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Abstract
Tissue engineering has yet to reach its ideal goal, i.e. creating profitable off-the-
shelf tissues and organs, designing scaffolds and three-dimensional tissue
architectures that can maintain the blood supply, proper biomaterial selection,
and identifying the most efficient cell source for use in cell therapy and tissue
engineering. These are still the major challenges in this field. Regarding the
identification of the most appropriate cell source, aging as a factor that affects
both somatic and stem cells and limits their function and applications is a
preventable and, at least to some extents, a reversible phenomenon. Here, we
reviewed different stem cell types, namely embryonic stem cells, adult stem cells,
induced pluripotent stem cells, and genetically modified stem cells, as well as
their sources, i.e. autologous, allogeneic, and xenogeneic sources. Afterward, we
approached aging by discussing the functional decline of aged stem cells and
different intrinsic and extrinsic factors that are involved in stem cell aging
including replicative senescence and Hayflick limit, autophagy, epigenetic
changes, miRNAs, mTOR and AMPK pathways, and the role of mitochondria in
stem cell senescence. Finally, various interventions for rejuvenation and
geroprotection of stem cells are discussed. These interventions can be applied in
cell therapy and tissue engineering methods to conquer aging as a limiting factor,
both in original cell source and in the in vitro proliferated cells.

Key words: Aging; Senescence; Rejuvenation; Geroprotection; Tissue engineering; Stem
cell therapy
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Core tip: To attain profitable off-the-shelf tissues and organs, we must deal with the
challenge of identifying and isolating an optimal cell source. Different types of stem
cells with different properties have been used in tissue engineering and cell therapy to
face this challenge. Although aging is an inevitable process that can eventually limit the
function and stemness of stem cells, it is a conquerable phenomenon. In this article, we
have reviewed several applicable interventions that can be used to overcome cellular
aging.
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INTRODUCTION
Anatomical and functional complexities of biological systems challenge the artificial
construction of viable human tissues and organs. Proper three-dimensional tissue
architecture to maintain blood supply is a key constraint on the size of the in vitro
fabricated tissues[1]. In addition, biomaterial selection and strategies to design tissue
scaffolds are vital for regulating cell signaling pathways that provide appropriate cell-
cell  interactions  such  as  growth  factor  delivery,  which  is  essential  for  cell
differentiation.  Although numerous attempts  were made to  overcome these key
challenges in tissue engineering, the reproducible in vitro construction of artificial
vascularized tissue is still needed[2].

The ideal goal of tissue engineering is to create off-the-shelf tissues and organs
providing vast opportunities to tackle a group of diseases and to reduce the need for
organ donors. This not only would treat millions of patients, but also increase human
longevity and quality of  life[1,3,4].  As the field of  tissue engineering evolves,  new
obstacles appear in the way of the research and clinical application of these artificial
tissues and organs. The fundamentals of this interdisciplinary field not only involves
identifying biomaterials and designing scaffolds for in vivo cell expansion but also
requires addressing the reliable cell sources. Hence, gradual advances in the clinical
application of tissue engineering deal with hurdles in diverse aspects of science such
as cell biology, bioengineering, and material science[5].

Apart from these engineering challenges, biologic issues and the major concern of
identifying the ideal cell source is the other essential principle of tissue engineering[2].
Various stem cell types and sources have been extensively employed in regenerative
medicine studies. However, each source has its own practical and technical challenges
concerning  their  availability,  isolation  and  cell  expansion,  cell  delivery,  aging,
immunological barriers, and clinical and therapeutic efficiency. Furthermore, while
major challenges of tissue engineering must be addressed at first,  aging, as a cell
source limiting factor, should not be overlooked. In this article, we have reviewed the
cell sources that are used in tissue engineering and cell therapy techniques and how
aging and cell senescence can challenge the isolation of ideal cell source. Also, we
have discussed potentially applicable approaches for rejuvenation of aged cells.

CELL SOURCE AS A MAJOR CHALLENGE
First and foremost, the unresolved controversy of identifying the optimal cell types
for tissue engineering is still a major challenge[4,6,7]. While cell transplantation, organ
transplantation,  and  tissue  engineering  are  fundamentally  different,  there  are
essentially three varieties of sources: Autologous, allogeneic, and xenogeneic cells,
each of which can be subdivided into several types of stem cells including adult and
embryonic stem cells. In addition, the discovery of induced pluripotent stem cells
(iPSCs), which are discussed in the following sections, represent a promising source of
cells for all branches of regenerative medicine[8,9].

Autologous sources
In autologous transplantation, the donor and the recipient are the same. Concerning
the role of the immune system in potential tissue rejections, utilizing a patient’s own
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cells or “autologous cells” would be ideal. This method minimizes the chance of graft
versus  host  disease  and  transmitted  infections,  and  more  importantly  it  would
eliminate the need for lifetime use of immunosuppressive drugs, which improves the
quality of life in post-transplant patients[10]. Despite these benefits, autologous cell
therapy brings about several challenges. In fact, using the patient’s own cells might
not be practical for the majority of cases. Transplant waiting lists are filled with aged
patients who suffer from age-associated morbidities and cellular senescence affecting
both their somatic and stem cells[11]. In addition, the patients who suffer from gene
defects cannot easily benefit from autologous cell therapy[12]. Furthermore, to be viable
for tissue engineering, millions of autologous cells should be collected from a donor
and expanded ex vivo. For many tissue types, harvesting a sufficient number of cells is
not applicable, especially when a patient is aged or severely diseased. Moreover, cell
culture per  se  can cause undefined complications;  the proliferative potential  and
clonogenicity of stem cells decrease after several cell divisions, which raises concerns
about viability and functionality of cells after transplantation. These issues make
autologous cell therapy undesirable for clinical applications, especially in emergencies
or acute phases of disease[9,13].

Allogeneic sources
As mentioned earlier, the goal of tissue engineering is to manufacture large quantities
of off-the-shelf tissues and organs that are immediately available to be administered
clinically[14]. Allogeneic cells are cells from a genetically non-identical donor but of the
same species. Thus, unaffected cells, tissues, and organs of every healthy donor can be
a  precious  allogeneic  cell  source.  This  will  rule  out  the  challenges  of  aging,
unavailability,  and in  vitro  expansion challenges  of  autologous  cell  sources  and
consequently introduce allogeneic cell  therapy as a promising method in case of
emergency. This advantageousness paved the way for preparing a master bank of
ready-made, clinically practical, and off-the-shelf allogeneic cells. On the contrary, the
immunogenicity  of  allogeneic  cells  and  the  major  histocompatibility  complex
(commonly known as MHC) incompatibilities are by far the most formidable barriers
of  allotransplantation.  In  addition,  the  side  effects  of  immunosuppression  like
metabolic disorders, malignancies, and opportunistic infections can aggravate the
outcome of a transplantation[9,12,15].

Xenogeneic sources
Xenogeneic or cross-species transplantation is the process of transplanting living cells,
tissues, or organs from one species to another. In recent decades, the ever increasing
demand for clinical transplantation and shortage of allogeneic sources for patients on
the waiting lists has led to considerable amounts of clinical and experimental research
in order to overcome the barriers of xenotransplantation. However, a great number of
ethical red tape and immunological roadblocks are yet to be surpassed. Graft rejection
and failure  to  achieve  successful  long-term outcomes  are  the  main  issues  to  be
addressed, as there are great disparities between MHCs of different species. Another
concern  is  the  risk  of  zoonotic  infections,  particularly  unidentified  viruses.  In
addition, xenotransplantation is by itself a controversial ethical issue and sometimes
raises religious concerns because it involves sacrificing animals to harvest organs and
tissues for human usage[16].

CELL TYPES
Thus far, several stem cell types have been utilized in the field of tissue engineering.

Embryonic stem cells (ESCs)
ESCs are pluripotent stem cells isolated from the inner cell mass of blastocysts up
until day 5.5 post-fertilization, right before the stage in which the embryo is ready for
gastrulation[17,18]. They have unlimited potential for self-renewal and differentiation to
be used as a source for derivation of multiple lineages of adult cells. In spite of these
distinctive potentials, studies have raised concerns over the prolonged culture of
ESCs. Formation of in vivo teratomas has been reported in implantation of in vitro
cultured undifferentiated ESCs. Additionally, difficulties in finding patient-matched
ESCs are an obstacle.  Finally,  because isolating ESCs involves the destruction or
manipulation of pre-implantation stage embryo, there are lots of ethical controversies
surrounding their usage[19].

iPSCs
iPSCs  are  generated  via  the  induction  of  expression  of  certain  genes  in  non-
pluripotent adult cells. This technique was first developed in 2006 by Takahashi and
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Yamanaka, who introduced four transcription factors, Oct-4, c-Myc, KLF4, and SOX2,
into mouse fibroblasts. These factors contributed to the maintenance of pluripotency
in ESCs and are sufficient to generate ESC-like colonies[20]. A year later, Yamanaka
improved on the reprogramming approach, leading to generation of iPSCs that were
indistinguishable from ESCs[21]. Direct derivation of iPSCs from adult tissues not only
helps to bypass the need for embryos as the pluripotent stem cell source but also
makes  personalized  cell  therapy  a  viable  option.  This  method  could  generate
unlimited supplies of young autologous pluripotent stem cells  with a promising
future in the field of regenerative medicine[22,23].

In  contrast,  several  challenges  still  exist.  Primarily,  the  efficacy  of  the
reprogramming process is considerably low. For example, the rate at which somatic
cells  were  reprogrammed  into  iPSCs  in  Yamanaka's  original  mouse  study  was
0.01%–0.1%.  Although protocols  for  the  induction of  pluripotency are  evolving,
experimental  evidence  for  appropriate  initial  cell  type,  transcription  factor
combinations, gene vectors, and methods of cell  culture still  lack the consistency
required for clinical  applications.  In addition,  induction of pluripotency and the
process of reprogramming, itself causes genomic instability and adversely affects the
cellular integrity. Moreover, the reprogramming factors (such as c-Myc) are known to
be proto-oncogenes. Also, the retained epigenetic memory of the past somatic identity
in newly generated iPSCs may influence the potency and in vivo  functionality of
engineered tissues[24]. However, recent rapid progress of several clinical studies have
improved the outlook for this technology[25-27]. The first iPSC-derived therapy was
done for age-related macular degeneration patients at Japan’s RIKEN Institute[28].
Encouraging results have smoothed the path for other scientific groups to seek clinical
trials for the iPSC-based treatment of cardiac diseases, Parkinson’s disease, and blood
clotting disorders[29-32].

Adult/somatic stem cells
Adult stem cells are populations of undifferentiated cells that unlike ESCs are found
in mature tissues and organs throughout the postnatal life. These progenitor cells are
responsible for tissue cell turnover and maintenance of injured tissues. Their easy
accessibility,  availability,  and self-renewal ability introduce adult stem cells as a
preferred cell source for transplantation. In spite of these great potentials, adult stem
cells  are  not  perfect.  First,  unlike  pluripotent  ESCs,  adult  stem cells  are  usually
multipotent and can only give rise to a limited number of cell lineages of their specific
tissue. Although adult stem cells can be obtained from both allogeneic and autologous
sources,  the  age-dependent  progressive deterioration of  stem cell  function is  an
important issue to be expected[11,33]. In addition, due to replicative senescence after
prolonged culture periods, the proliferative ability of these cells declines rapidly[9,33].

Genetically-modified stem cells
Genetically modified stem cells are born out of the junction of two focus points of
intense research: Gene therapy and stem cell therapy. Gene modification of cells prior
to transplantation is one of the proposed solutions to overcome cell source challenges
and to enhance cell proliferation and function[34]. Various gene therapy approaches are
proposed,  including  the  creation  of  genetically  or  epigenetically  modified  cells
expressing useful proteins, growth factors or growth factor receptors, transcription
factors, neurotransmitters and their receptors, and neuropeptides or creating cells that
have the ability to recruit host cells to the implantation site[35,36].

The promise of using clustered regularly interspaced short palindromic repeats
(CRISPR) technology brings about new hope as a tool for the gene editing of stem
cells[37,38].  Brunger  et  al[39]  used CRISPR for  targeted deletion of  the  interleukin-1
receptor type 1 gene in murine iPSCs to make custom-made inflammation resistant
cartilage cells. Genome editing by CRISPR has also been used to correct Duchenne
muscular dystrophy patients derived iPSCs successfully to differentiate muscle cells
that express functional protein[40]. Moreover, genetic modification of patient-derived
iPSCs  using  CRISPR  and  other  genetic  engineering  tools  has  been  used  for
hemoglobinopathies such as β-thalassemia and sickle-cell anemia[41-44].

Immortalized cell lines are genetically mutated cells with unlimited propagation
potential that are generated to prevail major challenges of cell source availability, such
as early onset of cellular senescence and the consecutive limited cell expansion and
differentiation potential. The mutations required for immortality can occur naturally
or can be induced intentionally. There are several possible gene modification methods
to bypass the senescence block. Viral oncogenes such as SV40 and E6/E7 proteins of
oncogenic  human  papillomaviruses  are  used  for  regulating  human  cellular
senescence[45-48].  One possible gene editing approach is artificial expression of key
proteins required for immortality such as telomerase (discussed in later parts of this
article).  However,  it  was  reported  that  they  might  be  associated  with  genomic
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instability and increased risk of cell transformation[33,49,50].
Conditionally reprogrammed cells  are another gene therapy approach used to

rapidly and efficiently generate an unlimited number of patient-derived cells. In this
technique by using both fibroblast feeder cells and a Rho-associated kinase inhibitor,
Liu et al[51] indefinitely extend the life span of primary human keratinocytes ex vivo.
Unlimited propagation of these karyotype-stable and non-tumorigenic cells offer
opportunities  for  regenerative  medicine  as  these  cells  have  a  stem  cell-like
phenotype[52].

In  spite  of  preliminary  success,  several  hurdles  prevent  both  laboratory  and
particularly clinical  applications of  these gene-editing technologies.  Genetic  and
epigenetic changes might cause unresolved issues to the patient. Transgenic genes,
vector genes, or non-autologous stem cells might trigger immune reactions or even
induce neoplastic transformation. In addition, developing an ideal gene vector system
is next to impossible; the most common vectors are viruses. Beyond the uncontrollable
insertional  mutagenesis  of  viruses  leading  to  increased  risk  of  malignant
transformation, viruses can cause adverse events such as toxicity and immune and
inflammatory responses[34,53].

Ethical issues of gene editing of stem cells should not be overlooked. Matters like
safety and efficacy of gene editing, including off-target mutations, raise concerns
regarding human enhancement and eugenics that must be closely regulated. All in all,
it is a necessity to set boundaries for techniques that have dire consequences[37,54].

CELLULAR AGING AS A LIMITING FACTOR
Aging, whether it is in a stem cell or a fully differentiated cell, seems to be the result
of  particularly  shared  processes.  Some  believe  that  aging  occurs  due  to  the
incapability of senescent stem cells to contribute in tissue repair and regeneration,
while others suggest that the vicious cycle of the dysfunctional relationship between
stem  cells  and  their  niche  cells  is  the  leading  contributor  in  the  progressive
deterioration during aging[55].

Cell intrinsic changes usually occur due to the accumulation of damage caused by
normal  cellular  processes  like  metabolism and proliferation,  while  cell  extrinsic
changes are derived by a factor external to the cell subjected to those changes, such as
paracrine and endocrine factors, ionizing radiation. and changes in the extracellular
matrix[55]. Sometimes it is almost impossible to delineate the intrinsic and extrinsic
changes. For instance, free radicals produced during both oxidative phosphorylation
(a cell intrinsic factor) and generated by ionizing radiation (a cell extrinsic factor) can
harm cellular  components  leading to senescence[56].  These intrinsic  and extrinsic
elements are discussed in detail in the following sections.

Functional decline of aged stem cells
During aging, several functional properties of the stem cells are being affected[55]. For
instance, aged stem cells, especially neural stem cells[57-59], germline stem cells[60], and
muscle satellite cells[61-65], lose their cellular polarity. As a consequence, they lose their
ability to divide asymmetrically, a key feature of stem cells helping them to preserve
the stem cell repertoires[55]. This loss of polarity is granted mostly by cell extrinsic
factors like aged niche cells, dysfunctional adhesion molecules, disrupted morphogen,
growth factors signaling, and inflammation[66-71]. Another phenomenon that is seen in
aged stem cells is a lineage bias in the differentiation of their progenies. To enumerate,
aged hematopoietic stem cells (HSCs) tend to skew toward the myeloid lineages more
prominently compared to young and fully functional HSCs, a circumstance that leads
to the incompetence of adaptive immune system in aged individuals[55,72-83].

Another  example  is  loss  of  osteogenic  differentiation  and  biased  adipogenic
commitment of mesenchymal stem cells (MSCs), which contributes to osteoporosis
and bone marrow fat accumulation in aged individuals. Over-expression of receptor
activator  of  nuclear  factor  kappa  B  ligand,  down-regulation  of  peroxisome
proliferator-activator receptor gamma, and suppression of forkhead box family O3 by
protein kinase B (AKT) signaling in aged MSCs are proposed as the mechanisms
responsible in this phenomenon[84-86]. This age-associated skewed differentiation is not
completely understood for cells like ESCs and iPSCs. For instance, Xie et al[87] showed
that H9 ESCs have an increased tendency for ectodermal lineages; however, this may
be  explained  by  the  culture  media  composition.  However,  they  observed  no
difference in teratoma formation between old and young ESCs. iPSCs were found to
have a different story;  while some studies have claimed that iPSCs have skewed
differentiation capacity, probably because of their retained epigenetic memory of their
original cell lines[88], other studies have reported that the iPSC differentiation capacity
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has no correlation with the cell source they are originated from[24,89].
Additionally, aged stem cells lose their migratory and homing potential, due to

both cell intrinsic and cell extrinsic changes. For instance, transplantation of young
mouse HSCs to old individuals delivers a lower yield compared to young recipients,
which is  due to the inferiority of  the aged bone marrow niche[90,91].  Additionally,
transplantation of old HSCs to young individuals is less effective in contrast to young
donor cells, which shows a decline in the homing capacity of old stem cells due to
intrinsic  factors [ 7 2 , 9 0 , 9 1 ].  Another  interesting  aspect  of  HSCs  is  that  using
immunophenotyping, it has been shown that the number of HSCs increases with age;
however,  functional  evaluation  of  these  immunophenotypes  shows  reduced
engraftment and improper differentiation in the new host[55,78-80,92]. This indicates a
decrease in the population of functional HSCs or a form of clonality that happens with
aging[55,81-83].

Yet, another example is heterochronic transplantation of aged mice muscle satellite
cells into young recipients[61-65]. These cells show much lower regenerative capacity in
old  donors  compared  to  young  recipients,  mostly  due  to  cell  extrinsic  factors
including,  but  not  limited to,  Wnt,  Notch,  and transforming growth factor  beta
signaling  as  well  as  altered  Janus  kinase-signal  transducer  and  activator  of
transcription signal transduction[93,94]. In addition to the declined in vivo engraftment
potential, aged satellite cells also have a reduced in vitro proliferation capacity[95-99].

Replicative senescence, Hayflick limit, and telomere length
Replicative senescence, equally known as Hayflick limit, is a phenomenon observed in
vitro in which a primary cell or a stem cell stops dividing after a particular number of
doublings.  While the mechanism of Hayflick limit is  not thoroughly understood,
many attribute telomere attrition and genomic instability as the principal mechanism
of  replicative  senescence[84,100].  For  instance,  MSCs  stop  dividing  after  20  to  40
doublings when their telomeres are between 5.8 and 10.5 kb[84,101-103]. Despite the fact
that telomere attrition can be considered an intrinsic change in stem cell replicative
senescence, several questions remain to be addressed. Considering the fact that non-
dividing cells also senesce[104-106], can we really take telomere attrition as one of the
integral causes of aging, or is it just one of the many “effects” of the aging process that
worsens this vicious cycle? Additionally, if telomere attrition is a deriving cause for
aging, is it possible to increase the lifespan of a model organism, like a mouse or a rat,
by “telomerization” or telomere lengthening? While the answers to these questions
are  controversial,  it  seems  possible  to  immortalize  cell  lines  via  expression  of
telomerase subunits. Human telomerase reverse transcriptase (hTERT)-immortalized
cells show extended life span with improved functional activities[58].  A successful
example of this approach is the use of immortalized human keratinocyte cell lines in
the treatment of chronic wounds and complex skin defects[59,60]. Notwithstanding, one
study showed that over-expression of TERT only increases the median lifespan of the
cancer-resistant mice, implying that telomere attrition might be important only in the
late stages of aging[55,107,108]. Additionally, as mice have very long telomeres, it is not
clear why they have a much shorter lifespan. Knocking out the RNA component of
telomerase has no obvious life-threatening effect up to the sixth generation of these
mice. Albeit, HSCs of the fourth generation started to show lineage skewness[109,110].

Stem cells  spend most  of  their  life  in  a  quiescent  state,  probably  to  avoid the
replicative damages, especially those related to DNA duplication. These quiescent
stem cells are more likely to acquire destructive DNA damage after a double-strand
break compared to a cell in its proliferative state. Quiescent stem cells mostly use the
error-prone non-homologous end joining repair mechanism, while proliferative cells
utilize homologous recombination, a much more accurate repair mechanism[111,112].

Autophagy
Perhaps one of the most extensively studied factors involved in aging is autophagy.
Autophagy is  a  conserved mechanism that  has  evolved to  recycle  the  damaged
structures  and  organelles  in  a  eukaryotic  cell.  This  very  sophisticated  feature
integrates  the  signal  from  several  pathways  to  regulate  the  level  of  protein
degradation. AMPK (adenosine monophosphate-dependent protein kinase), mTOR
(mechanistic  target  of  rapamycin),  and ULK1 (Unc-51 like  autophagy activating
kinase 1) are the most important upstream signaling pathways of autophagy that
regulate atg (autophagy related) genes and autophagosome formation. AMPK senses
the ratio of AMP:ATP and activates ULK1 whenever the cell requires more energy.
mTOR, on the other hand, inhibits ULK1 and autophagosome formation whenever it
integrates the signal from nutrients and growth factors, which are the prerequisites of
anabolism[11,113,114].  Every cell  tries  to  strike a  balance between the three forms of
autophagy  (macro-autophagy,  micro-autophagy,  and  chaperone-mediated
autophagy) and protein synthesis[115]. It has been shown that autophagy is decreased
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in aged cells of both animal models and humans, regardless of whether it is a stem
cell  or  a  fully  differentiated  one.  While  autophagy  declines  progressively,  tiny
amounts of damage gradually accumulate throughout time[115-117]. Stem cells have at
least two mechanisms to prevent these damaged proteins and organelles to build-up:
the asymmetric division (which diminishes with aging)[55,118-120] and maintaining high
levels of autophagy and proteasome activity[55,121].

Aged MSCs and HSCs show accumulation of autophagic vesicles and inclusion
bodies  with  LC3II  or  ubiquitin  expression,  which  are  the  features  of  decreased
autophagy with age. Rapamycin or spermidine treatment restores the autophagic
capacity,  leading  to  clearance  of  those  accumulated  autophagic  vesicles  and
inclusions[115,122,123]. Additionally, Ho et al[123] showed that more than two-thirds of the
HSCs in an aging population have very low levels of autophagy and skewed and
escalated differentiation to myeloid lineages, while only less than a third of them had
high levels of autophagy and regenerative potential comparable to that of young
HSCs[115,123]. It has also been shown that while young MSCs in GFP-LC3 transgenic
mice have high levels of autophagy in the quiescent state, this capacity fades with
aging[115].  Furthermore,  using conditional  knock-out mice,  when autophagosome
formation  is  genetically  compromised,  senescence  can  rise  from impairment  of
proteostasis[115,122].  These  studies  substantiate  the  importance  of  autophagy  for
maintaining stemness in a quiescent stem cell[115].

Epigenetic changes
In a fertilized egg, the genome of two mature and non-young individuals get stripped
of  epigenetic  marks  (except  for  the  imprinted areas)  to  form a  new very  young
individual  with  almost  the  same  lifespan  as  the  parents[124].  This  epigenetic
reprogramming can be emulated by in vitro induction of totipotency/pluripotency.
The nucleus of a somatic cell can either be fused with the cytoplasm of an enucleated
oocyte  (somatic  cell  nuclear  transfer)  or  be  transfected  with  viruses  expressing
Yamanaka factors  (SOX2,  c-Myc,  Oct-4,  and KLF4)[20]  to  produce an iPSC[55,125-128].
Although this reprogrammed cell is very similar to a freshly young ESC in many
aspects, its epigenome is slightly different[127]. In fact, iPSCs are reprogrammed with
regard to the age-, tissue-, and senescence-associated DNA methylation patterns but
keep  some  donor-specific  DNA  methylation  patterns[129].  In  2013,  Abad  et  al[130]

produced a transgenic mouse expressing the four Yamanaka factors in every cell upon
administration of  doxycycline.  These mice  usually  develop teratomas in  several
organs and tissues. Another interesting fact about epigenetic reprograming is that it is
possible  to  make phenotypically  young neural  stem cells  from iPSCs,  which are
generated from aged fibroblast, while direct transdifferentiating neural stem cells
from aged fibroblasts maintains the aged phenotype[55,131].

This reprogramability of the epigenome helps us to unravel detailed mechanisms of
aging in order to find a way to conquer it in the future; however, it is obviously not a
practical formula for rejuvenation[55]. Perhaps it is better to use epigenomic results to
reinforce gene regulatory networks and to decipher what signals are differentially
active in old cells compared to their younger counterparts.

miRNA
Among the differentially expressed genes in aged cells in comparison with the young
cells,  there are several non-coding RNAs, including miRNAs expressed (some of
which are even proposed as biomarkers for aging)[56,84,132]. miR-195 is over-expressed in
aged cells and reduces the telomerase reverse transcriptase; also, knocking-down this
miRNA in MSCs increases  their  regenerative  capacity  when transplanted to  the
infarcted myocardium[56,133]. Another example is over-expressed miR-34a, which is
elevated in infarcted mouse hearts and is associated with apoptosis and senescence.
Also, its inhibition decreases the number of apoptotic cells in cardiac tissue[56,134,135].
Some of these differentially expressed miRNAs control proliferative and regenerative
capacity of the stem cells by regulating cell cycle transition and stemness factors (such
as Nanog)[84,133,136-138].

Role of mitochondria in stem cell senescence
Free  radicals,  otherwise  known  as  reactive  oxygen  species  (ROS),  are  a  well-
recognized origin  of  age-related molecular  injuries  including but  not  limited to
nuclear  and mitochondrial  DNA mutations,  organelle  damages,  and lipofuscins.
Chronic inflammation, ionizing radiation, and mitochondrial dysfunction are the
most prominent sources of ROS in cells[56,139,140]. Stem cells employ several mechanisms
to  keep  ROS  and  its  damage  at  bay.  To  enumerate,  quiescent  HSCs  depend
predominantly on glycolysis to limit ROS production[75,141].

Sirtuins, (SIRT1–SIRT7) a conserved family of NAD+-dependent deacetylases of
which  SIRT1  is  the  best  known,  appears  to  increase  mitochondrial  turnover  by
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activation of mitophagy. Activation of SIRTs can considerably extend the replicative
capacity  of  human  bone  marrow  stem  cells [142]  and  human  fibroblasts [11 ,143].
Additionally, SIRTs boost the stress-relieving and antioxidant mechanisms in cells.
Studies show that over-expression of certain SIRTs increases catalase and superoxide
dismutase,  while their knock-down compromises cell  proliferation and increases
cellular senescence[56,144-147].

On the other hand, stem cells have a unique way to get rid of the damaged proteins
and organelles[55,75].  During asymmetrical division, stem cells actively accumulate
these injuries in the differentiating daughter cell, while keeping the daughter stem cell
almost clean of them[109,118-120,148]. This polarized division is lost in certain stem cells, like
HSCs and germline stem cells, during aging. As a matter of fact, less-polarized HSCs
are  more  biased  toward  myeloid  lineages[55,70,71].  Furthermore,  autophagy  and
proteasome-mediated  degradation,  the  other  mechanisms  that  keep  even  the
quiescent stem cells clean, diminish with aging. When dysfunctional mitochondria
cannot be recycled by mitophagy (macro-autophagy of mitochondria), it generates
more ROS. As a result,  we observe a vicious cycle between impaired autophagy,
mitochondrial dysfunction, and ROS-mediated injuries[56,139,140,149]. Xie et al[87] found that
the most prominent changes that occur in long-term passaged ESCs have to do with
the  mitochondria;  older  passages  of  H9  and  PKU1  hESC  lines  have  elevated
mitochondrial mass, ROS level, and mitochondrial membrane potential. On the other
hand, aged iPSCs develop defects in their nuclear envelop[150], which might be the
cause of interference in SIRT and NF-kB nuclear transportation and downstream
signaling in these cells[151,152].

Above all, some studies contradict ROS as a contributing factor in aging. At the
cellular level,  Zhu et  al[153]  showed that there is  “no evident dose-response effect
between cellular ROS level and its cytotoxicity.” For instance, they showed that while
all  three  of  the  piperlongumin,  beta-phenylethyl  isothiocyanate,  and lactic  acid
increased  ROS  in  the  cultured  cells,  only  piperlongumin  and  beta-phenylethyl
isothiocyanate, two ROS-based chemotherapeutic agents, killed the cells and lactic
acid  “spared  them.”  Additionally,  although  chemical  depletion  of  glutathione
increased ROS much higher than piperlongumin and beta-phenylethyl isothiocyanate,
it did not affect the cell growth in cultured samples. However, these results were
achieved in cancer cells, and it is unclear if similar mechanisms also happen in stem
cells. Le Gal et al[154] showed that administration of the antioxidant N-acetyl cysteine to
a mouse model of melanoma not only decreased the survival of the mice but also
increased the severity of their tumors by increasing metastasis. Biesalski et al[155] meta-
analytically reevaluated clinical effectiveness of antioxidants on mortality and health.
They showed that micronutrients, including those with antioxidant activity, are only
effective in those with the deficiencies or the risk of deficiencies, but not effective in
individuals with the micronutrients above the minimum required level. All in all,
these counterexamples provide sufficient evidence to raise a reasonable doubt toward
ROS-based therapeutics.

INTERVENTIONS FOR REJUVENATION OF AGED STEM
CELLS
The ultimate goal of unraveling mechanisms of aging is geroprotection (preventing
from aging) or rejuvenation (making a senescent cell young again). For this purpose,
there are three options: Changing the extrinsic factors, altering the intrinsic factors, or
manipulating  the  genomic  targets  of  those  changes.  We  can  either  use
pharmacological means, modify the environment in which the stem cells reside, or
genetically manipulate the stem cells.

Using pharmacological means to prevent aging or even rejuvenate is, perhaps, the
most practical measure. Different mechanisms have been targeted pharmacologically.
For instance, antioxidants like vitamin C and N-acetyl cysteine have been used to
reduce  ROS  both  in  vitro  and  in  vivo[75,154,156].  However,  their  efficacy  is  limited,
especially in vivo. Although antioxidants to some extent show geroprotection in cell
culture, the possible life extension by reduction of free radicals is challenged by in vivo
experiments[115,153-155]. Comparatively, SIRTs are another example of drug targets for
geroprotection. Resveratrol, resveratrol-mimicking compounds, and NAD+ seem to
hinder aging both in vitro  and in vivo  by activating certain members of  the SIRT
family[157-160].  In  particular,  resveratrol  improves  metabolism and enhances  DNA
repair, which are critically important in aging[11,157].

Metabolic  dysfunction  is  yet  another  focus  for  research  on  geroprotection.
Rapamycin, spermidine, quercetin, and metformin are only a few examples of the
drugs that increase the lifespan by this mechanism, whether it is in cell culture or in
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vivo[56,161].  As we previously discussed, the balance between protein synthesis and
protein recycling is  disrupted in aging.  Rapamycin that  inhibits  mTOR gives an
advantage to the autophagic side of the balance between autophagy and protein
synthesis[56,114,162].  Likewise, metformin activates AMPK to increase autophagy and
other  anti-stress  mechanisms  in  the  cell  and  slightly  inhibits  mTOR  complex  1
through targets upstream of mTOR complex 1[11,163,164]. This boosted autophagy helps
the cell to get rid of the damaged organelles and macromolecules much faster than it
did before. Thus, it delays the damage accumulation, which is an important factor in
dysfunctioning of stem cells[73,115,165-167]. Both of these small molecules have been shown
to  increase  the  lifespan,  decrease  the  doubling  time,  and  improve  functional
properties  of  stem  cells,  e.g . ,  engraftment,  migratory,  and  regenerative
potential[11,115,165-167]. Furthermore, combination treatment of cardiac stem cells with
rapamycin and resveratrol improves the cardiac output of the infarcted myocardium
in mice[56,168].

Caloric restriction (CR) is the most effective intervention for lifespan extension.
Mechanistically, CR exerts its benefits through the alteration of the nutrient/growth
factor-sensing mTOR signaling,  energy-sensing AMPK signaling,  stress-fighting
forkhead box family O signaling, and SIRTs[55,169-172]. Therefore, CR not only increases
the longevity of  stem cells  but also enhances the performance of  niche cells  that
support  stem cells[55,173-176].  Interestingly,  most  of  the compounds that  extend the
lifespan by improving metabolism, especially those that promote autophagy like
metformin  and  spermidine,  are  known  as  CR  mimetics[73,174,177,178].  In  fact,  the
geroprotective activity of CR is repressed by hindering autophagy[73,117]. While CR
works best in vivo, it is not a practical way to extend the in vitro lifespan of stem cells,
precisely because it limits the doubling time of cells. Thus, these CR mimetics might
be the most practical intervention to be used in cell culture[11].

Although  interventions  like  genetic  manipulation  might  effectively  work  to
counteract  senescence  in  stem  cells,  their  cost  and  safety  concerns  limit  their
application[75,179]. Studies mentioned interventions like over-expression of telomerase
as a proposed mechanism for counteracting replicative senescence in MSCs[84,180]. For
instance,  over-expression  of  hTERT in  MSCs increased their  lifespan,  while  the
normal karyotype was maintained[84,180,181]. Another strategy to genetically prevent
aging  is  knocking-down  either  the  retinoblastoma  protein  gene  or  the  p16INK4a

gene[84,182,183]. Retinoblastoma gene silencing decreases the age-related DNA damage
and  senescence  as  well  as  increases  the  functionality  of  MSCs[84,182].  Finally,
manipulating  miRNAs  could  be  an  effective  strategy,  but  it  needs  further
experimental  support.  To enumerate,  knock-down of miR-195 leads to increased
expression of hTERT, and forkhead box family O3 also intensified phosphorylation of
protein kinase B (AKT) in senescent MSCs[84,133].

CONCLUSION
The way toward the production of tissue engineered products still has serious hurdles
to overcome: The choice of cell  source, proper biomaterial selection, maintaining
blood  supply  by  designing  suitable  scaffolds,  and  three-dimensional  tissue
architecture. Combined efforts to prevail over these major obstacles are warranted to
pave the way for achieving tissue engineered products at a commercial scale.

With regards to  the choice  of  cell  source,  aging is  a  limiting factor.  Aging,  as
inevitable as it seems, is proven to be conquerable. In different cell types the problem
of aging is preventable and to some extent reversible. As aging is a very complex and
dynamic phenomenon, it would be better to approach it from a systems biology point
of view to reach the best results. Perhaps we need to target multiple pathways to find
the maximum efficacy.  Regardless  of  the application of  the stem cells,  i.e.  tissue
engineering and cell therapy, we have to overcome aging, both in the original cell
source and in the in vitro proliferation.
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