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Abstract
Pluripotent stem cells, which are capable of differenti-
ating in various species of cells, are hoped to be donor 
cells in transplantation in regenerative medicine. Em-
bryonic stem (ES) cells and induced pluripotent stem 
cells have the potential to differentiate in approximately 
all species of cells. However, the proliferating ability of 
these cells is high and the cancer formation ability is 
also recognized. In addition, ethical problems exist in 
using ES cells. Somatic stem cells with the ability to dif-
ferentiate in various species of cells have been used as 
donor cells for neuronal diseases, such as amyotrophic 
lateral sclerosis, spinal cord injury, Alzheimer disease, 
cerebral infarction and congenital neuronal diseases. 
Human mesenchymal stem cells derived from bone 
marrow, adipose tissue, dermal tissue, umbilical cord 
blood and placenta are usually used for intractable 
neuronal diseases as somatic stem cells, while neural 
progenitor/stem cells and retinal progenitor/stem cells 
are used for a few congenital neuronal diseases and 
retinal degenerative disease, respectively. However, 
non-treated somatic stem cells seldom differentiate to 
neural cells in recipient neural tissue. Therefore, the 
contribution to neuronal regeneration using non-treated 
somatic stem cells has been poor and various differen-
tial trials, such as the addition of neurotrophic factors, 
gene transfer, peptide transfer for neuronal differentia-
tion of somatic stem cells, have been performed. Here, 
the recent progress of regenerative therapies using 

various somatic stem cells is described.
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Core tip: Pluripotent stem cells, which are capable of 
differentiating in various species of cells, are hoped to 
be donor cells in transplantation in regenerative medi-
cine. Somatic stem cells with the ability to differentiate 
in various species of cells have been used as donor 
cells for neuronal diseases, such as spinal cord injury, 
cerebral infarction, amyotrophic lateral sclerosis, Par-
kinson’s disease and multiple sclerosis. Here, the recent 
progress of regenerative therapies using various so-
matic stem cells is described.
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INTRODUCTION
Pluripotent stem cells, which are capable of  differentiat-
ing in various species of  cells, are hoped to be donor 
cells in transplantation in regenerative medicine. Human 
embryonic stem (ES) cells[1] and induced pluripotent (iPS) 
cells[2] have the potential to differentiate in approximately 
all species of  cells. However, the proliferating ability of  
these cells is high and the cancer formation ability is also 
recognized[2,3]. Ethical problems exist in using ES cells[4], 
while iPS cells produced from the patients themselves 
have little ethical problems. Gene transfer, particularly 
oncogene transfer, is associated with DNA change and 
cancer formation[2]. Omission of  oncogene c-Myc from 
the defined four factors was tried and the cancer for-
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mation rate decreased[5]. In addition, no integration of  
defined factors into the genome was tried and brought 
good results[6]. However, cancer formation problems 
remain completely unsolved. It is probable that somatic 
stem cells reside in all organ tissues. In addition, truly 
pluripotent somatic stem cells, such as multilineage-
differentiating stress enduring (MUSE) cells, are also 
probably harbored in all organ tissues[7,8]. However, it has 
been reported that the capability of  neuronal differentia-
tion is recognized in only mesenchymal or ectodermal 
stem cells[9,10]. Mesenchymal stem cells include bone mar-
row mesenchymal stem cells[11], adipose-derived mesen-
chymal stem cells[12], skin-derived precursors[13], umbilical 
cord blood-derived mesenchymal stem cells[14], placenta-
derived mesenchymal stem cells, peripheral blood mono-
cytes and MUSE cells[7], while ectodermal stem cells 
include hair follicle stem cells[15], dental pulp-derived stem 
cells[16], retinal progenitor/stem cells and neural progeni-
tor/stem cells[17] (Figure 1). Although recent clinical trials 
of  regenerative therapy for neuronal disease with trans-
plantation of  somatic stem cells has been performed with 
neural stem cells[18,19], bone marrow mesenchymal stem 
cells[20-25] and adipose mesenchymal stem cells[26], most of  
them stay at the level of  confirmation of  safety, but the 
efficacy of  the therapies has not been shown (Table 1). 
On the other hand, numerous studies of  transplantation 
of  somatic stem cells using neuronal disease models have 
been reported and most studies have confirmed it to be 
efficient for the repair of  neuronal diseases[27-34]. Ectoder-
mal stem cells and mesodermal (mesenchymal) stem cells 

potentially differentiate to neurons, while it seems that 
endodermal stem cells do not differentiate to neurons 
without dedifferentiation or induction to iPS cells. Being 
different from iPS cells, these stem cells do not basically 
transform or dedifferentiate to cancer cells. The clinical 
application of  somatic stem cells has a greater advantage 
than iPS cells. The regenerative effect of  transplantation 
of  somatic stem cells is considered to be mostly derived 
from trophic factors secreted from somatic stem cells. 
It is reported that the transplantation effect of  adipose-
derived stem cells is greater than bone marrow mesen-
chymal stem cells because the former cells secrete more 
vascular endothelial growth factor (VEGF) or hepato-
cyte growth factor (HGF) than the latter[35]. To survive 
as functional cells appropriate in the niche, it is neces-
sary that transplanted cells differentiate to appropriate 
cells or somatic stem cells differentiate to appropriately 
functional cells before transplantation[36]. Naïve somatic 
stem cells scarcely differentiate to appropriate cells in the 
niche. Therefore, for example, it is necessary that trans-
planted somatic neuronal cells in the nervous system are 
differentiated to neuronal cells. Here, I describe regenera-
tive therapy for neuronal diseases with transplantation of  
somatic stem cells. 

NEURAL STEM /PROGENITOR CELLS
It is difficult to obtain human neural stem/progenitor 
cells but they are easily obtained from human fetal brains 
without ethical problems. The use of  these human cells is 
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Figure 1  Somatic stem cells capable of neuronal differentiation. These cells are classified into two groups, ectodermal stem cells and mesenchymal stem cells. 
Ectodermal stem cells include hair follicle stem cells, dental pulp stem cells, neural stem cells and retinal stem cells, while mesenchymal stem cells include bone 
marrow mesenchymal stem cells, peripheral blood monocytes, skin-derived precursors, umbilical cord blood mesenchymal stem cells, adipose-derived mesenchymal 
stem cells, placenta-derived mesenchymal stem cells and Muse cells. These cells are candidates for donor cells for cell transplantation therapy for intractable neuro-
nal diseases. 



accompanied with a great ethical problem[37,38]. Previously, 
tissues of  striatum and substantia nigra richly containing 
dopaminergic neurons were obtained from human fetal 
brain and were implanted into the striatum of  Parkinson’
s disease patients. As a result, symptoms of  a part of  
Parkinson’s patients dramatically improved[39,40]. However, 
these clinical trials were stopped due to the difficulty of  
obtaining fetal brain tissue and a great ethical problem 
in using an abortion fetus. Neural stem cells reside in the 
subventricular zone and hippocampus. It is more difficult 
to obtain autologous cells from the brain. Therefore, 
transplantation of  autologous neural stem cells has not 
been tried for neuronal regeneration. In addition, few 
clinical applications of  allogenic transplantation of  hu-
man neural stem cells have been performed[41,42]. 

In place of  transplantation of  human neural stem 
cells, activation of  endogenous neural stem cells using 
fibroblast growth factor 2 (FGF-2), epidermal growth fac-
tor (EGF), erythropoietin and brain derived neurotrophic 
factor have been investigated[41,42]. Murine or rodent neural 
stem/progenitor cells are frequently used for regenerative 
research. Transplantations of  neural stem/progenitor cells 
have been used for a Parkinson’s disease model[36], cerebral 
infarction model[43], spinal cord injury model[27], retinal 
disease model[44] and so on. However, transplantation of  
neural stem/progenitor cells without treatment is not use-
ful for regeneration of  neural tissue because non-treated 
neural stem/progenitor cells cannot survive in the recipi-
ent’s neural tissue and in addition cannot differentiate to a 
neuron[36]. Before transplantation, treatment of  neuronal 
differentiation is effective for survival as a neuron. The 
addition of  neurotrophic factors such as FGF8, sonic 
hedgehog and glial cell line-derived neurotrophic fac-
tor leads to neuronal differentiation[45]. In addition, gene 
transfer to cells is useful for neuronal differentiation in 
neural stem/progenitor cells. Gene transfers of  Math-1[46], 
Ascl-1[47], Nurr-1[48] and von Hippel-Lindau (VHL)[49] 
show neuronal differentiation in neural stem/progenitor 
cells. Neuronal differentiation of  intracellular transfer of  
protein or peptide is also reported. Intracellular transfer 
of  VHL peptide, consisting of  an amino-acid sequence 
of  binding sites to elongin C, is useful for neuronal dif-
ferentiation in neural progenitor cells (Figure 2). VHL 

peptide linked with protein transduction domain peptide 
shows high efficacy and rapid intracellular transduction. 
Transplantation of  VHL peptide-treated neural stem cells 
promoted recovery in injured rat spinal cord[27]. Clinical 
applications using human allogenic neural stem cells have 
been tried for neuronal ceroid lipofuscinosis[41] and Pel-
izaeus-Merzbacher disease, both of  which are hereditary 
intractable neuronal diseases[42] (Table 1)..

RETINAL PROGENITOR /STEM CELLS
Recently, retinal progenitor/stem cells (RSCs) have been 
identified in not only embryonic and newborn retina 
but also in adult ciliary epithelium (CE) of  rodents and 
humans[50-54]. Their niche has been suggested to be in the 
pigmented or nonpigmented epithelial layer of  the cili-
ary margin at the peripheral edge of  the retina. Since the 
majority of  the differentiated cells were photoreceptor 
cells[54], transplantation of  RSCs has shown their poten-
tial as tools for cell replacement in retinal degenerative 
diseases. 

BONE MARROW MESENCHYMAL STEM 
CELLS 
Bone marrow mesenchymal stem cells are also called 
bone marrow stromal cells and have been reported to 
be able to differentiate cells of  bone, cartilage, adipose 
tissue, liver and neural tissue[55]. Transplantation of  the 
bone marrow mesenchymal cells has been applied for 
cerebral infarction[56,57]. These cells are transplanted via 
intravenous transfusion and a part of  them have been 
demonstrated to penetrate the blood brain barrier (BBB), 
but these penetrated cells scarcely survive and function as 
neurons in the brain[56,58]. Even if  these cells do not dif-
ferentiate to neural cells in the brain, these cells secrete 
neurotrophic factors which may have effects on neural 
tissue repair[58]. When the bone marrow stromal cells are 
transferred with the gene of  Notch intracellular domain 
and neurotrophic factors were added, these cells mostly 
differentiated to neurons[55]. Clinical application with 
transplantation of  bone marrow mesenchymal stem cells 
to neuronal degenerative disease patients of  Alzheimer 
disease[57], Parkinson’s disease[20,59,60], amyotrophic lateral 
sclerosis[61-71] and multiple sclerosis[21,22] have been tried, 
but those effects have not been fully established. Those 
induced neurons are transplanted to cerebral infarction 
model rats into the brain and the major part of  the trans-
planted cells differentiated to neurons and the symptoms 
of  the model rats improved[72]. VHL peptide-transferred 
bone marrow stromal cells partially differentiate to 
neurons and transplantation of  those induced neurons 
improved the behavior of  the spinal cord injury rats[28]. 
Human autologous bone marrow-derived mesenchymal 
stem cells have been transfused to brain ischemic disease 
patients[73,74]. The results of  the clinical trials appear to be 
feasible and safe and occasionally an improving effect is 
observed. Several human clinical applications for spinal 
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Table 1  Clinical applications of somatic stem cells in the 
treatment of neuronal diseases

Kind of cell Disease Ref. 

Neural stem cell Pelizaeus-Merzbacher disease [19]
Neuronal 

ceroid lipofuscinosis
[18]

Bone marrow 
mesenchymal stem cell

Alzheimer’s disease [58]
Parkinson’s disease [20,59,60]

Amyotrophic lateral sclerosis [61-71]
Multiple sclerosis [21,22]

Cerebral infarction [57,73,74]
Spinal cord injury [23-25,77,78]

Adipose mesenchymal 
stem cell

Parry-Romberg syndrome [26]
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cord injury with transplantation of  bone marrow mesen-
chymal stem cells have been reported[23-25,72-78] (Table 1). 
Among them, improvement of  motor function and elec-
trophysiological findings have been recognized[25].　

SKIN-DERIVED PRECURSORS AND HAIR 
FOLLICLE STEM CELLS
Skin-derived precursors (SKPs), which are also called 
dermal papilla stem cells, are reported to differentiate 
into various types of  cells, including neuronal cells[79-81]. 
Although these cells are considered to originate from 
mesenchymal tissue in dermis, they differentiate to not 
only mesenchymal-derived cells, such as smooth muscle 
cells and adipose cells, but also epithelial lineage cells, 
such as neurons, glia and keratinocytes. In addition, 
nestin-expressing hair follicle stem cells residing at the 
hair follicle bulge region in mice and at the outer root 
sheath of  hair follicle beneath sebaceous glands in hu-
mans are reported to differentiate to epithelial lineage 
cells, including neuronal cells[82,83], and they are also called 
neural crest stem cells [84]. These cells might contribute to 
neuronal regenerative therapy, repairing not only periph-
eral nerves but also the central nervous system, including 
brain and spinal cord[85,86] (Figure 2). It is reported that 
VHL peptide-transferred rodent SKPs were transplanted 
into cerebrum in Parkinson’s disease rat models and they 
differentiated to dopaminergic neurons in the cerebrum 
with improvement of  their symptoms[29,30]. This report 
suggested that SKPs are hopeful sources of  donor cells 
to transplant into the nervous system for neuronal regen-
erative therapy. 

ADIPOSE TISSUE-DERIVED 
MESENCHYMAL STEM CELLS
Adipose tissue-derived mesenchymal stem cells are simi-
lar to bone marrow-derived mesenchymal stem cells. 

These cells differentiate to various types of  cells, derived 
from not only mesenchymal organs but also epithelial 
and endogenous organs. Recently, directed differentia-
tion of  motor neuron cell-like cells from human adipose-
derived stem cells was induced with retinoic acid and 
sonic hedgehog[87,88], and the potential application for 
Huntington’s disease or intracerebral hemorrhage is 
promising[89,90]. The application to animal models and 
also the human clinical application have been tried us-
ing those cells, but their human clinical application is still 
limited[91]. It is reported that adipose-tissue derived mes-
enchymal stem cells secret trophic factors, such as VEGF 
and HGF, which contribute to repair for ischemic brain 
tissue[35].

UMBILICAL CORD BLOOD-DERIVED 
MESENCHYMAL STEM CELLS
Human umbilical cord blood contains hematopoietic 
stem cells and mesenchymal stem cells. Umbilical cord 
blood-derived mesenchymal stem cells (UCBSCs) differ-
entiate to neuronal cells and are clinically promising as a 
regenerative cell therapy for neuronal disease. It reported 
that neuronal differentiation of  UCBSCs is mediated by 
protein kinase and that estrogen stimulates the neuronal 
differentiation of  human UCBSCs[92,93]. UCBSCs differ-
entiated to dopaminergic neurons in vitro. Transplantation 
of  those cells is applied to neuronal disease models[94,95]. 

DENTAL PULP STEM CELLS 
Dental pulp stem cells (DPSCs) are putatively neural crest 
cell-derived[96] and thus differentiate to neurons[97]. There-
fore, these cells are promising as donor cells of  neuronal re-
generative cell therapy. Transplantation of  DPSCs is applied 
to neuronal disease models such as spinal cord injury[98]. It 
is suggested that implanted adult human dental pulp stem 
cells induce endogenous axon guidance[99]. In addition, it is 
suggested that human DPSCs differentiate towards func-
tionally active neurons in an appropriate environment[16].

PLACENTA-DERIVED MESENCHYMAL 
STEM CELLS
Placenta-derived mesenchymal stem cells are from 
mesenchymal somatic stem cells and differentiate to 
cells of  neuronal phenotype in the appropriate niche 
conditions[100]. These cells differentiate to dopaminergic 
neuron-like cells in vitro[101]. In addition, intracerebral 
transplantation of  these cells has been reported[102]. The 
transplantation of  placenta-derived mesenchymal stem 
cells is promising for regenerative therapy for intractable 
neuronal diseases. 

PERIPHERAL BLOOD MONOCYTES
Peripheral blood monocytes include mesenchymal stem 
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Figure 2  Transplantation of somatic stem cells into the central nervous 
system. Somatic stem cells (human hair follicle cell cells) forming a neuro-
sphere, non-treated or neuronally differentiated by various methods, are directly 
or transvenously transplanted to brain.  
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cells that are multipotential and capable of  differentiating 
to neuronal lineage cells. These cells have the advantage 
of  being obtained from an easily accessible minimally 
invasive procedure. With treatments of  macrophage 
colony-stimulating growth factor and thereafter NGF, 
these cells express neuron specific enolase, neurofilament 
and microtubule associated protein 1-B that are neuronal 
markers[103]. These cells differentiate to microglia that is 
supportive for neuronal tissue[104] and are promising can-
didates as donor cells of  autologous transplantation for 
neuronal regeneration. 

MULTILINEAGE-DIFFERENTIATING 
STRESS ENDURING CELLS
Multilineage-differentiating stress enduring (MUSE) 
cells are pluripotent stem cells resembling ES or iPS 
cells[105]. These cells are derived from skin fibroblast or 
mesenchymal stromal cells[7,106]. Among stress (long-time 
heparin treatment) enduring fibroblasts, multilineage-
differentiating stem cells were found. It is reported that 
these cells can differentiate to tri-dermal cells[7]. They are 
promising as donor cells for regenerative cell therapy[8]. 
Since they differentiated to neural lineage cells such as 
neuron and glia, they are hoped to be donor cells for 
neuronal regenerative cell therapy[107]. MUSE cells are 
the most promising somatic stem cells and the obtaining 
method is established. The autologous transplantation 
of  MUSE cells obtained from autologous fibroblast or 
mesenchymal stem cells is useful for neuronal regenera-
tive cell therapy. The necessity of  cell sorting using anti-
SSEA-3 antibody is a limiting factor in generating MUSE 
cells[7]. However, since the generative rate of  MUSE cells 
is small but stable, use of  MUSE cells is very promising 
as donor cells of  transplantation of  cell therapy for re-
generation of  neuronal disease. 

ENDODERM-DERIVED SOMATIC STEM 
CELLS
Endoderm-derived somatic stem cells capable of  neu-
ronal differentiation are rare. When normal thyrocytes 
are cultured in non-serum small airway growth medium 
(SAGM) and their neuronal differentiation is induced, 
they express neuronal marker beta-III-tubulin[108]. This 
result suggests that thyroid cells derived from endoderm 
are capable of  differentiating to neurons. Although direct 
conversion of  hepatocytes derived from endoderm to 
neurons using defined factors has been recently report-
ed[109], it is a report using a reprogramming method like 
iPS cells. Principally, it is likely that endoderm-derived 
stem cells are difficult to differentiate to neurons. 

CONCLUSION
Cell transplantation therapy using somatic stem cells is 
very promising. At present, the kinds of  clinically used 

somatic stem cells are mostly limited to neural stem cells 
and bone marrow mesenchymal stem cells. Other so-
matic stem cells are scarcely used for clinical applications. 
However, therapeutic levels of  somatic stem cell therapy 
still mostly stay at the confirmation of  safety and feasi-
bility. Undoubtedly, neuronal regenerative therapy with 
transplantation of  somatic stem cells will be applied to 
intractable neuronal diseases and spread throughout the 
world in the future. 
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