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Abstract
Chronic inflammatory pain resulting from arthritis, 
nerve injury and tumor growth is a serious public health 
issue. One of the major challenges in chronic inflam-
matory pain research is to develop new pharmacologic 
treatments with long-term efficacy and few side effects. 
The mediators released from inflamed sites induce 
complex changes in peripheral and central processing 
by directly acting on transducer receptors located on 
primary sensory neurons to transmit pain signals or 
indirectly modulating pain signals by activating recep-
tors coupled with G-proteins and second messengers. 
High local proton concentration (acidosis) is thought 
to be a decisive factor in inflammatory pain and other 
mediators such as prostaglandin, bradykinin, and se-
rotonin enhance proton-induced pain. Proton-sensing 
ion channels [transient receptor potential V1 (TRPV1) 
and the acid-sensing ion channel (ASIC) family] are 
major receptors for direct excitation of nociceptive sen-
sory neurons in response to acidosis or inflammation. 

G-protein-coupled receptors activated by prostaglandin, 
bradykinin, serotonin, and proton modulate functions 
of TRPV1, ASICs or other ion channels, thus leading to 
inflammation- or acidosis-linked hyperalgesia. Although 
detailed mechanisms remain unsolved, clearly different 
types of pain or hyperalgesia could be due to complex 
interactions between a distinct subset of inflammatory 
mediator receptors expressed in a subset of nocicep-
tors. This review describes new directions for the de-
velopment of novel therapeutic treatments in pain. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Tissue acidosis that occurs during inflamma-
tion is central to the development and maintenance 
of chronic pain. Recent studies have revealed a vari-
ety of proton-sensing ion channels (e.g. , acid-sensing 
ion channels, transient receptor potential V1) and 
G-protein-coupled receptors (e.g. , G2 accumulation 2A, 
G-protein-coupled receptor 4, ovarian cancer G-protein-
coupled receptor, T-cell death-associated gene 8) 
responsible for acid-induced pain. These cell-surface 
membrane proteins are promising therapeutic targets 
for the development of new analgesic drugs for chronic 
inflammatory pain.
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INTRODUCTION 
Cancer, nerve injury, and arthritis often cause chronic 
inflammatory pain[1]. Chronic pain may have a profound 
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effect on a person’s life and society when not effectively 
treated. Although a variety of  pharmacologic treatments 
are available, they are limited by unacceptable side effects 
or short-term efficacy. The development of  long-acting 
pharmacologic therapies requires knowledge of  how 
chronic inflammatory pain signals are initially interpreted 
and subsequently transmitted and perpetuated. This re-
view focuses on recent findings from studies of  the mo-
lecular mechanisms of  inflammatory pain transmission 
and modulation, especially the roles of  mediator-gated 
ion channels and G-protein-coupled receptors (GPCRs). 

INFLAMMATORY PAIN
When our body senses noxious stimuli (such as a cut 
from a sharp knife, burn from an open flame, or contact 
with burning or erosive chemicals), the signal quickly ac-
tivates primary sensory afferents (nociceptors) and deliv-
ers a message to the brain to elicit the pain feeling. When 
stimuli are absent, the painful experience disappears. The 
situation is called acute pain because the pain signal is 
transient[2]. Noxious stimuli activate transducer receptors 
located on medium myelinated (Aδ) and small unmyelin-
ated (C) nociceptors to induce the receptor potential. The 
receptor potential activates a variety of  voltage-gated ion 
channels to transmit pain signals to secondary nociceptors 
in the dorsal horn of  the spinal cord, then to the brain[3]. 

If  the tissues are damaged mechanically or by patho-
gen infection, autoimmune disease, or tumor growth, 
the sites of  the damaged or infected tissues usually show 
inflammatory responses such as redness, swelling and heat 
accompanied by persistent pain; endogenous mediators 
released from the damaged or infected tissues increase 
the extravasation of  the vessels and attract the immune 
cells, including mast cells, macrophages, neutrophils, 
and platelets, to the injured site for the inflammatory 
response[1]. The “inflammatory soup” is rich in purines, 
amines, cytokines, protons, ions and growth factors. These 
mediators can directly activate the nociceptors, evoking 
pain or modulating the sensitivity of  the primary nocicep-
tors, thus causing a hyperreactive reaction to stimuli. As 
a result, normal stimuli such as a light touch or a brush 
are perceived as painful (allodynia), or normally painful 
stimuli cause pain of  greater intensity (hyperalgesia)[4]. In 
the periphery, inflammatory mediators bind to GPCRs 
to activate protein kinases A and C (PKA and PKC) to 
phosphorylate receptors or increase receptor expression, 
which enhances the sensitivity of  primary nociceptors, 
called peripheral sensitization. Primary nociceptor-driven 
transmitter release activates intracellular kinases to phos-
phorylate receptors. This situation leads to an immediate 
and activity-dependent increase in the excitability and re-
sponsiveness of  dorsal horn neurons, called central sensi-
tization. Central sensitization could be sustained for some 
time because of  transcriptional changes[2,4]. 

INFLAMMATORY MEDIATORS OF PAIN
The endogenous mediators, such as prostaglandin E2 

(PGE2), bradykinin (BK), serotonin [5-hydroxytrypta-
mine (5-HT)], proton, histamine, and ATP, are released 
from the damaged site of  the tissue and immune cells to 
induce inflammation and nociception[2]. These mediators 
act on transducer receptors situated on sensory neurons 
to induce complex changes in peripheral and central 
signal processing. Although some mediators can act di-
rectly on ion channels to induce receptor potential, for 
the most part these chemical interactions occur through 
the activation of  receptors coupled with G-proteins and 
second messengers, thus activating protein kinases. Such 
activated kinases phosphorylate ion channels to alter ion 
permeability or phosphorylate cellular proteins to in-
crease gene expression.

Earlier studies of  single mediators demonstrated that 
BK, PGE2, 5-HT, and proton have excitatory action on 
cutaneous nociceptors and induces transient pain[5-8]. 
More sustained effects are achieved only in a high-
concentration (10-5 mol/L) combination of  inflammatory 
mediators (BK, 5-HT, PGE2, and histamine)[9]. Steen et 
al[10] proposed that the combination of  inflammatory me-
diators plays a role in sensitizing the low pH effect. The 
acidosis in inflamed tissues is the decisive factor for ongo-
ing nociceptor excitation and sustained pain. However, the 
interaction between various mediators remains unclear.

TISSUE ACIDOSIS AND ACID-SENSING 
RECEPTORS 
Tissue acidosis is a common phenomenon found in in-
flammation (reduced to pH 5.4)[11], in lesions or incisions 
(reduced to pH 6.5)[12], in ischemic heart or muscle (pH 
5.7-7.0)[13,14], and even in malignant tumors (pH 5.8-7.4)[15]. 
High local proton concentrations in inflamed tissues can 
excite and sensitize rat skin nociceptors and can cause 
sustained pain in human skin[7,16,17]. As well, the combina-
tion of  inflammatory mediators (BK, 5-HT, PGE2, and 
histamine) in acid solution (pH 6.1) can excite and sensi-
tize rat skin nociceptors[18]. Injections of  the inflamma-
tory mediator combination in neutral solution in human 
skin induces dose-dependent, transient, burning pain, but 
the effects become more intense and prolonged when 
the mediator combination is in acidic solution[10]. Studies 
of  rat dorsal root ganglion (DRG) neurons revealed that 
acidic solutions induced a cation conductance in a subset 
of  neurons[19], and a proton-activated sustained current 
is potentiated more by the mediator combination than 
each mediator alone[20]. Proton-activated currents found 
in the sensory neurons are due to direct activation of  the 
non-selective cation channels and indirect modulation of  
ion channels[21]. Proton-gated ion channels and proton-
sensing GPCRs expressed on nociceptors are potential 
candidates responsible for acidosis-induced pain.

PROTON-GATED ION CHANNELS: ACID-
SENSING ION CHANNELS
Acid-sensing ion channels (ASICs), which belong to 
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the family of  degenerin/epithelial amiloride-sensitive 
Na+ channels, are voltage-insensitive cationic channels 
activated by extracellular protons[22-25]. The ASIC family, 
comprising ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, 
ASIC4 and ASIC5, is expressed in the peripheral and 
central nervous systems[26-28]. 

Among ASICs, ASIC3 is the most sensitive receptor 
to protons, with pH 0.5 for activation around 6.7, and is 
expressed in both small- and large-diameter DRG neu-
rons[29-31]. The expression of  ASIC3 in DRG is increased 
with hind paw inflammation in rats[32,33]. As well, ASIC3 
channel activity is enhanced by several components of  the 
inflammatory soup, such as BK, 5-HT, hypertonicity, ara-
chidonic acid, and nitric oxide[34-38]. Thus, ASIC3 is consid-
ered a sensor of  acidic and primary inflammatory pain[34]. 
Study of  skin nerves revealed that loss of  ASIC3 increases 
the sensitivity of  mechanoreceptors to light touch but de-
creases that of  mechanoreceptors to a noxious pinch[39,40]. 
Surprisingly, mice lacking the ASIC3 gene still respond to 
acid stimuli and have acid-induced pain or primary inflam-
matory pain[39,41-43]. However, inhibiting ASIC3 function 
with a specific peptide or small interfering RNA signifi-
cantly reduces cutaneous acidic pain under normal or in-
flammatory conditions and postoperative pain[34,44]. 

Given that ASIC3 is predominantly expressed in mus-
cle nociceptors rather than in cutaneous nociceptors[45], 
ASIC3 should be required for development of  secondary 
mechanical hyperalgesia induced by acid injection in skel-
etal muscle or by muscle inflammation[46-48]. Although the 
ASIC3 requirement for development and maintenance of  
muscle inflammatory pain is argued, selective microRNA-
targeted ASIC3 inhibits primary and secondary hyperal-
gesia induced by muscle inflammation[49]. Interestingly, a 
recent study by Lin et al[50] suggested that ASIC3-mediated 
muscle pain is negatively modulated by substance P via 
regulation of  the M channel in a G-protein-independent 
pathway.

ASIC1a is predominantly expressed in small-diameter 
DRG neurons[23,51] and is less sensitive than ASIC3 
with pH 0.5 for activation around 6.5[29,30]. Mice lacking 
ASIC1a show normal mechanical sensitivity in cutaneous 
afferents but enhanced mechanically evoked firing rate in 
gastrointestinal afferents[52,53]. In contrast to the ASIC3 
role in secondary hyperalgesia, ASIC1a-deficient mice 
do not develop primary hyperalgesia induced by muscle 
inflammation, so ASIC1a and ASIC3 may play distinct 
roles in the development and maintenance of  hyperalge-
sia, respectively[43]. Downregulation of  ASIC1a expres-
sion in spinal dorsal horn neurons by using selective 
inhibitor or antisense oligonucleotides reduces complete 
Freund’s adjuvant (CFA)-induced thermal and mechanical 
hypersensitivity, which suggests that ASIC1a contributes 
to central sensitization in inflammatory pain[54]. A recent 
study provides a new view for ASIC1a and ASIC3 roles 
in inflammatory pain in that acidosis may induce endo-
cytosis and maturation of  macrophages through ASIC1a 
and ASIC3[55]. Mice lacking ASIC1a, ASIC2 and ASIC3 
genes lost acid-induced transient currents, but their be-

havioral sensitivity to mechanical stimuli was increased, 
so ASICs indeed contribute cutaneous mechanosensation 
but in complex behavioral changes[56]. 

PROTON-GATED ION CHANNELS: TRPV1 
Transient receptor potential/vanilloid receptor subtype 
1 (TRPV1/VR1) is a 6-transmembrane domain, non-
selective cation channel and activated by vanilloid, heat, 
capsaicin, and proton[57,58]. TRPV1 is predominantly 
expressed in small-diameter DRG neurons in rats and 
mice[57]. Disruption of  the TRPV1 gene in mice reduces 
responses of  DRG neurons to acid and thermal stimuli 
and eliminates carrageenan-induced thermal hyperalge-
sia, so TRPV1 may be involved in acid-induced pain and 
inflammation-induced thermal hyperalgesia[59,60]. How-
ever, surprisingly, blockage of  the TRPV1 function in 
peripheral or spinal loci by selective antagonists inhibits 
mechanical hyperalgesia induced by CFA, capsaicin, or 
bone cancer[61-64]. Although TRPV1 participates in both 
mechanical allodynia and thermal hyperalgesia induced by 
cutaneous inflammation, it does no participate in muscle 
inflammation[65]. TRPV1 mediates the development of  
heat but not mechanical hypersensitivity after muscle in-
flammation[66]. With peripheral inflammation, the mRNA 
TRPV1 expression is increased and the channel func-
tion enhanced in DRG neurons[67-69]. Interestingly, DRG 
neurons with increased TRPV1 expression and func-
tion are mainly non-peptidergic rather than peptidergic 
neurons[69]. Since most non-peptidergic neurons project 
to skin targets, TRPV1 would mainly participate in cu-
taneous inflammatory pain[70,71]. Okun et al[72] suggested 
that CFA-induced ongoing pain is transient and depends 
on TRPV1-positive afferents but cannot be blocked 
by TRPV1 antagonism. TRPV1 may be responsive to 
noxious stimuli while nociceptors are sensitized (inflam-
mation). Its function could be sensitized by inflamma-
tory mediators such as BK[73,74], chemokines (CCL3)[75], 
5-HT[76], PGE2

[77,78], proton[79] or by protease-activated 
receptor 2[80,81]. A recent study suggested that TRPV1 and 
TRPA1 are involved in the transition of  acute to chronic 
pain in a chronic pancreatitis model[82]. 

PROTON-SENSING G-PROTEIN-COUPLED 
RECEPTORS: OGR1 FAMILY
In 2003, Ludwig et al[83] found two GPCRs, ovarian can-
cer GPR 1 (OGR1) and G protein-coupled receptor 4 
(GPR4), fully responsive to protons at pH 6.8 and stimu-
lating inositol triphosphate and cAMP formation, respec-
tively. Later, the 2 other family members, G2 accumula-
tion (G2A) and T-cell death-associated gene 8 (TDAG8) 
were identified as proton receptors, with full activation at 
pH 6.4-6.8[84-86]. OGR1, GPR4, and G2A were previously 
identified as receptors for sphingosylphosphorylcholine 
(SPC) or lysophosphatidylcholine (LPC), but the origi-
nal publications have now been retracted[87-89]. Whether 
OGR1, GPR4, and G2A are SPC or LPC receptors 
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lets, mast cells, and endothelial cells into the inflamed 
site is pro-inflammatory and pro-nociceptive, exciting 
nociceptive afferents and inducing hyperalgesia[9,103-106]. 
In central loci, the descending pathway on serotonergic 
neurons from the rostral ventromedial medulla to the 
spinal cord has facilitatory or inhibitory effects on DRG 
neurons depending on the activation of  5-HT receptor 
subtypes[107]. Seven subgroups of  serotonin receptors 
(5-HT1-7) have been identified, and some subtypes have 
more than one receptor (e.g., 5-HT1 has 5-HT1A, 5-HT1B, 
5-HT1D, 5-HT1E, and 5-HT1F; and 5-HT2 has 5-HT2A, 
5-HT2B, and 5-HT2C)[108]. Although Sufka et al[103] (1992) 
suggested that all of  the 5-HT1A, 5-HT2A, and 5-HT3 sub-
types participate in 5-HT-induced pain, the presence of  
multiple 5-HT receptors on afferent nociceptors reflects 
distinct pain models or mechanisms. 

Taiwo et al[104] reported that only the 5-HT1A agonist 
mimics the 5-HT effect to induce hyperalgesia and 5-HT1A 
antagonists block mechanical hyperalgesia induced by 
5-HT. Nevertheless, Kayser et al[109] suggested that mice 
lacking 5-HT1A show increased sensitivity to noxious 
heat but not mechanical pain stimuli. The other study 
of  formalin testing also suggested that 5-HT1A mediates 
antinociception[110]. In addition to 5-HT1A, the receptors 
5-HT1B, 5-HT1D and 5-HT1F also have anti-nociceptive ef-
fects in heat-evoked or formalin-induced nociceptive re-
sponses[109,110]. Later, 5-HT2B/2C but not 5-HT1A was found 
to mediate 5-HT-induced mechanical hyperalgesia[111]. 
Spinal and peripheral injection of  a specific antagonist 
(RS127445) of  5-HT2B reduced formalin-induced flinch-
ing behavior, which suggests that 5-HT2B has a pro-noci-
ceptive role in peripheral as well as spinal loci[112]. Howev-
er, Urtikova et al[113] suggested that blockage of  peripheral 
or spinal 5-HT2B by a specific antagonist (RS127445) 
could enhance hyperalgesia induced by chronic constric-
tion nerve injury. 5-HT2B may have distinct roles in differ-
ent pain models.

Ionotropic 5-HT3 is directly responsible for inflam-
matory pain[109,114,115]. Lack of  the 5-HT3 gene in mice or 
blocking with the 5-HT3 antagonist granisetron elicited 
normal acute pain responses but reduced persistent pain 
responses[109,115]. Giordano et al[116] showed that 5-HT3 
contributes to chemical but not thermal and mechanical 
nociceptive pain. 5-HT2A potentiates the effects of  other 
inflammatory mediators[117]. In the study by Tokunaga et 
al[118], only the 5-HT2A agonist but not 5-HT1A and 5-HT3A 
agonists mimicked 5-HT-induced thermal hyperalgesia, 
which was blocked by the 5-HT2A antagonist ketanserin. 
However, Loyd et al[119] suggested that both 5-HT-induced 
and 5-HT-enhanced capsaicin-evoked thermal hyperalge-
sia require 5-HT2A and 5-HT3. Likely, 5-HT2A potentiates 
5-HT3-mediated nociceptive responses to thermal stimuli. 
Recent studies show that 5-HT2A has a pronociceptive 
role in spinal nociceptive transmission and seems to be 
involved in both mechanical and thermal hyperalgesia in 
the spinal nerve ligation model[120,121]. 

In addition, 5-HT4 enhances the inflammatory pain 
signal[122]. 5-HT7 inhibits capsaicin-induced mechanical 

remains unclear. In addition to responding to protons, 
TDAG8 also responds to psychosine[85,89]. Although G2A 
was considered a proton-sensing receptor, Radu et al[90] 
suggested that G2A is less likely to be a pH sensor be-
cause it does not generate a significant response after acid 
stimulation. G2A shows conservation of  only 1 of  5 crit-
ical histidine residues that are involved in pH-sensing of  
OGR1, so G2A may be less sensitive to protons[83]. Later, 
Obinata et al[91] found that G2A can respond to oxidized 
free fatty acid (9-hydroxyoctadecadienoic acid, 9-HODE). 
Recent studies with gene-knockout techniques have re-
vealed the absence of  some but not all pH-induced cel-
lular effects in OGR1-, TDAG8- or GPR4-deficient mice 
or cells, so OGR1 family members are indeed involved in 
proton sensing, and the pH-dependent activities could be 
highly cell-type- or signaling-pathway-specific[90,92-94]. In-
terestingly, mice lacking G2A show some deficiencies in 
LPC- or acid-related cellular effects[90,95-97]. Whether G2A 
is a proton, LPC or fatty acid receptor remains debated.

Proton-sensing GPCRs are widely expressed in non-
neuronal and neuronal tissues[98]. Approximately 75% 
to 82% of  OGR1 family members are found in small-
diameter DRG neurons responsible for nociception and 
61% to 74% are present in isolectin B(4) (IB4)-positive 
neurons, so they may be involved in chronic pain[79,98]. 
Indeed, one of  the members, TDAG8, showed increased 
expression after CFA-induced inflammation, and its 
activation sensitizes TRPV1 function[79]. TDAG8 is in-
volved in CFA-induced inflammatory pain by modulating 
TRPV1 function. Later, knockdown of  spinal TDAG8 
expression was found to reduce bone cancer pain[99]. 
Thus, TDAG8 could have pro-nociceptive roles in the 
peripheral and central nervous system. Although a recent 
study suggested that TDAG8 is a negative regulator in in-
flammation because of  exacerbation of  arthritis induced 
by anti-type Ⅱ collagen antibody in TDAG8-deficient 
mice, whether TDAG8 has an anti-nociceptive role in in-
flammatory pain remains unclear[100]. 

In endothelial cells, G2A expression blocks NF-κB 
activation and chemokine expression, thus inhibiting 
macrophage accumulation, which suggests that G2A 
expression may have a protective role in preventing early 
events of  inflammation[96]. This situation could explain 
why G2A expression is downregulated in capsaicin- and 
CFA-induced inflammatory pain, so G2A could have an 
anti-nociceptive role in inflammatory pain[79]. GPR4 is 
present in endothelial cells of  blood vessels, and mice 
lacking GPR4 show vascular abnormalities, which sug-
gests that GPR4 has a role in vascular growth and vascu-
lar stability[93]. Vascular stability is important for leukocyte 
adhesion and function[101]. GPR4 antagonism attenuates 
acidosis-induced inflammation and modulate a wide 
range of  inflammatory genes in endothelial cells[102].

SEROTONIN AND SEROTONIN 
RECEPTORS
In the periphery, serotonin (5-HT) released from plate-
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sensitivity[123]. Intrathecal injection of  5-HT2A, 5-HT3 and 
5-HT4 antagonists significantly reduced spinal cord stim-
ulation-induced long-lasting pain in rat models, with no 
effect by administration of  5-HT1,6,7 antagonists[124]. 5-HT2 
and 5-HT7 are major receptors to potentiate TRPV1 
function in inflammatory pain[76].

PROSTAGLANDIN E2
Prostaglandin E2 (PGE2), derived from an arachidonic 
acid by the cyclooxygenase (COX) pathway, is released 
from damaged cells and contributes to inflammatory 
pain[125]. Non-steroidal anti-inflammatory drugs are the 
commonly used analgesics that reduce prostaglandin 
synthesis by inhibiting COX-1 and COX-2[126]. Four sub-
types of  PGE2 receptors (EP1, EP2, EP3 and EP4) belong 
to GPCRs[125,127]. The roles of  PGE2 receptor subtypes 
in pain are undefined because of  inconsistent results 
from studies involving gene targeting techniques, but are 
better resolved in combined studies with pharmacologi-
cal approaches[126]. PGE2-induced thermal hyperalgesia 
is mediated by EP1 predominantly through a PKC-
dependent pathway and is due to potentiation or sensi-
tization of  TRPV1[77]. Wang and colleagues showed that 
PGE2-induced pain is mediated by EP3 though PKA and 
Epac/PKC pathways to sensitize purinergic P2X3 recep-
tors[78,128]. Several lines of  evidence also support the roles 
of  PGE2 in modulating pain transduction. PGE2 potenti-
ates the TRPV1 function in response to capsaicin[78]. Re-
peated administration of  PGE2 sensitizes T-type calcium 
channels, thus resulting in mechanical hyperalgesia[129]. 
PGE2 potentiates the voltage-gated tetrodotoxin-resistant 
sodium channels (Nav1.5, Nav1.8 and Nav1.9) by a cAMP-
PKA signaling pathway[130,131]. 

TRANSITION FROM ACUTE TO CHRONIC 
PAIN
The possible mechanisms of  chronic inflammatory pain 
could be that continuous sensitization induced by inflam-
matory mediators in primary afferent nociceptors results 
in persistent and long-lasting pain or neuroplastic changes 
in primary afferent nociceptors after initiating insults lead 
to enhanced and prolonged sensitization of  nociceptors 
even with low-level exposure of  pro-nociceptive inflam-
matory mediators. The mechanisms of  chronic pain and 
the regulation of  the transition from short-term to long-
lasting pain have become clearer from studies with the 
PGE2 priming model.

Administration of  PGE2 in rat induces short-term 
hyperalgesia that depends on PKA activity[132]. With car-
rageenan pre-injection, rats display long-lasting hyper-
algesia induced by PGE2, and the prolonged effect can 
be inhibited by PKCε blocker or attenuated by antisense 
oligonucleotides for PKCε[133,134]. Therefore, PKCε may 
be necessary to maintain hyperalgesic priming. Indeed, 
a highly selective PKC agonist can induce hyperalgesic 
priming in rat[134]. In contrast, the study by Ferrari et 

al[135] proposed that a transient decrease in GRK2 levels 
leads to increased nociceptor response to inflammatory 
mediators, and the reduced GRK2 levels are PKA- but 
not PKC-dependent. Ferrari et al[136] later proposed that 
the prolongation of  PGE2-induced hyperalgesia is me-
diated by an autocrine mechanism. PGE2 activates EP 
receptors followed by cAMP production, which in turn 
activates PKA and induces hyperalgesia. The increase 
in intracellular cAMP level triggers the transporter to 
transport cAMP outside the cell. The extracellular cAMP 
is metabolized to AMP and adenosine, thus activating 
the Gi-coupled A1 adenosine receptor. The Gi pathway 
stimulates PKCε, which is responsible for the late phase 
of  PGE2-induced hyperalgesia, although evidence has 
shown that after injury, the inflammatory mediators may 
release and reach the effective concentration in a differ-
ent time course. Each mediator activates its own receptor 
subtypes, thus contributing to the development of  hyper-
algesia. However, which receptor is the major receptor 
causing the acute to chronic pain remains unclear. 

ESTABLISHMENT AND MAINTENANCE 
OF CHRONIC PAIN: THE ROLE OF AN 
EXCITATORY AMINO ACID IN CENTRAL 
SENSITIZATION
The establishment and maintenance of  chronic pain is 
not simply a reflection of  peripheral inputs or abnormal-
ity but is also a dynamic reflection of  central neuronal 
plasticity. Once the central sensitization occurs, painful 
sensations are generated even in the absence of  the nox-
ious stimulus[137]. Several lines of  evidence implicate the 
contribution of  excitatory amino acids in neuroplasticity 
and central sensitization in the spinal cord. Noxious stim-
ulation or peripheral inflammation causes the release of  
an excitatory amino acid, glutamate, in the spinal dorsal 
horn[138,139]. Dorsal horn neurons that are sensitized with 
peripheral inflammation show increased responsiveness 
to the iontophoretic application of  the excitatory amino 
acid[139,140], and such responsiveness or sensitization is 
reduced after the administration of  glutamate receptor 
antagonists[141,142].

Glutamate receptors include ionotropic amino-
3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), 
N-methyl-D-aspartate (NMDA), kainate receptors and 
metabotropic G-protein-coupled glutamate receptors 
(mGluRs). The contribution of  ionotropic glutamate 
receptors to the central sensitization are considered the 
ability of  AMPA and NMDA receptor antagonists to 
reduce the responsiveness of  dorsal horn neurons and 
in producing analgesic effects[142]. Intrathecal injection of  
NMDA leads to hyperalgesia, which can be reversed by 
application of  an NMDA antagonist[143]. The NMDA an-
tagonist MK-801 reduces the hyperalgesia that develops 
in rats with adjuvant-induced inflammation[144] or reduces 
the inflammation-induced expansion of  the receptive 
field of  spinal nociceptive neurons[145]. 
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Peripheral inflammation elevates levels of  phosphory-
lated NMDA receptors in the spinal dorsal horn[146,147]. 
The sustained release of  the neuropeptides (such as sub-
stance P and CGRP) and glutamate causes PKC activa-
tion and Ca2+ influxes through NMDA receptors. With 
Ca2+ influx, several intracellular signal pathways, including 
the phospholipase C-PKC pathway, phosphotidylinositol-
3-kinase (PI3K) pathway, and mitogen-activated protein 
kinase (MAPK) pathway, are activated. Activated intracel-
lular signaling pathways result in phosphorylation of  spi-
nal NMDA receptors, enhancing Ca2+ currents at NMDA 
receptors. Activated intracellular signaling pathways also 
phosphorylate AMPA receptors, thus increasing the 
density of  AMPA receptors on the membrane[148]. These 
mechanisms create a positive feedback loop for glutamate 
transmission and alter the neuronal plasticity in the dorsal 
horn. In the formalin-induced inflammatory pain model, 
intrathecal injection of  the MEK inhibitor PD98059 can 
reduce the second phase of  the licking/lifting behavior 
and attenuate extracellular signal-regulated kinase activ-
ity, so some intracellular signaling pathways may also be 
involved in central sensitization[149].

CONCLUSION
At the inflamed site of  the tissue, endogenous mediators 
(5-HT, PGE2, BK, and proton) are released from dam-
aged cells and accumulate. Nociceptors innervating the 
skin, muscle and organs detect the noxious stimuli and 
express one or more cell-surface receptors to respond 
to these inflammatory mediators. The mediators can di-
rectly or indirectly alter the sensitivity of  the receptors on 
nociceptors. ASIC3, ASIC1a and TRPV1 seem to be im-
portant transducer receptors contributing to hyperalgesia 
induced by inflammation. ASIC1a participates in primary 
mechanical hyperalgesia induced by muscle inflammation, 
but ASIC3 may have a predominant role in secondary 
mechanical hyperalgesia. TRPV1 could be responsible for 
mechanical and thermal hyperalgesia induced by cutane-
ous inflammation. Inflammatory mediators such as 5-HT, 
PGE2, BK, and proton sensitize TRPV1 or ASIC3 to 
prolong the hyperalgesia. PGE2 acts on EP1 to sensitize 
TRPV1 or on EP3 to sensitize P2X3. Proton and BK 
sensitize TRPV1 though TDAG8 and B2, respectively. 
5-HT potentiates TRPV1 function, possibly through 
5-HT2 and 5-HT7. Although each mediator receptor has 
its own dominant second-messenger signaling cascade, 
each could also be coupled in part to other second-mes-
senger pathways. For short-term hyperalgesia, the cAMP-
PKA pathway is dominant, but prolonged hyperalgesia is 
regulated by PKCε-dependent or -independent pathway. 

The signal of  a stimulus is triggered by a peripheral 
nociceptor, followed by conduction to central neurons. 
In acute pain, the signal is mediated by glutamate acting 
on AMPA and kainate subtypes of  ionotropic glutamate 
receptors of  postsynaptic neurons and generating the ex-
citatory postsynaptic potential. If  the signal is generated 
by intense or persistent noxious stimuli, the depolariza-
tion of  the postsynaptic neurons will activate NMDA re-

ceptors. NMDA receptor activation induces Ca2+ influx, 
which activates intracellular signaling pathways to further 
enhance Ca2+ influx through NMDA receptors. NMDA 
receptors can also be modulated by GPCRs such as NK1, 
EP or mGlu receptors that are also expressed on the su-
perficial dorsal horn of  nociceptor terminals[150]. All these 
NMDA-receptor-mediated mechanisms contribute to 
central sensitization, which is important for establishing 
and maintaining chronic pain[151].
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