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Abstract
Platelet transfusion is one of the most reliable strategies to cure patients suffering
from thrombocytopenia or platelet dysfunction. With the increasing demand for
transfusion, however, there is an undersupply of donors to provide the platelet
source. Thus, scientists have sought to design methods for deriving clinical-scale
platelets ex vivo. Although there has been considerable success ex vivo in the
generation of transformative platelets produced by human stem cells (SCs), the
platelet yields achieved using these strategies have not been adequate for clinical
application. In this review, we provide an overview of the developmental process
of megakaryocytes and the production of platelets in vivo and ex vivo, recapitulate
the key advances in the production of SC-derived platelets using several SC
sources, and discuss some strategies that apply three-dimensional bioreactor
devices and biochemical factors synergistically to improve the generation of
large-scale platelets for use in future biomedical and clinical settings.
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Core tip: Platelets derived from voluntary blood donation pose some challenges, such as
susceptibility to pathogen contamination, short preservation time and difficulty in
satisfying the increasing number of patients requiring platelet transfusion. Thus, seeking
a safe and reliable alternative source of platelets is an effective solution.
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INTRODUCTION
Platelets  are  the  smallest  anucleate  cells  (2-4  µm  in  diameter)  produced  by
megakaryo-cytes (MKs) in bone marrow (BM). They play a pivotal role not only in
hemostasis  and  thrombosis  but  also  in  neoangiogenesis,  innate  immunity  and
inflammation. Until now, platelet transfusion, which may lead to varying degrees of
hemorrhage that is sometimes life-threatening, has remained the most effective way
to treat patients suffering from thrombocytopenia and/or platelet dysfunction[1,2].
However, platelets derived from voluntary blood donation pose some challenges,
including susceptibility to pathogen contamination, short preservation time, and
difficulty satisfying the increasing number of patients requiring platelet transfusion[3].
Therefore, seeking a safe and reliable alternative source of platelets is an effective
solution.

In recent years,  stem cells (SCs) research has developed rapidly in the field of
regenerative medicine, and several research groups have focused on cultured platelet
production ex vivo. In addition to hematopoietic SCs (HSCs), human embryonic SCs
(hESCs) and human induced pluripotent SCs (iPSCs) have been considered potential
sources for generating human MKs[4-6] and platelets[7,8]. The proper use of biochemical
stimuli, including growth factors and cytokines, could augment MK maturation and
platelet  generation during ex  vivo  stem cell  culturing[9,10].  To mimic  the  physical
microenvironment, some bioengineering techniques that promote MK maturation and
platelet release have been developed[11,12].  In this review, we will  recapitulate the
methods that promise to produce sufficient platelets differentiated from SCs ex vivo
and some obstacles in this field. We believe that the ex vivo production of platelets is a
state-of-the-art technology integrated with the development of unlimited SCs, newly
discovered biochemical reagents and three-dimensional (3D) bioreactor systems.

MEGAKARYOPOIESIS AND PLATELET FORMATION
Megakaryopoiesis and thrombopoiesis are elaborate processes that can be divided
into  several  successive  stages:  The  commitment  of  SCs  toward  the  MK lineage,
proliferation of MK progenitors, MK maturation, proplatelet formation and terminal
platelet production. In vivo, HSCs located in the osteoblastic niche on the surface of
the bone cavity have the ability for self-renewal and multipotent differentiation. They
give rise to common lymphoid progenitors and common myeloid progenitors, which
differentiate  into  granulocyte/macrophage  progenitors  and  MKs-erythrocyte
progenitors (MEPs). MEPs subsequently commit to the erythrocytic and megakaryo-
cytic lineages, which progressively produce different ages of immature MKs with
various proliferative potency. The unique feature of megakaryocytic maturation is
endomitosis due to a failure in cytokinesis (not all MKs undergo mitosis). This process
is  accompanied by an increase in  DNA content  (up to  128 N) and the following
events: Cell enlargement; the emergence of various unique organelles, such as dense
bodies and secretory particles; the synthesis and assembly of cytoplasmic proteins; the
formation of the demarcation membrane system; and the formation of a membrane
reservoir for proplatelets. Upon maturation, MKs migrate to the vascular niche and
extend cytoplasmic projections (proplatelets) into the sinusoidal endothelium after
cytoskeletal  remodeling.  Under  shear  forces  produced  by  the  blood  stream,
proplatelets  are  released,  gradually  develop  into  mature  platelets  and undergo
reassembly and the displacement of microtubules[13-15] (Figure 1).

In  vitro,  SCs (HSCs,  hESCs or  hiPSCs)  are  cultured to increase progenitor  cell
number before differentiation into MKs. After expansion, SCs differentiate into the
megakaryocytic  lineage  as  a  result  of  stimulation  with  growth  factors  [e.g.,
thrombopoietin (THPO) and stem cell factor (SCF)] and MK progenitor expansion
with  a  recombinant  human  THPO  mimetic  (AMG531)[16].  Immature  MKs  then
undergo the polyploidization process by inducing endomitosis to increase the number
of DNA content to 16-128 N. The myosin inhibitor nicotinamide, actin inhibitors and
Src inhibitor could be used for MK polyploidization. However, the capacity of MK to
undergo polyploidization in culture is  significantly lower than in the BM micro-
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Figure 1

Figure 1  Overview of megakaryopoiesis, proplatelet formation and platelet release.In vivo, bone marrow is located within the trabecular bones, where the
hematopoietic stem cell (HSC) undergo the process of megakaryocyte (MK) differentiation and MK maturation under the control of thrombopoietin. During maturation,
MKs migrate to bone marrow sinusoids and form proplatelets. Proplatelets elongate through the vascular endothelium into the vessels, and proplatelet terminal ends
are released into the bloodstream by blood shear forces, forming platelets. In vitro, HSC-derived CD34+ cells or pluripotent stem cell are first expanded in vitro and
then differentiate into the megakaryocytic lineage. Once differentiated, immature MKs undergo the polyploidization process via inducing endomitosis to increase the
number of DNA content to 16-128 N. During the process of polyploidization, some extended proplatelets are formed and released in high ploidy MKs in culture. To
increase the efficiency of platelets, MKs extend proplatelets into the bioreactor, with perfused culture medium mimicking blood flow.

environment, with a maximum ploidy of 126 N in hESC-derived MKs and 16 N in
iPSC-derived cells[17,18]. During the process of polyploidization, some proplatelets are
formed and released in high ploidy MKs in culture. There is a connection between
apoptosis and the process of proplatelet formation because the intrinsic apoptosis
pathway  is  necessary  for  MKs  to  adequately  acquire  proplatelets  and  release
platelets[19,20]. To promote the maturation of MKs and accelerate the release of platelets,
scientists have altered the culture conditions, including by treating the cells with
chemical substances and mimicking the physical microenvironment (Figure 1).

STEM CELL SOURCES FOR PLATELET PRODUCTION EX
VIVO
Pluripotent SCs and hematopoietic progenitors are the main sources that have been
used to generate MKs and functional platelets.  The former, including hESCs and
hiPSCs, is considered an unlimited seeding cell source. The latter involves CD34+ (a
surface marker usually expressed by hematopoietic stem/progenitor cells) cells from
BM, umbilical cord blood (UCB) and peripheral blood (PB). Because they are primary
cells, there is a risk of viral contamination. In total, each of these sources has advan-
tages and disadvantages for clinical platelet transfusion.

HSCs
CD34+  cells  extracted from BM, PB and UCB are simple and feasible  sources for
platelet production ex vivo. In 1995, Choi et al[21] isolated CD34+ cells from human PB
and cocultured them with serum taken from dogs suffering from aplastic anemia.
Upon the generation of MKs, human AB serum (AB-HS) was added to the culture
system  to  promote  the  production  of  platelet-like  particles.  When  adenosine
diphosphate (ADP) was added, aggregation could be observed. This is the first report
of human functional platelet production in vitro. Since then, the application of THPO
has  accelerated the  development  of  research  on platelet  generation  ex  vivo.  The
scientists found that the addition of different cytokines in the culture medium, except
for  thrombopoietin,  could  improve  megakaryocytic  maturation  and  platelet
production. To some extent, the ultrastructure and physiological functions of derived
platelets  were  similar  to  those  of  platelets  in  vivo.  However,  because  of  the
inconvenience of obtaining BM samples and because the content of CD34+ cells is low
in  the  medullary  cavity,  the  ability  to  induce  CD34+  cells  from  BM  is  greatly
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restricted[22-25].  In  comparison,  cord  blood  has  been  widely  used  because  of  its
extensive sources, convenient collection and high amplification efficiency ex vivo.
Matsunaga et al[22] reported that when CB CD34+ cells were cocultured with hTERT
stromal cells and interleukin-11 (IL-11), SCF, thrombopoietin and flt-3 ligand (FL)
were included in the system, large-scale generation of  human platelets  could be
attained. Using the UCB differentiation system, scientists have investigated various
factors that may influence megakaryopoiesis and thrombopoiesis. Employing UCBs
depends  on  donation  after  childbirth,  which  makes  it  more  difficult  to  acquire
abundant materials to scale platelet production and increases the risks of bacterial/
viral contamination[26].

hESCs
Since the establishment of the hES cell line for the first time by Thomson et al[27] in
1998, scientists have successively attempted to induce hESCs into MKs and platelets.
In 2001, Kaufman et al[28] cocultured the hES cell line H1 with S17 mouse BM stromal
cells to produce CD34+ hematopoietic precursor cells, which can give rise to mixed
cell clones containing MKs. This was the first report on the differentiation of hESCs
into MKs. Then, Gaur et al[4] reported that hESCs could be differentiated into MKs by
culturing them with OP-9 stromal cells. After two weeks, CD41a+CD42b+  (surface
marker expressed by MKs) cells were detected in the differentiation system. However,
these MKs did not  exceed a ploidy of  32 N,  and proplatelet  formation was only
occasionally observed. These results suggested that the MKs were immature and that
platelets were not produced in the culture system. In 2008, successful generation of
platelets was addressed in a study by Takayama’s group[29]. Through coculture with
OP9 or C3H10T1/2 stromal cells and the use of vascular endothelial growth factor
(VEGF),  hESCs  produced  many  "sac"  structures  that  could  provide  a  suitable
microenvironment for  hematopoietic  progenitor  cells.  Thrombopoietin,  SCF and
heparin were then added to the system. After approximately 10 days, platelets that
could be activated by ADP or thrombin were produced in the supernatant. Therefore,
the efficiency of platelet production in MKs is far less than that under physiological
conditions.

In 2011, Lu et al[7] improved the differentiation efficiency of MKs from hESCs by 20-
30 times. The breakthrough of the experiment was that the adhesion and aggregation
functions of platelets produced ex vivo was proven to some extent. More importantly,
the cultured platelets were observed to participate in the formation of thrombosis
with platelets in vivo  at the site of damage in arterial blood vessels. However, the
application of stromal cells and serum in previous studies reduced the possibility of
use in therapies significantly. Subsequently, Pick et al[30] committed hESCs to MKs that
fragmented into platelet-like particles  using a  “spin embryoid body” method in
serum-free differentiation medium. However, this method also has disadvantages,
namely system instability and limitations to the large-scale production of MKs.

hiPSCs
Compared with hESCs,  hiPSCs have several  advantages,  including the ability to
utilize  any somatic  cell  that  could  develop into  MKs and the  absence  of  ethical
restrictions. In 2010, Takayama et al[18] first reported that when cultured iPSCs derived
from human epidermal fibroblasts with a mouse C3H10T1/2 stromal cell line for 22-
26 d, platelets could be released from MKs. It is noteworthy that the platelets were
observed to form thrombi at the site of damaged vessels in combination with platelets
in vivo. In addition, hiPSCs from subcutaneous adipose tissues[31], endometrial stromal
SCs[32] and adipose-derived mesenchymal stromal/stem cell line[33] could differentiate
into functional platelets.

In addition to the above-mentioned stromal cell coculture methods and traditional
"embryoid body" differentiation methods,  some strategies of altering cell  fate by
transcription  factors  have  also  made  progress.  Ono  et  al[34]  reported  that  over-
expression of the p45NF-E2, Maf G and Maf K genes could convert human and mouse
3T3 fibroblasts into CD41+ MKs, which can produce platelet-like particles with partial
coagulation function. Although the method requires much time and the efficiency is
low, it showed that exogenous gene manipulation could directly transform other cell
types into MKs. The key was to find the appropriate genes. In 2014, Nakamura et al[8]

showed that overexpression of the BMI1, bcl-xl and c-myc genes in hiPSCs derived
from PB cells could generate stable and immortalized megakaryo-cytic progenitor cell
lines (imMKCLs). Once the expression of the three genes was stopped, the imMKCLs
gave rise to platelets. Similarly, ectopic expression of the three transcription factors
GATA1, FLI1, and TAL1 in hiPSCs achieved the same goal, leading to mature MK
production with unprecedented efficiency[6]. Both cell lines could be cryopreserved
and expanded upon recovery. Compared to MKs derived from iPSCs, the prominent
feature of imMKCLs is the generation of platelets with higher efficiency in less time.
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Although some characteristics of the imMKCLs deserve recommendation, the cell
lines still face some drawbacks, such as relying on serum and feeder cell culture and
virus-mediated genetic  reprogramming,  which may pose  potent  risks.  Recently,
important progress has been made by Liu et al[35], who developed an efficient system
to generate MKs from hiPSCs under feeder-free and xeno-free conditions by adding
FDA-approved pharmacological reagents, including romiplostim (Nplate, a THPO
analog), oprelvekin (recombinant IL-11), and plas-bumin (human albumin). However,
platelet  production  from  iPSCs  requires  relatively  complex  and  sophisticated
methods, and the culture period is long. These results may impede the progress of the
industrial-scale  generation  of  cultured platelets  and therapeutic  applications  in
regenerative medicine.

REGULATION FACTORS FOR MEGAKARYOCYTIC
MATURATION AND PLATELET RELEASE
Megakaryopoiesis and thrombopoiesis are regulated by various effectors in the BM
microenvironment, such as stomal cells, cytokines, extracellular matrix and blood
flow. Based on theoretical knowledge, researchers have altered the culture conditions,
including chemical  substances,  and the  physical  microenvironment,  which may
promote the differentiation and maturation of  MKs and accelerate the release of
platelets[14,36,37].

Megakaryocytic maturation
It is generally recognized that the ploidy of MKs is positively correlated with the
number of platelets produced. Studies have shown that MKs differentiated from CB,
hESCs  or  hiPSCs  have  a  far  lower  ploidy  level  than  MKs  generated  from  BM
HSCs[38,39], and the reason has not been fully elucidated. Insights into the signaling
pathways  associated  with  megakaryocytic  polyploidy  may  contribute  to  our
understanding and result in the production of more platelets ex vivo through gene
manipulation[40,41].

The Rho/ROCK pathway is  a  well-known regulator  of  the actin  cytoskeleton.
Chang et al[42]  provided evidence that the pathway acts as a negative regulator of
proplatelet formation. Overexpression of a spontaneously active RhoA or dominant-
negative mutation led to an increase or a  decrease in proplatelet  formation.  The
application of the Rho inhibitor Tat-C3 and the ROCK inhibitor Y27362 promoted the
proportion  of  polyploidy  MKs  and  the  formation  of  proplatelets  by  decreasing
myosin light chain 2 (MLC2) phosphorylation. Another study showed that ROCK
inhibition drives polyploidization and proplatelet  formation in MKs maturation
through downregulation of NFE2 and MYC expression[43].

The tumor suppressor protein P53 plays an important role in regulating the cell
cycle  and  apoptosis[44].  P53  activation  inhibits  the  induction  of  hematopoietic
progenitors and of MKs[45].  Fuhrken et al[46]  found that in the differentiation of the
megakaryocytic cell line CHRF-288-11 induced by PMA, reducing the level of P53
improved the proportion of polyploid MKs. In addition, BM HSCs from P53-/- mice
can generate 64 N MKs, while the maximum ploidy of wild-type mice is 32 N. Later,
Giammona et al[17] showed niacinamide (NIC) can promote polyploidization of MKs
by  inhibition  of  SIRT1  and/or  SIRT2,  which  belongs  to  the  histone  deacetylase
Sirtuins  protein  family.  The  function  of  SIRT1  and  SIRT2  is  to  deacetylate  the
downstream target protein P53. Therefore, the role of NIC in promoting polyploidi-
zation may be related to the enhanced transcriptional activity of P53 after acetylation.

Lannutti  et al[47]  found that Fyn and Lyn, members of the Src family of protein
kinases, were highly expressed during the differentiation of BM CD34+/CD38lo cells to
MKs. Lyn-deficient mice produced more mature MKs above 8 N in the presence of the
Src kinase inhibitor pyrrolopyrimidine 1. In addition, the Src kinase inhibitor SU6656
increased the proportion of polyploid MKs in the differentiation of cell lines UT-7,
HEL, and Meg-01 and in patients with myeloid dysplasia syndrome[48,49].

In addition, some other important molecules,  such as DIAPH1 and Gfi1b, also
regulate major functions of MK proplatelet formation by controlling the dynamics of
the actin and microtubule cytoskeletons[50,51].

Platelet release
Currently,  only a  few MKs cultured ex vivo  can release platelets.  Therefore,  it  is
essential to improve the ability of MKs to produce platelets ex vivo. Factors related to
platelet  release include the extracellular matrix,  blood flow shear force,  and MK
apoptosis.

There has been evidence that the apoptotic inhibitory proteins Bcl-2 and Bcl-xl are
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expressed in the early phase of megakaryopoiesis, but Bcl-2 is absent in neonatal and
mature platelets. Moreover, the activity of caspase-3 and caspase-9 are increased in
terminally differentiated MKs, suggesting that the maturation of MKs is accompanied
by apoptosis[52]. However, Josefsson et al[20] found that the platelet numbers in Bak and
Bax knockout mice were normal. It seems that platelet production is independent of
intrinsic apoptotic pathway activation. In addition, White et al[53] reported that the
number  and function  of  platelets  in  Casp9-/-  mice  was  not  affected.  Therefore,
whether MK apoptosis affects platelet release remains to be investigated.

The  extracellular  matrix  can  modulate  the  production  of  proplatelets.  Type  I
collagen  in  the  osteoblast  niche  may  inhibit  the  formation  of  proplatelets  by
α5β1α4β1. Fibroblast growth factor-4 (FGF-4) enhances the adhesion between MKs
and vascular endothelium, contributing to the survival and maturation of MKs. By
chemotaxis of stromal cell-derived factor 1 (SDF1), MKs migrate to the vascular niche
and release platelets. In addition, von Willebrand factor (vWF) and fibrinogen play a
role  in  promoting the  generation of  proplatelets  through GPIb-IX-V and αIIbβ3
signaling pathways, respectively[54-57]. On the other hand, the podosome could adhere
to  extracellular  matrix  substrates  and  degrade  it,  which  might  play  a  role  in
proplatelet arm extension or penetration of the basement membrane[58].

Mechanic stress is an important factor in platelet release from mature MKs 59,60]. Junt
et  al[61]  observed the  process  of  MKs interplaying with blood vessels  to  produce
platelets in real time by multiphoton intravital microscopy. In addition, confocal and
electron microscopy after fixation were used. They found that MK exposure to high
shear rates promotes platelet production via GPIb, which depends on microtubule
elongation  and assembly.  The  results  provided a  theoretical  foundation  for  the
application of bioreactors. Dunois et al[62] suggested that high shear rates from blood
flow promote platelet production via GPIb, which depends on microtubule assembly
and  elongation.  Recently,  Ito  et  al[60]  reported  that  turbulence  activates  platelet
biogenesis and that turbulent flow promotes platelet release from hiPSC-derived
MKs, suggesting turbulence as an important physical regulator in thrombopoiesis.

Platelet function
For cultured platelets to be considered for clinical application, they must be very close
to donor-derived platelets in terms of quantity and quality. To date, cultured platelets
ex vivo have fragmented function compared with donors, although ultrastructure and
surface markers are similar. The testing of platelet function has mostly relied on the
measurement of P-selectin exposure and GPIIb-IIIa activation. In general,  a large
proportion of cultured platelets are expression of activation markers by agonists
stimulating such as ADP or thrombin, while we often observed that a state of pre-
activation with P-selection expression in cultured platelets even if it’s in the absence of
any agonist and thus show poor transfusion properties[63,64].  In addition, platelets
generated ex vivo can participate in the formation of thrombosis in the site of damage
in blood vessels in NOG mice. However, the degree to which these platelets can play
an active role in hemostasis remains to be evaluated.

Ideally, platelets cultured ex vivo should be evaluated using a standard platelet
aggregation assay that requires a platelet count of at least 100 × 109/L, which has not
been reported by the research group. Furthermore, the loss of platelet membrane
surface glycoproteins such as GPIb is another important factor that interferes with
platelet function. The matrix protein metalloprotease inhibitor GM6001 can prevent
GPIba protein hydrolysis by ADAMTS17 and improve platelet function[65,66]. Based on
the current  situation,  platelets  collected ex vivo  have at  least  some physiological
functions, but avoiding self-activation in culture is a difficult challenge.

PROGRESS AND FUTURE DIRECTIONS IN PLATELET
BIOREACTORS
Compared with platelets in PB, the platelets produced in vitro  were more hetero-
geneous in size and were produced at a lower output. One explanation is the static
quality of cell culture, which is unlike the microenvironment in vivo. A reasonable
approach for large-scale platelet production is to combine bioreactors with chemical
factors. Different bioreactors recapitulate different physiological conditions (Table 1),
including gas exchange, media perfusion[67], extracellular matrix proteins, scaffold
composition and the effects of blood shear stress[68-71].

In 2003, Li et al[72] first discovered that a murine CCE ES cell line could be used to
drive hematopoietic cells in a 3D fibrous matrix to direct hematopoietic differentiation
using specific cytokines and inhibitors. In 2009, Sullenbarger et al[23] reported that a 3D
bioreactor with surgical-grade woven polyester fabric or purpose-built  hydrogel
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Table 1  Some major advances in bioreactors in platelet formation and platelet release from 2013 to 2018

Type of bioreactor Principles and methods Designers / users

Two-directional flow bioreactor The bioreactor consisted of two-directional flow,
in which the angle between the directions of the
main and pressure flow is 60 degrees

Nakagawa et al[74], 2013

Microfluidic platelet bioreactor The bioreactor is based on polydimethylsiloxane
bonded to glass slides to construct some upper
and lower microfluidic channel

Thon et al[70], 2014

Spinning-membrane filtration device Separating in-vitro-derived PLTs and recovering
immature MKs and the precursor cells of PLTs by
use of spinning-membrane filtration device

Schlinker et al[77], 2015

RCCS bioreactor Shear force, simulated microgravity, and better
diffusion of nutrients and oxygen from the RCCS

Yang et al[67], 2016

Innovative bioreactor The bioreactor consisted of a membrane, and
using flow through the membrane and shear
across the membrane to drive the megakaryocytes
to release PLTs

Avanzi et al[43], 2014

Microfluidic device This device consists in a wide array of von
Willebrand factor-coated micropillars, allowing
them to remain trapped and subjected to
hydrodynamic shear

Blin et al[75], 2016

Turbulent flow-based bioreactor Stimulation with optimized shear stress and
turbulent energy, collaborates with several growth
factors for proplatelet formation

Ito et al[60], 2018

RCCS: Rotary cell culture system.

scaffolds could facilitate platelet output when coated with THPO with/or fibronectin.
Subsequently, Lasky et al[73] designed the bioreactor by optimizing oxygen concen-
trations and media perfusion to promote platelet output, but they did not consider
blood  shear  stress.  Later,  Nakagawa  et  al[74]  developed  a  two-directional  flow
bioreactor and found that two flows in different directions could promote platelet
production by as much as 3.6-fold compared with static cultures. In 2014, Thon et al[70]

made a microfluidic platelet bioreactor that attempted to use biomimetic BM and
blood vessel microenvironments and supported live imaging for platelet generation.
Blin et al[75] built on previous work, reporting a bioreactor consisting of a wide array of
vWF-coated micropillars to act as anchors on MKs. MKs were anchored and subjected
to shear stress. Elongation of MK cytoplasm and proplatelet formation were observed.
However, these devices have mostly focused on the development of proof-of-concept
basic research, low throughput, custom-made tools.

Based on the concept that human MKs are partly regulated by the extracellular
matrix, scientists began to design bioreactors with different materials to emulate BM
physiology. To increase platelet production, Pallotta et al[57,76] applied biocompatible
silk microtubes with fibrinogen, type 1 collagen, and SDF1, mimicking the release of
platelets in a blood vessel. The MKs extended proplatelets through the micropores of
the microtube and released platelets when exposed to low shear stress. Additionally,
silk  sponges [64],  polycarbonate  filter  membranes [77]  or  the  hyaluronan-based
hydrogels[78] were also used to mimic the bioengineered 3D BM environment, while
there are major limitations to implementing the material in biomedical devices.

The combination of bioreactors and chemical factors might promote megakaryo/
thrombopoiesis. Recently, we used the rotary cell culture system (RCCS), a unique 3D
cell culture method, to investigate the potential role in megakaryopoiesis. Our results
indicated that RCCS significantly improves the efficiency of platelet generation, which
recapitulates  some  special  characteristics,  including  shear  force,  simulated
microgravity,  and  better  diffusion  of  nutrients  and  oxygen.  Additionally,  we
demonstrated that RCCS combined with chemical compounds and growth factors
identified via small screening can further increase platelet generation efficiency[68],
while there is  limitation to lacking the function of automatic change of medium.
Analogously, a novel bioreactor with a membrane and three ports of input and output
was developed and can produce a high number of platelets from UCB-derived CD34+

cells.  Based on in vivo  imaging,  Ito et  al[60]  found that turbulence is  an important
physical  regulator  of  thrombopoiesis.  They  developed  a  turbulent  flow-based
bioreactor  (VerMES  Bioreactor),  which  enabled  high  yield  and  quality  ex  vivo
biogenesis from imMKCLs. In addition, three novel chemical factors (IGFBP2, MIF,
and  NRDC)  that  contribute  to  the  remodeling  of  mature  MKs  and  shedding  of
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platelets might represent a potential mechanism to promote proplatelet shedding in
the  VerMES  bioreactor[61].  Thus,  next-generation  platelet  bioreactor  need  to  be
designed with comprehensive consideration fluid dynamics modeling, automation of
flow control and avoid the too highly cost of device design and cell culture.

CONCLUSION
As the demand for platelet transfusions increases, many countries are competing to
improve  the  efficiency  of  platelet  production  ex  vivo.  However,  the  field  of
megakaryopoiesis and platelet research still faces several limitations, including (1)
The massive number of platelets (100-300 billion platelets) needed for one transfusion;
(2) the high economic cost for the entire culture period; and (3) the lower viability of
ex vivo platelets compared to donor-derived platelets, though they express the proper
surface marker for platelet function and participate in the aggregation reaction at the
site of damage in a mouse model. Optimizing the key steps of megakaryopoiesis and
platelet generation may provide a better understanding of the cellular and molecular
mechanisms. Introducing SCs into advanced bioreactors and simultaneous exposure
to a subset of chemical compounds may synergistically contribute to the production of
a  large  number  of  platelets  for  clinical  applications.  In  addition,  before  clinical
application, the platelet function produced ex vivo must be defined in detail and fully
verified.  Collection,  cost-effective  and highly controllable  strategies  and metho-
dologies represent an important step toward large-scale platelet production for future
biomedical and clinical applications.
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