRNA translation or 
inducing mRNA degradation, which results from the 
complete or incomplete binding to the 3’ untranslated 
region (3’-UTR) of  specific mRNAs[10,11]. More than 
1000 different mature miRNAs have been discovered 
in humans, and they regulate one third of  all protein-
coding genes[12,13]. Computational predictions of  miRNA 
targets, functions, and expression, are accessible on 
multiple online prediction databases, such as TargetScan 
(http://targetscan.org), microRNA.org (http://www.mi-
crorna.org), miRBase (http://www.mirbase.org), PicTar 
(http://www.pictar.org), and miRWalk (http://mirwalk.
uni-hd.de)[14,15]. One miRNA can target a large number of  
mRNAs, and/or many miRNAs can bind to one specific 
mRNA. This versatility may result in miRNAs mediat-
ing the effects of  biological processes such as stem cell 
fate switches, proliferation, maintenance, and apoptosis. 
Interestingly, the first two miRNAs discovered, lin-4 
and let-7, were characterized during the developmental 
stage transition in C. elegans[16,17]. By deleting enzymes 
involved in miRNA processing and maturation, namely, 
Dicer or Dgcr8, studies have shown that miRNAs are 
important in maintaining ESC pluripotency and differ-
entiation capacity[18-20]. miRNAs also play a role in the 
differentiation and self-renewal of  mesenchymal stem 
cells (MSCs)[21]. Many observations suggest that miRNAs 
critically regulate stem cell fate decisions, including self-
renewal, differentiation into specific lineages, and repro-
gramming. Thus, this review focuses on miRNAs that 
are powerful regulators of  stem cell fate. Furthermore, 
we discuss the potential of  small molecules in regulating 
stem cell fate. 

MICRORNAS IN MAINTENANCE
Self-renewal and differentiation potential are hallmarks of  

stem cells. Self-renewal is a process of  symmetric division 
into two daughter cells. To self-renew, stem cells must 
proliferate without differentiating or becoming apoptotic 
to maintain their undifferentiated state[22,23]. 

Cell division during self-renewal is achieved through 
regulated cell cycle events, such as the alternating activi-
ties of  various D-type cyclins, cyclin-dependent kinases 
(CDKs), and E2F transcription factors. These cell cycle 
modulators and miRNA molecules are regulated during 
post-transcriptional modification[10,24]. The transcription 
factors Oct4, Sox2, and Nanog are also important for the 
self-renewal of  pluripotent cells[7,25,26]. Oct4 and Nanog 
were the first transcription factors to be identified as 
necessary for the development and maintenance of  ESC 
pluripotency. The expression of  these factors is limited 
to pluripotent cell lines[26-28]. Additionally, Oct4, Sox2, and 
Nanog have an autoregulatory feedback loop, which is an 
important feature of  human ESCs[29], and Sox2 implicitly 
interacts with Oct4[30].

Oct4, Sox2, and Nanog may be upstream regula-
tors of  the miR-302-367 cluster of  miRNA, which have 
been identified and differentially expressed in human 
ESCs[31-33]. Conversely, miR-302-367 is required for Oct4, 
Sox2, and Nanog expression. Thus, miR-302-367 and 
the transcription factors (Oct4, Sox2, and Nanog) are 
tightly linked through an autoregulatory positive loop in 
pluripotent cells[34,35]. Additionally, miR-302a promotes 
the G1/S transition by repressing the translation of  cy-
clin D1 in human ESCs[36]. The inhibition of  miR-302a 
causes an accumulation of  pluripotent human ESCs in 
the G1 phase[36]. ESCs usually have a rapid G1/S transi-
tion, which results in an extremely rapid proliferation rate 
(-10 h) compared to that of  differentiated cells (more 
than 18 h)[24]. The G1/S transition is regulated by the 
cyclin D-Cdk4, 6 and cyclin E-Cdk2 complexes. The cy-
clin D-Cdk4, 6 complex is not present in mouse ESCs; 
however, the cyclin E-Cdk2 complex that induces S phase 
and DNA replication is present and active[20,37]. In vivo ex-
periments performed in a developing lung demonstrated 
that miR-302-367 decreased the expression of  inhibitors 
of  cdkn1a (p21) and Rbl2, inhibitors of  the cyclin E-Cdk2 
complex, which resulted in the formation of  an undiffer-
entiated multi-layered lung endoderm[38]. Furthermore, in 
Dicer- and Dgcr8-knockout mice, ESCs exhibited reduced 
cell proliferation and an extended G1 phase[18,19]. 

Similar to miR-302-367, the miR-290-295 cluster is 
highly expressed in mouse ESCs, is regulated by Oct4, and 
binds Oct4, Sox2, Nanog, and Tcf3 to its promoters[33,39]. 
The increased expression of  the miR-290 family promotes 
the G1/S transition, which enables rapid ESC prolifera-
tion and mediates the suppression of  cdkn1a, Rbl2, and 
Lats2[37]. Indeed, the miR-290 family functionally antago-
nizes differentiation-related miRNAs, such as the let-7 
family. The miR-290-295 cluster is rapidly downregulated 
during differentiation, which occurs with the restoration 
of  let-7 maturation. Increased let-7 expression promotes 
differentiation by directly targeting pluripotency factors 
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and ESC-enriched genes[40].
Another important gene in stem cell maintenance is 

c-Myc, which is inhibited by let-7[41]. In addition, c-Myc 
binds to the promoters of  miR-141, miR-200, and 
miR-429. These miRNAs inhibit differentiation in mouse 
ESCs[42]. Furthermore, c-Myc stimulates the expres-
sion of  the miR-17-92 cluster in tumor cells[43]. These 
miRNAs reduce the expression of  the cell cycle control 
gene Rb2, which plays an important role in stem cell 
self-renewal[44]. Moreover, miR-92b promotes the G1/S 
transition through the repression of  cdkn1c (p57, Kip2) in 
human ESCs[45]. In fact, the miR-302-367, miR-290-295, 
and miR-17-92 clusters have been designated as ESC-
specific cell cycle-regulating miRNAs (ESCC miRNAs) 
because they promote the G1/S transition and cellular 
proliferation in ESCs[37].

Compared to their role in ESCs, there is less evidence 
for the involvement of  miRNAs in the self-renewal of  so-
matic stem cells. The overexpression of  miR-205 enhanced 
proliferation and expanded the population of  progenitor 
cells by modulating PTEN, a tumor-suppressor gene[46].

Therefore, stem cell self-renewal is tightly regulated 
through a complex network of  core transcription fac-
tors, miRNAs, and the repression and/or promotion of  
differentiation mechanisms and pluripotent pathways, 
respectively (Figure 1).

MICRORNAS IN DIFFERENTIATION
Vascular differentiation: endothelial cells, vascular 
smooth muscle cells, and cardiomyocytes
Some studies indicate that miRNAs affect the vascular 
development or differentiation of  stem cells, and others 
provide detailed reviews of  the effect of  miRNAs on 
endothelial cells (ECs), vascular smooth muscle cells 
(VSMCs), and cardiomyocytes[47-49] (Figure 2). 

Endothelial cell differentiation
The first evidence for the regulation of  endothelial cell 

functions by miRNAs came from observations that dicer 
knockout mice displayed defects in embryos and yolk 
sacs during vasculogenesis and early angiogenesis[50]. 
Dicer, accompanied by the altered expression of  vascular 
endothelial growth factor (VEGF), fms-related tyrosine 
kinase 1 (vascular endothelial growth factor/vascular 
permeability factor receptor; FLT1), kinase insert domain 
receptor (a type Ⅲ receptor tyrosine kinase; KDR), and 
tyrosine kinase with immunoglobulin-like and EGF-like 
domains 1 (Tie-1), plays and essential role in endothelial 
development.

Increased expression of  miR-126 was first identi-
fied in Flk-1+ mesoderm populations derived from 
mouse ESCs[51]. Two additional studies, performed with 
zebrafish and mice, demonstrated that miR-126 is essen-
tial for vessel integrity and endothelial function regulation 
but that it is not required to control the differentiation of  
ESCs to ECs[52,53]. 

The expression of  miRNAs associated with angio-
genesis (let-7b, let-7f, miR-126, miR-130a, miR-133a, 
miR-133b, miR-210, and miR-296) was enhanced in day 
10 differentiated cells compared to pluripotent human 
ESCs[54]. Increased expression of  the let-7 family during 
differentiation occurred by directly targeting pluripo-
tency factors and ESC-enriched genes[40]. Specifically, let-7f  
contributed to the angiogenic sprouting of  ECs in vitro[55]. 
The other upregulated miRNAs, miR-130a, enhanced 
angiogenesis by modulating GAX (growth arrest-specific 
homeobox) and HOXA5 (homeobox protein Hox-A5), 
which are anti-angiogenic homeobox transcription fac-
tors[56]. Additionally, miR-210 was shown to be required 
for angiogenesis by targeting EphinA3[57], and miR-
146b, miR-197, and miR-625 expression was enriched 
in CD31+ endothelial populations derived from mouse 
ESCs[52]. Although the function of  these miRNAs has 
been studied in cancer cells[58-60], their role in the differen-
tiation and functionality of  ECs remains unknown. 

The miRNA miR-181a promotes the reprogramming 
of  lymphatic ECs toward a blood vascular phenotype[61]. 
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Figure 1  MicroRNAs regulate stem cell self-renewal and somatic cell reprogramming. ESC: Embryonic stem cell.
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The binding of  miR-181a, to the 3’UTR of  Prox1 (pros-
pero homeobox 1, a key gene involved in lymphatic EC 
identity) results in inhibited expression. In human ESCs, 
miR-99b, miR-181a and miR-181b regulated the mRNA 
and protein expression of  EC-specific markers, increased 
nitric oxide production, and improved therapeutic neo-
vascularization in vivo[62]. In addition, the expression of  
miR-7641 was downregulated during the endothelial 
differentiation of  human ESCs. The overexpression 
of  this miRNA significantly suppressed the expression 
of  CXCL1 (a member of  the CXC chemokine fam-
ily)[63]. CXCL1, which is involved in EC biogenesis and 
angiogenesis, is known to promote neovascularization by 
binding G-protein-coupled receptors[64,65]. 

Smooth muscle cell differentiation
The miRNAs miR-143 and miR-145 are abundantly 
expressed in smooth muscle tissue. These miRNAs pro-
mote smooth muscle cell (SMC) differentiation from neu-
ral crest stem cells and are upregulated during differentia-
tion, which is consistent with early expression patterns 
in the aorta of  developing mouse embryos[66-68]. Recently, 
it was discovered that miR-145 also promotes SMC dif-
ferentiation from human ESCs[69]. The expression of  
miR-143 and miR-145 is controlled by serum response 
factor (SRF), myocardin (MYOCD), and the follow-
ing miRNA target transcription factors: KLF4, ELK1, 
and angiotensin-converting enzyme (ACE)[66-68]. Other 
targets of  miR-145 are Oct4, Sox2, and Klf4, which are 

transcription factors for the self-renewal of  pluripotent 
cells. These miRNAs are involved in regulating cell fate 
decisions across different lineages[70]. A loss of  miR-145 
induced a different SMC phenotype, which was similar 
to the proliferating SMCs found in vascular lesions, but 
did not affect SMC differentiation[66,67]. A reduction in 
neointima formation after vessel injury was observed 
in miR-145-/-mice and, to a lesser extent, in miR-143-/-

mice[68]. However, the overexpression of  miR-143 and 
miR-145 also decreased neointima formation in a rat 
model of  acute vascular injury[71]. These data suggest that 
miR-143 and miR-145 are vital to SMC differentiation in 
vitro, but are not essential for SMC differentiation during 
embryonic development in vivo.

Another study showed that the increased expression 
of  miR-10a during the in vitro differentiation of  mouse 
ESCs to SMCs occurred via the post-transcriptional 
inhibition of  histone deacetylase 4 (HDAC4)[72]. The 
inhibition of  miR-10a impairs SMC differentiation. 

The miRNA miR-1 is involved in cardiomyocyte dif-
ferentiation, cardiac hypertrophy, and apoptosis; however, 
recent studies suggest that it also plays a role in SMC dif-
ferentiation[73]. During the differentiation of  mouse ESCs 
to SMCs, the expression of  miR-1 steadily increased. 
Loss-of-function approaches using inhibitors against 
miR-1 resulted in the downregulation of  SMC-specific 
markers and a decrease in the population of  derived 
SMCs, indicating that miR-1 is required for the SMC lin-
eage differentiation of  ESC cultures. Previously identified 
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as a miR-145 target, KLF is a target for miR-1.

Cardiomyocyte differentiation
The miRNAs miR-1 and miR-133 were first described 
as critical regulators for muscle proliferation and skel-
etal muscle[74] and cardiac muscle[51] differentiation. Both 
miR-1 and miR-133 promote mesoderm formation from 
ESCs; however, these miRNAs have opposing functions 
during differentiation to cardiac muscle progenitors[51,74-76].

These miRNAs, miR-1-1 and miR-1-2, are specifi-
cally expressed in cardiac and skeletal muscle precursor 
cells and direct transcriptional targets, such as SRF, myo-
genic differentiation 1 (MyoD), and myocyte enhance-
ment factor 2 (Mef2)[77]. An increased expression of  
miR-1 in mice led to embryonic developmental arrest 
at day 13.5, which resulted in a decreased population 
of  proliferating ventricular cardiomyocytes[77]. Hand2, a 
transcription factor that regulates ventricular cardiomyo-
cyte expansion, is a direct target of  miR-1[77]. However, 
the targeted deletion of  one of  the two miR-1 genes 
(miR-1-2) located in muscle-specific miRNAs revealed 
numerous dysfunctions in the heart, including defective 
morphogenesis, electrical conduction, and unregulated 
cell-cycle control[76]. Additionally, Drosophila melanogaster 
miR-1 modulates cardiogenesis and muscle-gene expres-
sion[75]. Ivey et al[51] described that miR-1 acts as a repres-
sor of  non-muscle genes and that the overexpression of  
miR-1 upregulates Nkx2.5, an early cardiac marker, to 
promote cardiac differentiation. Notch ligand Delta-like 
1 (Dll-1) is a target of  miR-1[51]. In human ESC-derived 
embryoid bodies, miR-1 also increased the expression of  
myosin heavy chain (MHC) genes[78]. Additionally, miR-1 
increased the expression of  cardiomyocyte-specific 
genes and enhanced cardiomyocyte differentiation from 
human-derived cardiomyocyte progenitor cells by tar-
geting HDAC4[79]. Interestingly, the transplantation of  
murine ESCs overexpressing miR-1 into the border zone 
of  infarcted mouse hearts prevented ischemia-induced 
apoptosis[80]. In addition, miR-1 facilitates the electro-
physiological maturation of  ESCs[81]. Furthermore, when 
miR-1 was transfected into fibroblast cells, gene expres-
sion profiles shifted toward that of  muscle-like cells[82]. 
Recently, miR-1 induced the expression of  several cardio-
myocyte markers, including Nkx2.5, GATA-4, cTnT, and 
CX43, via the downregulation of  Hes-1, the downstream 
target molecule of  the Notch pathway in MSCs[83].

Although miR-1 and miR-133 are bicistronic[76,84], they 
have opposing actions. The deletion of  miR-133a genes 
causes lethal ventricular-septal defects, and results in the 
ectopic expression of  smooth muscle genes. Therefore, 
miR-133a regulates the proliferation of  cardiomyocytes 
by SRF and cyclin D2 activity[84]. Specific cardiac markers 
were downregulated in miR-133-overexpressed mouse 
and human ESCs[51,85], and miR-133 induced the pro-
liferation of  myoblasts by repressing SRF[74]. A recent 
study revealed that miR-133 inhibited the proliferation 
of  the prostate cancer cell lines PC3 and DU145 by tar-
geting the epidermal growth factor receptor (EGFR)[86]. 

Concurrently, our group also discovered that miR-133a 
expression increased during differentiation and that the 
overexpression of  miR-133a promoted cardiac differen-
tiation in human MSCs by targeting EGFR[87].

Increased miR-499 expression was discovered in 
adult cardiac progenitor cells and human ESCs[78,79]. This 
miRNA is encoded by an intron of  MHC[88] and shares 
many predicted targets with miR-208, which plays a cru-
cial role in the stress-adaptation of  the adult heart. The 
overexpression of  miR-499 reduced the proliferation 
and enhanced the differentiation of  human cardiomyo-
cyte progenitor cells and ESCs through targeting Sox6, 
which is expressed in heart and skeletal muscle[79]. The 
miRNA miR-499 has also been shown to play a role in 
myocyte lineage differentiation and the generation of  
mature working cardiomyocytes in vitro and after infarc-
tion in vivo[89]. Both Sox6 and regulator of  differentiation 
1 (Rod1) are targets of  miR-499. In addition to ESCs, 
cardiac stem cells, and cardiomyocyte progenitor cells, a 
recent study showed that the overexpression of  miR-499 
in rat MSCs induced cardiac differentiation through the 
Wnt/β-catenin signaling pathway[90].

Additionally, miR-204 is required for human cardio-
myocyte progenitor cell differentiation, which occurs 
through targeting ATF-2[91], whereas miR-124 inhibits 
the cardiomyocyte differentiation of  MSCs by targeting 
STAT3[92]. Finally, the deletion of  the miR-17-92 cluster 
led to very specific defects in the development of  the 
heart[93]; however, the function of  the miR-17-92 cluster in 
cardiac differentiation and development remains unclear.

Neuronal differentiation
Neural stem cells (NSCs) give rise to neurons, astro-
cytes, and oligodendrocytes and play an important role 
in embryonic development and the maintenance of  the 
adult central nervous system (CNS)[94]. The differentia-
tion of  NSCs is tightly associated with multiple signal-
ing pathways: the Wnt signaling pathway regulates NSC 
proliferation and differentiation[95], the transcription 
factors Neurog2 and Tbr2 are linked to NSC differentia-
tion[96]; the orphan nuclear receptor TLX is necessary for 
adult NSC proliferation[97]; and the methyl CpG bind-
ing protein 2 (MeCP2), methyl-CpG binding protein 1 
(MBD1), and histone-lysine N-methyltransferase Ezh2 
are related to adult neurogenesis[98,99]. In the mammalian 
brain, some miRNAs expression is tissue-specific, such 
as the let-7 family, miR-124, and miR-9, which regulate 
neurogenesis[100,101]. Brain-specific miR-124 is upregu-
lated during CNS development and the neuronal differ-
entiation of  the adult subventricular zone (SVZ)[102,103]. 
During neurogenesis, the suppression of  RE-1-silencing 
transcription repressor (REST) induces the expression 
of  miR-124, which represses JAG1, Dlx2, and Sox9. In 
addition, laminin γ1 and integrin β1, which are expressed 
in neural progenitors but inhibit neuronal differentia-
tion, are also targeted by miR-124 and lead to neurogen-
esis[104]. The miRNA miR-9 is also highly expressed in the 
brain and is involved in modulating the balance between 
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NSC self-renewal and differentiation via negative TLX 
expression[105]. The overexpression of  miR-9 promotes 
neural differentiation but downregulates TLX. Let-7d, a 
member of  the let-7 family, also targets TLX, promotes 
neurogenesis, and reduces NSC proliferation[106]. Let-7a 
is a downstream molecule of  tripartite motif-containing 
protein 32 (TRIM32); therefore, let-7a is also required to 
induce NSC differentiation[107]. The overexpression of  
TRIM32 induces neuronal differentiation, whereas the in-
hibition of  TRIM32 preserves the self-renewal capability 
of  neural progenitor cells. The miRNA miR-137 is es-
sential for embryonic NSC fate decisions; the overexpres-
sion of  miR-137 inhibits NSC proliferation and induces 
accelerated differentiation by suppressing histone lysine-
specific demethylase 1 (LSD1), a co-transcription fac-
tor of  TLX[108]. Additionally, miR-137, which mediates 
epigenetic proteins such as MeCP2 (a DNA methyl-
CpG-binding protein), Ezh2, and Polycomb group (PcG) 
protein, regulates the balance of  NSC proliferation and 
differentiation in adult neurogenesis. A reduction of  
miR-137 expression promotes differentiation, whereas 
the overexpression of  miR-137 increases adult NSCs 
proliferation[98]. Similar to miR-137, miR-184 is associ-
ated with controlling the balance between the prolifera-
tion and differentiation of  adult NSCs. Upregulated 
miR-184 targets methyl-CpG binding protein 1 (MBD1) 
and Numblike (Numbl), which are related to NSC dif-
ferentiation in the adult brain, to induce cell proliferation 
and reduce the differentiation of  adult NSCs[99]. In neu-
ral stem/progenitor cells (NSPCs) isolated from adult 
mice, the miR-106b-25 cluster (miR-106b, miR-93, and 
miR-25) regulates NSPC proliferation and differentiation. 
The miRNA miR-25 targets insulin/insulin-like growth 
factor-1 (IGF) signaling pathways. The expression of  
miR-106b-25 is mediated by FoxO3, a member of  the 
FoxO family of  transcription factors that is important 
for the maintenance and differentiation of  NSCs[109]. Re-
cently, it was determined that miR-34a is involved in NSC 
differentiation; miR-34a promotes Notch signaling by 
repressing Numbl, a negative regulator of  Notch signal-
ing that inhibits neuronal differentiation[110]. Additionally, 
miR-26b activates neurogenesis by suppressing Ctdsp2 
protein expression[111,112]. By targeting Nestin, miR-125b 
promotes NSPC differentiation and migration while in-
hibiting NSPC proliferation[113] (Figure 2). 

Osteoblast, osteoclast, and chondrocyte differentiation
The skeleton consists of  osteoblasts and osteoclasts 
in bone tissue and chondrocytes in cartilage tissue[114]. 
Increasing evidences suggests that miRNAs are an inte-
gral part of  regulating bone and cartilage formation, metab-
olism, homeostasis, osteogenesis, and chondrogensis[115,116]. 

Osteoblast differentiation from bone marrow stromal 
cells undergoes three stages: pre-osteoblast (proliferation), 
osteoblast/pre-osteocyte (matrix maturation), and osteo-
cyte (mineralization)[117]. Each cell type expresses different 
genes and factors; therefore, miRNAs may be selectively 
expressed in particular stages during osteogenesis. At 

different stages of  osteoblast differentiation, miR-29 has 
multiple distinct functions. For example, miR-29b initi-
ates the osteogenic pathway by repressing anti-osteogenic 
factors, such as HDAC4, TGF-β3, activin A receptor 
type IIA (ACVR2A), beta-catenin-interacting protein 1 
(CTNNBIP1), and dual-specific phosphatase (DUSP2). 
Collagen type Ⅰ (COL1A1) directly targets miR-29b. 
During mineralization, when collagen accumulation is 
at a steady state, high endogenous levels of  miR-29b 
downregulation the mRNA expression of  COL1A1[118]. 
In addition, miR-29 suppresses osteonectin (secreted 
protein acidic and rich in cysteine, SPARC) during matrix 
maturation and the mineralization phase during late dif-
ferentiation[119]. Although collagens and osteonectin play 
an important role in bone mass and osteogenesis, the in-
hibition of  these proteins by miR-29b prevents sclerotic 
bone formation and increases bone structure stability[117]. 
Moreover, canonical Wnt signaling is involved in osteo-
blast differentiation; a high level of  β-catenin is required 
for osteogenesis. Therefore, targeting the Wnt pathway 
by miRNAs has been shown to contribute to osteogen-
esis[120]. The miR-29 family also targets Wnt signaling-
mediated proteins; the expression of  miR-29 is increased 
by Wnt activation during osteoblast differentiation. 
Additionally, miR-29a negatively regulates the Wnt recep-
tor complex Dickkopf-related protein 1 (Dkk1), Kre-
men2, and secreted frizzled related protein 2 (sFRP2)[121], 
whereas miR-29b downregulates the β-catenin inhibitor 
CTNNBIP1[118]. Both miR-27 and miR-335 are upregu-
lated during osteogenesis and target the APC gene and 
Dkk1, a negative regulator of  Wnt signaling, respectively, 
which leads to osteoblast differentiation[122,123].

Only a few miRNAs contribute to osteoclast differ-
entiation. In particular, miR-223 is regulated by transcrip-
tion factor PU.1. An increased expression of  miR-223 
and receptor activator of  nuclear factor-κB (RANK) is 
observed in bone marrow derived osteoclast precursors 
after induction by M-CSF[124]. miR-223 regulates NFIA, 
a suppressor of  osteoclastogenesis, which leads to the 
upregulation of  the M-CSF receptor[125]. A key regulator 
in the maturation of  hematopoietic cells to macrophages, 
miR-155 has been studied as another osteoclastogenic 
miRNA[126]. miR-155 represses MITF, a necessary tran-
scription factor for osteoclast differentiation, to inhibit 
osteoclastogenesis[127].

Cartilages tissue forms bone via the endochondral 
process of  ossification. The loss of  miRNAs in cartilage 
accelerates the differentiation of  mature hypertrophic 
chondrocytes and abnormal bone growth[128]. Cartilage-
specific miR-140[129] is related to palatogenesis, which 
mediates platelet-derived growth factor D (PDGFD) 
signaling in zebrafish[130], craniofacial development and 
endochondral bone formation via targeting HDAC4[131] 
and inhibits BMP signaling in mouse models[132]. HDAC4 
and BMP signaling pathways contribute to chondrocyte 
hypertrophy and osteoblast differentiation and can be 
negative effector of  osteogenesis. The miRNA miR-675 
can promote chondrogenic differentiation by inducing the 
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expression of  cartilage-specific collagen type Ⅱa through 
the positive regulation of  cartilage-specific Sox9[133]. The 
chondrogenic differentiation of  MSCs is induced by 
miR-23b, which negatively inhibits of  protein kinase A 
signaling[134]. In addition, miR-18a, miR-199a, miR-145, 
and miR-221 have been identified as negative regulators 
of  chondrogenesis. To repress chondrogenesis, miR-
18a directly targets the CCN family protein 2/connective 
tissue growth factor (CCN2/CTGF)[135]. Similarly, miR-
199a, a bone morphogenic protein 2-responsive miRNA, 
significantly inhibits early chondrogenesis by targeting 
Smad1[136]. In addition, miR-145 targets Sox9, a key tran-
scription factor for chondrogenic differentiation[137,138], 
and miR-221 negatively regulates Mdm2 and therefore 
prevents the degradation of  Slug protein, which is 
involved in chondrogenesis inhibition[139] (Figure 2).

Other types of differentiation
Despite the multi-lineage differentiation potential of  
stem cells, little is known about the differentiation of  
stem cells to other cell types than those described above. 
For example, the hepatic differentiation of  human 
umbilical cord lining-derived MSCs (hUC-MSCs) and 
liver-derived progenitor cells (LDPCs) is regulated by 
miR-542-5p and miR-146a[140]. The miRNA miR-182 is 
involved in the differentiation of  inner ear stem/progeni-
tor cells into hair-like cells via the repression of  Tbx1[141]. 
Pancreatic transcription factor Ptf1a is specifically 
expressed at different stages during pancreatic develop-
ment; low levels of  Ptf1a enhance the differentiation of  
pancreatic progenitor cells to endocrine cells, whereas 
high levels of  Ptf1a are involved in exocrine cell differen-
tiation. The endogenous expression of  Ptf1a is regulated 
by miR-18a[142]. During the adipogenic differentiation of  
mouse ESCs, the expression of  miR-10b, miR-15, miR-
26a, miR-30a-5p, miR-30c, miR-98, miR-99a, miR-103, 
miR-143, miR-148a, miR-152, miR-224, miR-422b, and 
miR-let-7b increased, whereas the expression of  the 
miR-17-92 cluster was downregulated[143]. Myeloid dif-
ferentiation is promoted by PU.1 transcription factor, and 
the overexpression of  the miR-23a cluster in hematopoi-
etic progenitor cells suppresses B-cell development[144]. 
Furthermore, miRNAs are involved in the differentiation 
of  diploid spermatogonia to haploid spermatozoa. The 
miRNA miR-34c is highly expressed in the late stages 
of  spermatogenesis, which induces the upregulation of  
germ cell-specific genes[145].

MICRORNAS IN REPROGRAMMING
In 2006, the astonishing research of  Yamanaka demon-
strated that somatic cells such as mouse fibroblasts, can 
be reprogrammed to a pluripotent state using only four 
transcription factors: Oct4, Sox2, Klf4, and c-Myc[5]. 
These reprogrammed fibroblasts are referred to as iP-
SCs, and they are functionally and molecularly similar to 
ESCs. After one year, the same group induced human 
iPSCs in a similar manner as the mouse iPSCs[146]. These 

initial studies introduced the somatic cell reprogramming 
strategy. Although the method of  transcription factor-
mediated reprogramming is simple, problems such as 
time, low efficiency, and the possibility of  tumorigenesis 
remain unsolved[147]. To improve the quality of  generated 
iPSCs, researchers have focused on using miRNAs, which 
are associated with regulating the epigenome. Because 
the ectopic expression of  transcription factors during 
reprogramming is related to epigenetic changes, miRNAs 
are considered an attractive alternative for somatic cell 
reprogramming[35] (Figure 1). 

To improve the efficiency of  iPSC generation, 
reprogramming barriers must be overcome. The repro-
gramming process undergoes two phases: the early phase 
(initiation phase) and the late phase[8]. The early phase is a 
pre-pluripotent state involving increased cell proliferation 
and a change into an epithelial-like cellular state called the 
mesenchymal-epithelial transition (MET)[148]. This phase 
is regulated by p53-induced cell-cycle repression and the 
TGF-β-accelerated epithelial-mesenchymal transition 
(EMT). The late phase is the transition of  pre-iPSCs 
by inducing pluripotency-related genes, such as Nanog, 
Sox2, and Lin28, and establishing the pluripotency net-
work[8]. Thus, reducing these barriers by utilizing miRNA-
mediated epigenetic and transcriptional regulation en-
hances reprogramming efficiency and generates functional 
cells that resemble ESCs[8,148,149].

The first attempt to reprogram focused on miRNAs 
that were highly expressed in ESCs and governed 
pluripotency but were absent in fibroblasts. Among 
members of  the miR-290-295 family, miR-291-3p, 
miR-294, and miR-295, in combination with Oct4, 
Sox2, and Klf4, increased the reprogramming effi-
ciency of  mouse fibroblasts[150]. In human somatic cells, 
miR-302a-367 and/or miR-371-373 (mouse homolog 
miR-290-295), in combination with Oct4, Sox2, Klf4, 
and c-Myc, enhanced the efficiency of  reprogramming 
by inhibiting TGF-β-induced EMT[151]. During the early 
reprogramming stage, miR-17-92, miR-106b-25, and 
miR-106a-363 clusters, which share the seed sequences 
of  the miR-302 cluster, were shown to be highly in-
duced[152]. The overexpression of  the miR-106a-363 and 
miR-302-367 clusters promoted a distinct increase in iP-
SCs generated from mouse fibroblasts. This increase was 
achieved by targeting TGF-β type Ⅱ receptor with Sox2, 
Klf4, and Oct4, which accelerated MET[153]. In addition, 
the activation of  BMP signaling induced the expres-
sion of  the miR-205 and miR-200 family and enhanced 
the MET[154]. Therefore, the TGF-β and BMP signaling 
pathways are critical mechanisms that induce MET and 
promote reprogramming. Further investigation of  somat-
ic reprogramming is possible using only miRNAs to di-
rectly promote reprogramming events. Recently, Anokye-
Danso and coworkers reported that the transfection of  
miR-302 and miR-367 clusters successfully reprogramed 
mouse and human somatic cells to iPSCs without the use 
of  exogenous transcription factors[155]. Interestingly, the 
direct transfection of  mature biomimetic miRNAs, such 
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as miR-200c and the miR-302-369 family, promoted 
the reprogramming of  mouse and human somatic cells. 
This method does not require lentiviral vectors for gene 
transfer[156]. 

Contrary to the aforementioned examples, some miR-
NAs must be suppressed to enhance reprogramming. For 
example, let-7 miRNAs are negative regulators of  the 

potent reprogramming factor Lin28. The inhibition of  
let-7 miRNAs leads to the dedifferentiation of  somatic 
cells to iPSCs, which induces cell proliferation and pluri-
potency genes[40]. Another important miRNA barrier for 
reprogramming is the p53-mediated pathway. The p53-
mediated pathway induces the expression of  the miR-34 
family and the suppression of  the pluripotency factors 
Nanog and Sox2[157]. The genetic deletion of  miR-34a 
increased the efficiency and kinetics of  reprogramming 
and established pluripotency at a late stage. Additionally, 
the suppression of  p53, by overexpressing miR-138[158] 
or repressing miR-21 and miR-29a, enhanced reprogram-
ming[159]. The expression of  endogenous miRNAs is 
regulated by transcription factors[160]. The expression of  
miR-29b is directly regulated by Sox2 during iPSC gen-
eration and miR-29b is an essential facilitator for Oct4, 
Klf4, Sox2, and c-Myc (or Oct4, Klf4, and Sox2) medi-
ated reprogramming[161].

Reported reprogramming factors Oct4, Klf4, Sox2, 
and c-Myc have demonstrated that miRNAs play a cru-
cial role in regulating stem cell fate events, such as repro-
gramming, differentiation, and self-renewal. However, 
some questions pertaining to the mechanisms of  repro-
gramming remain unresolved. Addressing these questions 
will provide further understanding of  reprogramming 
and will promote the development of  iPSC generation 
technologies and stem cell therapies.

SMALL MOLECULES AND STEM CELL 
FATE
Stem cell fate is regulated by both intrinsic/extrinsic 
regulators and the extracellular niche. Because these regu-
lators have limitations, such as efficiency and selectivity 
for controlling stem cell fate, a new strategy is to use of  
small molecules[162] (Table 1). Compared to genetic ma-
nipulations, small-molecule approaches have a number of  
advantages: 1) the biological effects of  small molecules 
are rapid, reversible, and dose-dependent; 2) small mol-
ecules have specific targets in signaling pathways or epi-
genetic mechanisms; and 3) a variety of  chemical libraries 
provide data for the functional optimization of  small 
molecules[163]. Recently, many small molecules have been 
identified and characterized that can manipulate stem cell 
fate, including self-renewal, lineage-specific differentia-
tion, and somatic cell reprogramming[35,164].

The self-renewal capacity of  mouse ESCs is 
maintained by PD0325901 (MEK inhibitor) and 
CHIR99021 (GSK3 inhibitor) without feeder cells or ex-
ogenous cytokines[165]. The molecules Y-27632 and thia-
zovivin (ROCK inhibitor) enhance the survival of  hu-
man ESCs[166-168], whereas a combination of  PD0325901, 
CHIR99021, and Y-27632 supplemented with bFGF 
supports the maintenance of  human ESCs[169]. Because 
the lineage-specific commitment of  stem cells provides 
possible therapeutic applications, studies that control 
stem cell differentiation have been consistently reported. 

  Chemical Effect (Target) Result Ref.

  PD0325901 MEK inhibitor Promotes mouse ESC 
self-renewal

[161]
  CHIR9902 GSK-3 inhibitor
  Y27632 ROCK inhibitor Enhances human 

ESC survival
[161-164]

  Thiazovivin
  SB431542 TGF-β receptor 

inhibitor (SMAD 
signaling inhibitor)

Induces human ESC 
differentiation into 
endothelial cells and 
neural tissues

[167,168]

  VPA HDAC inhibitor Somatic cell 
reprogramming

[170-175]
  BIX-01294 HMT inhibitor
  RSC133 DNMT inhibitor
  5-Aza
  SB431542 TGF-β receptor 

inhibitor
  PD0325901 MEK inhibitor
  TSA HDAC inhibitor Promote HSC self-

renewal
[177-179]

  Trapoxin
  Chlamydocin
  SR1 AHR antagonist
  PGE2 PG pathway
  Pyrvinium Wnt inhibitor Promote MSC self-

renewal
[191,192]

  SKL2001
  H-89 PKC inhibitor Induces human MSC 

differentiation into 
chondrocytes

[130,180]
  Katogenin Filamin A

  Purmorphamine RUNX2 activator Induces human MSC 
differentiation into 
osteoblasts

[181,182]
  CW008 cAMP/PKA/CREP 

pathway agonist
  SJA710-6 Induces rat MSC 

differentiation into 
hepatocytes

[183]

  PMA PKC activator Induces rat MSC 
differentiation into 
cardiomyocytes

[184,185]

  LY294002 PI3K/AKTinhibitor Inhibits mouse MSC 
differentiation into 
adipocytes

[186,187]
  CHIR9902 GSK-3 inhibitor

  Troglitazone PPARγ agonist Induces human MSC 
differentiation into 
adipocytes

  SB431542 SMAD inhibitor Induces human MSC 
differentiation into 
neural-like cells

[188-190]
  LY94002 PI3K/AKT 

inhibitor

Table 1  Small molecules in stem cell fate and somatic cell 
reprogramming

ESC: Embryonic stem cell; HSC: Hematopoietic stem cell; MSC: Mesenchymal 
stem cell; MEK: Mitogen-activated protein kinase kinase; GSK-3: 
Glycogen synthase kinase 3; ROCK: Rho-associated protein kinase; TGF-β: 
Transforming growth factor beta; HDAC: Histone deacetylases; HMT: 
Histone methyltransferases; DNMT: DNA methyltransferases; AHR: 
Aryl hydrocarbon receptor; PG: Prostaglandins; PKC: Protein kinase C; 
RUNX2: Runt-related transcription factor 2; cAMP: Cyclic adenosine 
monophosphate; CREP: cAMP response element-binding protein; PI3K: 
Phosphoinositide 3 kinase; AKT: Protein Kinase B; PPARγ: Peroxisome 
proliferator-activated receptor gamma.
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Wnt signaling modulators promote cardiomyocyte gener-
ation in zebrafish embryos and murine ESCs[170], and the 
inhibition of  TGF-β receptor by SB431542 induces the 
endothelial cell differentiation of  human ESCs[171]. The 
inhibition of  SMAD signaling by noggin and SB431542 
directs the differentiation of  human ESCs to neural tis-
sues[172]. 

ESCs have the ability to propagate indefinitely and 
to differentiate into any cell type; however, ethical issues 
regarding the use of  ESCs still remain. Therefore, tissue-
specific adult stem cells and the ability to reprogram 
somatic cells have fascinated researchers[164,173]. Ever since 
Yamanaka demonstrated that Oct4, Sox2, Klf4, and c-Myc 
can convert mouse fibroblasts into induced pluripotent 
stem cells (iPSCs)[5], the study of  reprogramming has ac-
celerated with the use of  epigenetic process modulators, 
which target histone deacetylase (HDAC)[174,175], histone 
acetyltransferase (HMT)[176,177], and DNA methyltransfer-
ase (DNMT)[176,178]. Recently, a chemical cocktail including 
HDAC inhibitors and other kinase inhibitors enhanced 
the reprogramming efficiency of  human fibroblasts[175,179]. 

Hematopoietic stem cells (HSCs) are related to the 
hematopoietic lineage, and cell phenotypes include mac-
rophages, erythrocytes, dendritic cells, T-cells, B-cells,  
and NK-cells[180]. The fate of  HSCs is regulated by 
small molecules that promote self-renewal[181-183]. Using 
small molecules, multipotent MSCs can differentiate 
into various non-hematopoietic cells, such as chondro-
cytes[134,184], osteoblasts[185,186], hepatocytes[187], cardiomyo-
cytes[188,189], adipocytes[190,191] and neuronal-like cells[192-194]. 
Additionally, the maintenance of  MSCs is associated with 
the Wnt signaling pathway[195,196]. 

Although chemical approaches are a very young field 
in stem cell research, these small molecules exhibit a 
similar biological outcome to that achieved with the use 
of  miRNAs in stem cell fate regulation[35]. Recently, small 
molecules have been correlated with endogenous miRNA 
expression and function[197-202]. Therefore, identifying the 
relationship between miRNAs and small molecules could 
provide new insights for drug development for regen-
erative medicine and elucidate detailed mechanisms of  
miRNA expression and function in the control of  stem 
cell fate.

CONCLUSION AND FUTURE DIRECTIONS
Increasing evidence has demonstrated that miRNAs are 
promising regulators of  stem cell fate. The current strat-
egy in stem cell biology can elucidate the links between 
miRNAs and stem cell fate determination. Although 
miRNAs strictly regulate the multiple molecular signal-
ing pathways and transcription factors that control stem 
cell fate, some significant issues have not received ad-
equate attention. Current challenges focus on verifying 
the downstream targets of  miRNA; however, the study 
of  miRNA upstream targets is virtually nonexistent. In 
addition, the correlation between miRNAs is not well 
understood. Small molecules not only modulate stem cell 

fate but also regulate miRNA synthesis and the function 
of  transcription factors and miRNAs. The challenge of  
identifying the relationship between miRNAs and small 
molecules is still at an initial stage. Complementary to 
conventional and interdisciplinary strategies, including 
miRNAs and/or chemical manipulation techniques in the 
regulation of  stem cell self-renewal, tissue- or organ-spe-
cific differentiation, and iPSC generation provides a pow-
erful tool to identify the underlying cellular mechanisms 
of  stem cell biology and isolate the therapeutic agents 
required for clinical applications such as cell therapy and 
regenerative medicine.
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