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Abstract
Three-dimensional (3D) culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures. In cancer and stem cell research, the natural cell characteristics and architectures are closely mimicked by the 3D cell models. Thus, the 3D cell cultures are promising and suitable systems for various proposes, ranging from disease modeling to drug target identification, as well as potential therapeutic substances that may transform our lives. This review provides a comprehensive compendium of recent advancements in culturing cells, in particular cancer and stem cells, using 3D culture techniques. The major approaches highlightedting here included cell spheroids, hydrogel embedding, bioreactors, scaffolds, and bioprinting. In addition, the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed, and the prominent studies of 3D cell culture systems were discussed.
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Core tip: Three-dimensional cell culture systems are considered as an in vitro platform for cancer and stem cell research, which hold a great potential as a tool for drug discovery and disease modeling. With such systems, the success rate in disease modeling, drug target identification, and, anticancer screening, could be accelerated and resulting in an emergenceing of a novel and effective therapeutic means as well as the development of tissue replacement substances that may transform our lives.
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INTRODUCTION
Cancer is one of the most serious diseases causing almost one1 in 6six deaths globally, which is estimated to equal to 9.6 million deaths in 2018[1]. Considerable efforts have been intended to develop effective approaches to cure cancer since past. Among them, drug discovery could be one of the most important approaches aiming to identify and verify the  new and potent anti-cancer agents for both daily medication and chemotherapy. For primarily testing the capability of novel anti-cancer drugs, the experiments awere performed on cell-based assays, which offer the information about cellular responses to drugs in cost/time effective and high throughput manners. 
Currently, two-dimensional (2D) platforms in which flat monolayer cells areis cultured is still become the most commonly used for the research of cell-based assays. The 2D cell culture systems are comparatively easy, convenient, and cost-effective, and widely used. However, various drawbacks and limitations are still of concerned. The first drawback of a 2D cell culture systems is that an actual three-dimensional (3D) environment in which cancer cells reside in vivo is not accurately mimicked[2]. Especially, tThe irrelevant 2D environment may provide misleading results regarding the predicted responses of cancer cells to anti-cancer drugs[3]. Generally, standard preclinical screening procedures for therapeutic agents involveing target identification of a compoundss is respectively sequenced from the 2D cell culture systems tests and animal model tests and then to the introduction ofto clinical trials[4]. Along with each phase, the percentage of efficient agents dramatically decreasesd. Especially anticancer agents or small molecule oncology therapeutics, Lless than 5% of themanticancer agents and small molecule oncology therapeutics p passed the clinical trials and were finally approved for marketing by the regulatory agencies[3]. One possible cause of the failure is that drug responses of 2D cell cultures systems didseemed not to consistently predict the outcome of clinical studies[5-7]. 
The key limitation of traditional 2D culture is the failure to imitate the in vivo architecture and microenvironments. As a consequence, there are many different features that 2D‑cultured cells possess compared with in vivo cells such as morphological characteristics, proliferation and differentiation potentials, interactions of cell-cell and cell-surrounding matrix, and signal transduction[8,9]. Such concerns inspired the emergence of 3D cell cultures systems, a promising approach to overcome the inconsistency between cell-based assays and clinical trials. The 3D cell culture systems provided the novel cell-based assays with more physiological relevance, especially the behavioral similarity to the in vivo cells. Over the last decade, a variety of in vitro platforms was developed to achieve the 3D culture systems for cancer and stem cell applications such as novel drug development, cancer and stem cell biological researches, tissues engineering for in vivo implantation, and other experimental cell analyses[10-12]. Thus, the study of cellular phenomena in a conditions that closely imitates in vivo scenery could be elaborately constructed in vitro[11,13,14].
Here, we aim to demonstrate the necessity of novel 3D cell culture systems and describe, compare, and contrast the 3D cell cultures techniques that has been developed to date and. In addition, we also present their possibility to be applied in cancer and stem cell aspects.

CELL CULTURES AS A RESEARCH MODEL	
In 1907, Harrison et al[15] implemented the cell culture technique to his research, exploring the origin and the development of nerve fibers. Since then, the technique has been continuously improved, and cell-based experiments can be effortlessly conducted based on such cell culture technique nowadays due to cell banking[16]. The selection of cell culture procedures for cancer research is the key for the better understanding of tumor biology, resulting in the optimal and effective conditions for radio/chemotherapy, as well as the discovery of new cancer -treatment strategies[17]. At the very beginning of the cell culture era, the cultures were mostly carried out under the an adherent condition, which is called the 2D monolayer cell culture model[18]. However, the in vivo environment provides cell-cell and cell-extracellular matrix (ECM) interactions in a 3D structure[19], and the 2D monolayer cells might not accurately mimic the actual 3D environment of the in vivo cells. The clear evidence was the experiments using the immortalized tumor cell lines grown in the 2D culture systems resulted, which came up with a 95% drug response failure rate in human subjects. It indicated that the 2D cell culture model could be an inaccurate model for drug development[20]. Therefore, the drug discovery and validation processes should integrate both 2D cell culture screening and animal study, complying with the standard procedure prior to clinical trials. Nonetheless, the data collected from the 2D cell system are often misleading for in vivo responses as previously mentioned, and the animal models are expensive, time consuming, controversial with ethical dilemmas, and inconsistent due to species differences[21]. The development of novel models is needed to resolve the inconsistency between the 2D cell culture systems, animal models, and clinical trials. Therefore, the 3D in vitro cell culture platforms could be the potential candidate[22].

TWO-DIMENSIONAL VS THE THREE-DIMENSIONAL CELL CULTURE MODELS
Cell culture is the most basic yet essential process for preclinical drug discovery. Even though the unreliable flaws of monolayer cell cultures arehave been pointed out, 2D cell culture models are still the first option that scientists turn to due to its simplicity in order to obtain some preliminary results. Nevertheless, 2D cultures may not sufficiently mimic the physiological conditions in a 3D network whereas in vivo cells reside. Therefore, deceptive data from 2D cell culture model often leads to the irrelevant prediction of drug efficacy and toxicity and finally causes the failure in drug validation and approval processes[23]. 
One obvious advantage of cell culturing in a 3D manner over 2D cell culture is that it contributes the expression of ECM components as well as the interactions between of cell-cell and cell-matrix. The characteristics of 3D cell cultures and the traditional 2D cell cultures models are shown ined Figure 1. The traditional 2D cell cultures result in a monolayer cell expanding on a flat surface of glass or, commercial polystyrene plastic flasks for tissue culture (Figure 1A). In contrast, 3D cell cultures promote cells to form 3D spheroids by utilizing an ECM material (Figure 1B). Cell spheroid is the important characteristic that resembles in vivo cells for further replicating cell differentiation, proliferation, and function in vitro. Thus, 3D spheroid culture is considered  as an improved model for predictive in vitro cell-based assays and may deliver high physiological relevance for preclinical drug discovery, especially in cancer/stem cell researches.
Generally, cells of multicellular organisms capable of forming tissues are in 3D arrangements with complex interactions within cell populations and also between cells and environments. With Tthe dynamics of nutrient and chemical transport between cells in the in vivo conditions, cells are hemostatically provided with a relatively constant supply of nutrients with the minimized level of waste products due to the activity of the circulatory system. Therefore, the 3D arrangements of cells are the major employment for 3D cell culture with the optimal spatial organization of cells in the culture environment to be considered[24-26]. When cells awere grown in 3D culture systems, cells were also induced the to formation of aggregates or spheroids within the providing matrix or the culture medium. Even though with such spheroid culture model, cell-cell interactions and cell-matrix interactions are not yet perfectly mimicked in a spheroid culture model, the natural environment in vivo, they are close enough to induce the morphological alteration of cells not to not be relatively flat but closely resembles its natural shape in the body (Figure 1C). 
Furthermore, within the spheroid structure, various stages of cells are established, including proliferating, quiescent, apoptotic, hypoxic, and necrotic cells due to the gradients of nutrients and oxygen level[27,28]. The proliferating cells could be found mainly at the outer layer of the spheroids sincebecause they could are exposed to the sufficient amounts of nutrients from the culture medium[29,30]. Cells at the core of spheroids tend to be in quiescent or hypoxic states because since they are faced with the lack of oxygen, growth factors, and nutrients[31]. The cellular heterogeneity within a  cell population is quite relevant to in vivo tissues, organs, and even tumors. At this point,  sincedue to cell morphology, interactions, and heterogeneity of cells grown in 3D culture could imitate to what occurs in vivo, it is reasonable to hypothesize that the cellular processes of these cells are also applicable[32].
Comparisons of 3D spheroid culture models and 2D monolayer cell culture models were shown in Table 1. Numerous studies have proven the differences in cell viability, morphology, proliferation, differentiation, cellular responses to stimuli, cell-cell communication, cell stiffness, migrant and invasive properties of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug responses, transcriptional and translational gene expression , general cell function, and in vivo relevance between cells cultured in 2D and 3D models. For example, cell polarization could be more accurate depicted in 3D cell cultures models unlike in 2D models that in which the cells can only be partially polarized. Moreover, greater stability and longer lifespans were found in 3D culture models; 3D spheroids can be cultured up to 3 weeks3 wk, whereas 2D monolayer culture can last for less than a week due to the limitation of cell confluence[33]. Therefore, 3D cell culture models might be more appropriate for handling the long-term experiments and for determining long-term effects of the drug on cellular responses.

THREE-DIMENSIONAL CELL CULTURE TECHNOLOGIES
BecauseSince the advantages of 3D culture systems have become widely realized, there have been many studies intensively focused on the development and optimization of 3D cell culture technologies. With the integration of the recent advances in cell biology, microfabrication techniques, and tissue engineering, a wide -range of 3D cell culture platforms wereas constructed, including multicellular spheroid formation (liquid overlay culture and hanging drop method), hydrogels-based culture, bioreactor-based culture, bio-printing, and scaffold-based culture. A summary of the advantages, disadvantages, and research stage of each models are shown in Table 2. Although each 3D culture techniques/platforms are different in both principle and protocol, the same objectives that they share are to provide the similar features of in vivo cells in morphological, functional, and microenvironmental aspects. This section aims to briefly describe the key features of each techniques.

Multicellular spheroids formation
Liquid overlay culture: Liquid overlay culture could be the simplest of all 3D cell culture Techniques (Figure 2A). To create 3D culture models, the surface for cell culture isare covered with a thin film of inert substrates, such as agar[34], agarose[35], or matrigel[36]. By preventing cell adhesion on the surface and providing the artificial matrix, liquid overlay culture easily promotes the aggregation of cells to become spheroids[37]. This technique is cost-effective and highly reproducible without requirement of any specific equipment[38]. Different cell types can be co-cultured with this technique[39]. However, the number and size of formed spheroids are problematicdifficult to be monitored[40]. Recently, ultra-low attachment plates have been developed and commercialized for the liquid overlay technique. Such plates contain individual wells with a layer of hydrophilic polymer on the surface to overcome the requirement for manual coating, which prevents cells attachment. This technique with itse specifically designed plates exhibit the capability to produce one spheroid per well, and is favorable enough for medium-throughput applications[41].

Hanging drop technique: The hanging drop technique for 3D spheroid production was firstly introduced by Johannes Holtfreter in 1944 for cultivating embryonic stem cells. Such The technique later became the foundation of scaffold-free 3D culture models capable of multicellular spheroid generation. Resulting spheroids could be generated with consistent size and shape controlled by adjusting the density of cell seeding. As few as 50 cells to up to 15000 cells density could be varied to obtain the desirable size of spheroids[42]. In the very beginning, the hanging drop technique was carried out in the petri dish lid, by dropping a small volume of cell suspension (15-30 μL) with certain a specific cell density onto the lid. Then, the lid was subsequently inverted and aliquots of cell suspension turned into hanging drops without dripping due to surface tension. Consequently, cells were forced to accumulate at the bottom tip of the drop, at the liquid-air interface, and further aggregate and proliferate until spheroids were formed (Figure 2B). LatelyRecently, bioassay dishes have been used in place of petri dishes for more well-controlled experiments to facilitate the maintenance of moisture levels of the culture system, so that cell culture can be done in the same manner of standard cell culture procedures. 	Comment by Author: Needs reference.
The hanging drop technique is relatively simple and applicable for numerous cell lines, andplus its reproducibility could can be almost 100% for generating one 3D spheroid per drop[42]. The 3D spheroid obtained from such this technique tends to be tightly packed rather than aggregated loosely, and low variability in sizes were observed. Kelm et al[42] reported that 3D spheroids exhibited patho/physiologically relevance, since because their structures were highly organized along with their produced ECM and turned to be a ‘tissue-like’ structures. As this technique is based on the tendency of cells to aggregate to each other spontaneously instead of depending on the provided matrices or scaffolds, the problematic concerns regarding the effects from 3D structures formation are relievedreduced. However, the undeniable drawback of the hanging drop technique is the limited volume of the cell suspension. Only up to 50 µL of suspension, including the testing medium, could can be accommodated onto the upside down surface unless dripping occurs as the surface tension is not enough to keeps liquids attached on the surface against gravity[43]. Another limitation is the difficulty in changing culture medium during cultivation without disturbing the spheroids[31].

Hydrogels: Hydrogels are the networks of cross-linked polymeric material, which are generally composed of hydrophilic polymers with high water content (Figure 2C)[44]. There are the swollen structures or microspheres integrated within the network for cell encapsulation and the circulation of nutrients and cellular waste in and out of the hydrogels[45]. Additionally, gels exhibit a soft tissue-like stiffness to potentially resemble natural ECM becausesince they are made from mixtures of natural polymers such as collagen, and alginate, two of the most used substrates in 3D cell culture history[46]. 
The most commonly use of the hydrogels are to be cooperatedis to be with the combined with a reconstituted basement membrane preparation extracted from mouse sarcoma, which has been commercialized by thein Matrigel trademark (Corning Life Sciences, Tewksbury, MA, United States). Even though such commercialized hydrogels are rich in ECM proteins, they also possessed some drawbacks, including the deficiency in gelation kinetic control, the undefined and uncontrollable polymer composition, and lack of mechanical integrity. Lot-to-lot variability due to the manufacturing mistakes and poorly defined composition also cause the difficulty to exact determine the exact responses of cells to some particular stimuli[47].
 Generally, hydrogels are fabricated based on both synthetic and natural polymers, which are water-absorbing, hydrophilic, and highly flexible materials. With the well-controlled fabrication processes and well-defined material composition, hHydrogels have become the prominent materials for 3D scaffold development. Because of their structural similarities to natural ECM, they are favorable for in vivo chemical delivery in a non-invasive manner[44]. A number of synthetic and natural materials can be incoropoerated into hydrogel formation, such as hyaluronic acids, polyethylene glycol (PEG)[48], collagen, gelatin, fibrin, alginate, and agarose[49]. However, the natural hydrogels, like Matrigel and alginate gel, are considered to be more appropriate cell-encapsulated materials due to the great biocompatibility and mild gelling conditions. 
The hydrogels technique for cell culture in a calcium alginate hydrogel was first developed by Lim et al[50] by mixing the cells with the alginate solution, then cross-linking and forming the hydrogel-based microspheres in an isotonic CaCl2 solution (Figure 2C). The alginates hydrogels are very limited for cell adhesion, which is an advantage for cell encapsulation applications[51] which that provides rapid, non-toxic, and versatile immobilization of cells within polymeric networks. In addition, the creation of artificial organs was also consolidated with encapsulating cells or tissue for the treatment of disease. The most well-known example was an artificial pancreas to be used in diabetes therapy[45].
The 3D cell culture can also be carried out in hydrogels and can be integrated with other cell culture models such as cell spheroid cultures, scaffold-based cell cultures, and microchip-based cell cultures[52]. Hydrogels are one potential technique to be used for 3D in vitro technology due to their biocompatibility, sufficient water content, and ECM-like mechanical properties[53]. Although hydrogels were not popularly applied to the field of drug screening, they have been widely used for the development of tissue engineering by mimicking cartilage, vascular, bone, and other tissues by mixing particular cells to hydrogel precursors before the gelling process, in which cells are distributed evenly and homogeneously throughout the gels. 
One reported case was the engineered cardiac tissues obtained from the neonatal rat cardiac myocyte culture in collagen hydrogels which that were used for cyclic mechanical stretch research[54]. Hydrogels also facilitate the delivery of soluble or signaling molecules to cells and providing the supportive surroundings for cell growth and function. For example, transforming growth factor β (TGF-β) was infused into polyethylene glycolPEG hydrogels to govern the function of smooth muscle cells. In athe similar manner, bone morphogenetic protein was covalently attached to alginate hydrogels to govern osteoblast migration and calcification[55]. Despite of a variety of hydrogel type applications, Ca-alginate hydrogels are surely a potent candidate system for the delivery of cells to the infarcted heart since because they are nontoxic, non-immunogenic, do not facilitate pathogen transfer, and allows good exchange of waste products and nutrients[56,57]. Ca-alginate hydrogels wwereas primarily implanted into the heart and shown not to induce harmful responses such as thrombosis[56] or fibrosis[58]. The gradual degradation, resulting from the dispersal of calcium crosslinks[59], generated non-toxic alginate polysaccharide degradation products, which can be excreted via urinary systems[60]. However, besides a number of advantages of hydrogels, the disadvantages of hydrogel are still present ed and should not be disregarded. The uncertainty and complexity in composition influenced by gelling mechanism may cause undesirable and non-specific cellular responses. Additionally, pH based gelling mechanisms can negatively affect sensitive cells[52].

Bioreactors: Since Because the impact of 3D cell culture models as an appropriate in vitro laboratory platform for the discovery of therapeutics and anticancer agents haves been concerned and drawn the attention of scientists, the crucial following step to cope with the increasing demands is the up-scale 3D culture systems from the laboratory to the industrial level. Bioreactors then became the solution for a great spheroids formation with more a precise control system, and guaranteedquarantined reproducibility[61]. With specifically designed to suit the 3D culture approaches, bioreactors have been adapted in many ways. For example,, such as scaffolds have been added to the large cell culture chambers for high volume cell production.
 Normally, a bioreactor for 3D spheroid production can be loosely classified into four categories: (1) spinner flask bioreactors (Figure 2D); (2) rotational culture systems; (3) perfusion bioreactors; and (4) mechanical force systems[18,62]. The general principle behind the bioreactor-based 3D culture systems is that a cell suspension with the optimal cell density is filled into the chamber and kept inwith continuous agitationng manner, either by gently stirring, rotating the chamber, or perfusinged culture media through a scaffold using a pump system. Bioreactors are equipped with media flowing systems to provide the nutrient circulation, metabolic waste expulsion, and homogeneity of the physical and chemical factors within the bioreactors. Therefore, bioreactor-based cell culture models are appropriate for intensive cell expansion and large-scaled biomolecule production, such as antibodies and or growth factors. 
Although bioreactors are labor-intensive and capable of producing a large number of spheroids[63], the produced spheroids are still distributed heterogeneously in size and number of cell population[31]. Therefore, a manual spheroid selection is required for later re-plating onto a dish, if the spheroid size is needsed to be controlled[64]. Nevertheless, Even though spheroid generation via bioreactors requires expensive instruments[65] and high quality/quantity of culture medium, the bioreactors can still provide greater advantages in at the industrial aspectlevel overthat other techniques cannot compete[66].

Scaffolds: The 3D scaffolds are described as the synthetic 3D structures that are constructed from a wide-range of materials and possess different porosities, permeability, surface chemistries, and mechanical characteristics. In 3D culture point of view, tThey are mainly designed to mimic the in vivo ECM of the specific tissues for each particular cell type. The 3D scaffold-based cell culture models have been applied to drug screening[11], drug discovery[47], and investigation of cell behaviors[47]. The 3D scaffolds are meant to be porous, biocompatible, and biodegradable, which provides appropriate microenvironments wherethat cells naturally reside, supporting mechanical, physical, and biochemical requirements for cell growth and function[28]. Several biopolymers are used to generate porous scaffolds, which included collagen[11], gelatin[67], silk[68], chitosan[28] , and alginate[28,69]. As such, various techniques have been used for the fabrication such of scaffolds, such as gas foaming, freeze-drying, phase separation, solvent casting, and particulate leaching. Each technique results in different porosities, pore sizes and shapes, scaffold materials, and features. Among them, freeze-drying is considered as the easiest technique to fabricate porous scaffolds[70].
Sequentially, natural or synthetic materials are polymerized, frozen, and then freeze-dried., tThe frozen water embedded in the polymers is sublimated directly without going through the liquid phase resulting in a porous structure formation[71]. The freeze-drying technique for the fabrication of porous biodegradable scaffolds from polylactic and polyglycolic co-polymer was first developed by Whang et al[72]. With such technique, the porosity and pore dimension of the scaffolds are varied depending on the various parameters such as the ratio of water and polymers and also the viscosity of polymer solution[73]. The porous alginate-based scaffolds can also be easily manufactured by a simple freeze-drying process (Figure 2E). However, it is difficult to generate pores with uniform diameter, but can partially be controlled by varying the freezing temperature[74]. OAnother advantage of this technique is that no rinsing steps are required sincebecause dispersed water and polymer solution are removed directly via sublimation[72]. Additionally, the biodegradation rates of scaffolds is are strongly dependentd on polymer components and molecular weight[75].
To date, Ca-alginate copolymer is one onf the most prominent materials for freeze-dried scaffolds. Several studies have used 3D Ca-alginate scaffolds as a cell culture platform for screening and efficacy testing of anticancer drugs and tissue engineering. 3D Ca-alginate scaffolds were proposed to allow more realistic cell phenomena, similar to those occurring in vivo during cancer formation and progression. Chen et al[69] were developed a 3D porous Ca-aAlginate scaffold cell culture system combined with the functionally-closed process bioreactor to form bone-like tissue within the closely mimicked in vivo environments. The Ca-aAlginate scaffolds were reported to support the growth and differentiation of human bone cell clusters, along with the up-regulation of bone-related gene expression. Florczyk et al[28] developed chitosan-alginate scaffolds using the freeze-drying technique to study cancer stem cells transient behavior in vitro. They found that 3D scaffold-based cultures of prostate, liver, and breast cancer cells exhibited reduced proliferation and tumor spheroid formation, and increased expression of cancer stem-like cell associated mark genes (CD133 and NANOG) compared which were opposed to 2D cell cultures. Chitosan-alginate scaffolds were also proclaimed observed to allow the efficient seeding of human umbilical cord mesenchymal stem cells (MSCs), promoting the inhabitability of cells throughout the whole volume of the scaffold, which reflected good adhesion and proliferation[76].

3D bioprinting: 3D printing technique is a the recently developed technology that, in general, is referreferred to as the construction of customized three dimensional3D structures on demand under computational control in which materials are printed out, solidified, and connected together[51]. 3D printing takes part in a wide-range application, including prototypic and industrial manufacturing, architecture, 3D art and design, and importantly, tissue engineering and regenerative medicine[77]. The 3D tissue printing that the biological constructs composed of cells and biomaterials are printed in a small dimension, ranging from several millimeters to a centimeter. With such manner, tThe term is so called 3D bio-printing sincebecause the biocompatible materials, cells and supporting components are used to form a variety of 3D formats instead of any synthetic materials. Therefore, cell function and viability can be sustained within the printed constructs (Figure 2F)[77]. Various 3D bioprinting platforms can already generate vascular-like tubes[78], kidney[77], cartilage[79] , artificial skin[80], and a wide range of stem cells includinged tissue constructs[81]. 3D bioprinting is needed to precisely deposit cells, biomaterials, and biomolecules layer-by layer by computer-aided equipment and software, which has been possibly constructed by integration of modern science and technology knowledge, including cell biology, engineering, material science, and computer science[82]. 
By using alginate as the main biomaterial in a bio-ink, Zhao et al[83] studied the pathogenesis of cervical cancer using the developed cervical tumor model. In such report, aAlginate, together with gelatin and fibrinogen, was mixed with HeLa cells to initiate gelation prior to printing and resemble the ECM components. The printed constructs were later strengthened by the addition of a calcium chloride solution. Printed HeLa cells subsequently formed spheroids that exhibited more resistant resistance to paclitaxel than 2D monolayer HeLa cells. Correspondingly, Dai et al[33] generated 3D bioprinted constructs of glioma stem cells, using modified gelatin/alginate/fibrinogen biomaterials pPrinted glioma stem cells. They within constructs could survive, proliferate, maintain the inherent characteristics of cancer stem cells, and exhibit differentiation and vascularization potential. In addition, their resistance against temozolomide were higher than those in the 2D cell culture models.
Besides the ability to generate geometrically constructs containing viable cells, the 3D bioprinting technique also facilitated high throughput applications with precise reproducibility[84]. However, the main concerns are the requirement of the expensive 3D bioprinting machine and the negative effects on sensitive cells during the printing process. Cells could possibly be damaged due to osmotic, thermal, and mechanical stresses.

APPLICATION OF 3D CELL CULTURE
Recently, the 3D culture models tend to bewere developed in a specific way to suit each particular cell types more rather than to be versatile because of the different physiological requirements. Despite the great number ofr reported 3D culture-based studies, they least of them still have not been optimized or validated for realistic applications. Advances have been made for cancer and stem cell modeling so far, and prominent studies applied with 3D cell culture systems are summarized in Table 3. 

Cancer modeling
Cancer epithelial cells cultured in 3D culture systems were reported to be altered in shape and lose their polarity. Such features are ordinarily found in cancer progression in an in vivo environments[22]. Agreeably with other key parameters, cCell proliferation, gene/protein expression, and drug -sensitivity of 3D cancer cell models are also more illustrative of in vivo cancer cells compared to those cultured as a monolayer[32]. Therefore, to obtain more relevant data, several studies have been used 3D cell culture systems as a platform for cancer model. 
For example, Peela et al[85] revealed novel genetic dependencies linked with breast cancer progression inthe  3D MCF10 human mammary gland cells to uncover novel genetic dependencies, linked with breast cancer progression. It was found that the alteration in both genetic information and the pattern of gene expression can be disclosed when cells were grown in 3D conditions similar to those in vivo. This induced MCF10 progression model therefore represented a suitable system to dissect the potential biomarkers as well as to evaluate therapeutic targets involved in human breast cancer progression. 
Besides, Zhu et al[86] employed the stereolithographic 3D bio-printer with a newly developed nano-ink to construct hydrogel-based culture systems infused with hydroxyapatite nanoparticles. Such This system provided a bone-specific environment for assessing the invasive properties of breast cancer to bone. The breast cancer cultured in the 3D culture system developed spheroid characteristics with a high migratory ability especially when they were co-cultured with bone marrow mesenchymal stem cellsMSCs. Besides, tThe breast cancer cell spheroids also exhibited higher anticancer drug resistance compared with the 2D culture cells. The evidence suggested that the 3D bone matrix mimicked tumor/bone microenvironments, serving as a tool for exploring cancer metastasis and assessing anticancer drug sensitivity. 
In another report, Senkowski et al[30] demonstrated gene expression profiling of 3D multicellular tumor spheroids, compareding with the 2D monolayer cells. The alteration of gene expression was found to be the upregulation of genes involved in response to hypoxia, and the downregulation of genes involved in cell -cycle progression. Further, the mevalonate pathway was upregulated in quiescent cells of the 3D spheroids during oxidative phosphorylation (OXPHOS) inhibition, which were correlated with the viable deficiency of quiescent spheroids when they were treated with oxidative phosphorylationOXPHOS inhibitors and mevalonate pathway inhibitors. This suggested the context -dependence of anticancer drug responses of the 3D tumor spheroids. 
Recently, the genome of 3D glioblastoma multiforme (GBM) cells in polylactic acid (PLA) porous scaffolds were compared their whole genome againstto the genome of GBM cells in 2D cell culture conditions. It was found that the 14-d 3D GBM cells upregulated 8117 genes and downregulated 3060 genes, compared to the 2D cell culture conditions[87]. KEGG The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that genes involved in PPAR and PI3K-Akt signaling pathways were mainly upregulated, while genes involved in metabolisms, ECM receptors, and transforming growth factor β TGF-β pathway were downregulated. The results acquired from the 3D tumors in vitro would be meaningful information for better understanding of both intrinsic and extrinsic features of GBM. Correlationally, sSuch a 3D tumor model has the potential to serve as a platform for anti-GBM drug screening.
The discovery of anticancer drugs often begians with the lack of suitable medical products for a particular clinical condition[4]. To date, the 3D cancer models have gained recognition in the explication of tumor biology because, since the conventional 2D cell models are inadequate to solve the unanswered questions. Some of the aforementioned issues, such as indolent cancer pathology, the invasive colonization, and the recurrent and rapid evolution of anticancer drug resistance, were exhibited by 3D cell systems, for instance the indolent cancer pathology, the invasive colonization, and the recurrent and rapid evolution of anticancer drug resistance[88]. 
For example, Imamura et al[89] compared the anticancer drug sensitivity between 2D and 3D cells, and found that the 3D cancer spheroids contained the greater resistance to paclitaxel and doxorubicin than that of the 2D cultured cells. The 3D ovarian cancer spheroids forming by hanging drop technique also were 2-fold moreed resistant to cisplatin, compared to the 2D cultures[90]. The ovarian cancer spheroids were uniform in geometry , and contained over 85% of cell viability. 
Besides, tThe influences of 3D structures and ECM on glioma stemness was alsoere examined by Ma et al[91]. U251 human glioblastoma cells increased expression of stemness markers (iIntegrin) when cultured on electrospun polystyrene scaffolds coated with laminin. In another study, the 3D tumor cells stimulated autophagic flux and chemotherapy resistance. The key features of cancer, including cell proliferation, cell death, as well asand macroautophagy were modulated by either 3D static or and 3D bioreactor systems. The autophagy -controlling transcription factors (, in particular TFEB and FOXO3), were upregulated in the 3D tumor spheroids. Altogether, the 3D culture models were a beneficial systems  to study anticancer drug responses of cancer cells, as these models closely mimic patho/physiology of tumor[92].

Stem cell modeling
Stem cells, particularly pluripotent stem cells (PSCs), contain tremendous potential for generating pure populations of any cell type in the human body, and shed light onf regenerative medicine. Pure populations of tissue-specific progenitors or terminally differentiated cells could be integrated into healthcare innovations, in particular drug discovery, cell therapy, and tissue regeneration. Major advances have been accomplished in the stem cell arena using 3D cell platforms that recapitulated the development and regulation of cellular signaling in organisms[93]. The development of induced PSC (iPSC)-derived human cardiomyocytes (CMs) by 3D CM spheroids was successfully demonstrated by Beauchamp et al[94]. After 4 days of the culture, the iPSC-derived CMs developed cardiac microtissues (MTs), presenting a uniform structure of mature myofibrils without a necrotic core. Retinal ganglion cells (RGCs) differentiated into incisors dental pulp stem cells when cultured in the 3D scaffolds. The 3D network of biocompatible fibrin hydrogel could resemble the properties of in vivo microenvironment for efficient development of RGCsretinal ganglion cells, which could be used to tackle neurological disorders, for instance glaucoma[95]. 
The progress in tissue engineerings, cell therapy, and materials research has led to 3D bioprinting, which could generate functional cells, tissues, or organs for transplantation with close similarity to their target graft sites. Nevertheless, the printing of an intact tissues or organs still persists as a challenge,. tThe 3D bioprinting of tracheal, bladders, bone, and cartilage was demonstrated to well function well in vivo[96]. These printed organs can be translated into clinical uses., fFor instance, Atala et al[97] bioengineered a human bladder from autologous urothelial cells and muscle cells prior to culturing the cells in vitro onto a biodegradable bladder-shaped scaffolds. After 7 wk of the 3D culture, the artificial bladders were applied for reconstruction and transplantation. 
The 3D bioprinting technology was modified for the construction of the liver-like microstructure, exploiting 3D bioprinting of hepatoma cells and gelatin methacryloyl hydrogel Bhise et al[98]. The engineered hepatic constructs were still functional after 30 d as assessed by the production and release of albumin, alpha-1 antitrypsin, transferrin, and ceruloplasmin. Immunostaining of the hepatocyte markers was also performed in order to validate the liver functions, including cytokeratin 18 (CK18), MRP2, and ZO-1. Besides, tThe treatment of acetaminophen instigated an adverse response in the engineered hepatic-like structure, providing a proof-of-concept of using of this artificial liver for toxicity assessment. 
The Bbioprinting strategy was used to printed human umbilical vein endothelial cells (HUVECs)-laden bio-ink (mainly alginate and gelatin) to fabricate a multi-layered microfibrous construct[99]. The bioprinted human umbilical vein endothelial cellsHUVECs translocated to the periphery and formed a layer of endothelial cells. This 3D endothelial structure was co-cultured with human iPSC-derived CMs, fabricating the well-aligned myocardium that could contract in a spontaneous and synchronous manner. These 3D myocardial organoids were then processed into microfluidic perfusion bioreactors in order to develop an endothelial-myocardium chip that was used for the assessment of cardiovascular toxicity. This highlighted the progress of human stem cell technology for cardiovascular disease modeling and testing of relevant drugs. 
Another example of 3D culture and stem cell differentiation was presented in aby 3D hydrogel, which could promote the differentiation of human iPSCs into functional hepatocytes. The 3D conditions for hepatic differentiation of human iPSCs induced the expression of liver markers, hepatocyte maturation, and metabolic levels. The derivation of hepatocyte-like cells from human iPSCs provided a fundamental foundation for an artificial human liver, toxicity screening, and hepatocyte transplantation[100]. Besides, hHydrogels encapsulation could generate the 3D neural tissues by co-culturing neuronal and astrocytic cells Tekin et al[101]. The transcriptomic profiles proposed that hydrogels could tune the expression patterns of the 3D brain organoids, correlating with those of specific brain regions and developmental stages.

CONCLUSIONS
The 3D cell culture systems present anare increasingly importantce in tumor and stem cell biology research. Because of the intrinsic discrepancies in complexity and functionality of tissues and organs, the selection of the 3D cellular model depends on the applications, ranging from the simple cell spheroids to the complex 3D bioprinting structures. An eExtensive choices of 3D cell culture technologies hasve been invented in order to fulfill the demand of the pharmaceutical industry. The 3D cell systems hold a great proemise for drug discovery, disease simulation, cancer-targeted therapy, as well asand a novel source of tissue replacement materials. The Ffuture of 3D cell systems should validate with the pre-clinical outcomes, leading to the replacement of lab animal scarification.experimentation. The functional, safe, and transplantable index of the 3D cell cultures will be needed an intensive investigation in order tofor bring itging toward clinical uses (Figure 3).
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Figure 1 Schematic diagrams of the traditional two-dimensional monolayer cell culture and three-dimensional cell culture systems. A: Traditional two-dimensional monolayer cell culture; B: Three-dimensional cell culture systems; C: The structure of three-dimensional spheroid with different zones of cells with the models of oxygenation, nutrition, and CO2 removal. Three-dimensional spheroid from inside to outside. The regions are necrotic zone (innermost), quiescent viable cell zone (middle), and proliferating zone (outermost).


[image: ]Figure 2 Different techniques used for three-dimensional cell cultures. These techniques include: A: Liquid overlay; B: Hanging drop; C: Hydrogel embedding; D: Spinner flask bioreactor; E: Scaffold; F: Three-dimensional bioprinting.
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Figure 3 Potential applications of three-dimensional cell culture systems. The invention of three-dimensional cell culture systems could be applied into various aspects, for instance anticancer drug screening, tissue engineering, cancer biology, and clinical uses.


Table 1 Differences in two-dimensional vs the three-dimensional cell culture models
	Type of culture
	2D
	3D
	References

	In vivo-like
	Do not mimic the natural structure of the tissue or tumor mass
	In vivo tissues and organs are in 3D form
	Takai et al[102]

	
	
	
	

	Proliferation
	Tumor cells were grown in monolayer faster than in 3D spheroids
	Similar to the situation in vivo
	Lv et al[11]

	
	
	
	

	Polarity
	Partial polarization
	More accurate depiction of cell polarization
	Antoni et al[18]

	
	
	
	

	Cell morphology
	Sheet-like, flat, and stretched cells in monolayer
	Form aggregate/spheroid structures
	Breslin et al[103]

	
	
	
	

	Stiffness
	High stiffness (approximately 3 × 109 Pa)
	Low stiffness (> 4000 Pa)
	Krausz et al[104]

	
	
	
	

	Cell-cell interaction
	Limited cell-cell and cell-extracellular matrix interactions and no “niches”
	In vivo-like, proper interactions of cell-cell and cell-extracellular matrix, environmental “niches” are created
	Lv et al[11], Kang et al[105]

	
	
	
	

	Gene/protein expression
	Changes in gene expression, mRNA splicing, topology, and biochemistry of cells, often display differential gene/protein levels compared with in vivo models
	Expression of genes and proteins in vivo is relevantly presented in 3D models
	Bingel et al[92], Ravi et al[106]

	
	
	
	

	Drug responses
	LThe lack of correlation between 2D monolayer cell cultures and human tumors in drug testing.
	Tumor cells in 3D culture showed drug resistance patterns similarly to those observed in patients
	Lv et al[11], Bingel et al[92]

	
	
	
	

	The culture formation
	From minutes to a few hours
	From a few hours to a few days
	Dai et al[33]

	
	
	
	

	Quality of culture
	High performance, reproducibility, long-term culture, easy to interpret, simplicity of culture
	Worse performance and reproducibility, difficult to interpret, cultures are more difficult to carry out
	Hickman et al[107]

	Access to essential compounds
	Unlimited access to oxygen, nutrients, metabolites, and signaling molecules (in contrast to in vivo)
	Variable access to oxygen, nutrients, metabolites, and signaling molecules (similar to in vivo)
	Pampaloni et al[108], Senkowski et al[30]

	Cost during maintenance of a culture
	Cheap, commercially available tests and media
	More expensive, more time-consuming, fewer commercially available tests
	Friedrich et al[35]





Table 2 Proposed advantages, disadvantages, and research stage of different three-dimensional cell culture methods
	Techniques
	Advantages
	Disadvantages
	Research sStage

	Liquid overlay cultures and Hanging drops
	(1) Easy-to-use protocol; (2) No added materials; (3) Consistent spheroid formation; control over size Co-cultures ability; (4) Transparent; (5) High reproducibility; (6) Inexpensive; (7) Easy to image/harvest samples
	(1) No support or porosity; (2) Limited flexibility; (3) Limited spheroid size; (4) Heterogeneity of cell lineage; (5) Lack of matrix interaction
	(1) Basic research; (2) Drug discovery; (3) Personalized medicine

	Hydrogel
	(1) Large variety of natural or synthetic materials; (2) Customizable; (3) Co-cultures possible; (4) Inexpensive; (5) High reproducibility
	(1) Gelling mechanism; (2) Gel-to-gel variation and structural changes over time; (3) Undefined constituents in natural gels; (4) May not be transparent
	(1) Basic research; (2) Drug discovery

	Bioreactors
	(1) Simple to culture cells; (2) Large-scale production relatively easily achievable; (3) Motion of culture assists nutrient transport; (4) Spheroids produced are easily accessible
	(1) Specialized equipment required; (2) No control over cell numbero./size of spheroid; (3) Cells possibly exposed to shear force in spinner flasks (may be problematic for sensitive cells)
	(1) Basic research; (2) Tissue engineering; (3) Cell expansion

	Scaffolds
	(1) Large variety of materials, possible for desired properties; (2) Customizable; (3) Co-cultures possible; (4) Medium cost
	(1) Possible scaffold-to-scaffold variation; (2) May not be transparent; (3) Cell removal may be difficult
	(1) Basic research; (2) Drug screening; (3) Drug discovery; (4) Cell expansion

	3D bioprinting 
	(1) Custom-made architecture; (2) Chemical, physical gradients; (3) High-throughput production; (4) Co-culture ability
	(1) Require expensive 3D bioprinting machine; (2) Challenges with cells/materials
	(1) Cancer pathology; (2) Anticancer drug screening; (3) Cancer treatment; (4) Tissue engineering


Modified from Breslin et al[64]; Fang et al[47]; Leong et al[109].
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Table 3 Examples of three-dimensional research systems utilized for cancer and stem cell cancer studies
	Application/platform
	Cells type
	3D model
	Culture systems/matrix
	Results
	Ref.

	Drug-screening
	Breast cancer cells (BT-549, BT-474 and T-47D)
	Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer
	Spheroid formation in 3D-culture plates
	Three breast cancer cell lines developed dense multicellular spheroids in 3D-culture and showed greater resistance to paclitaxel and doxorubicin compared to the 2D-cultured cells. 
	Imamura et al[89]

	Metastasis studies and assessing drug sensitivity.
	Breast cancer cells (MDA-MB-231 and MCF-7)
	Breast cancer bone metastasis
	3D bioprinting hydrogel
	Breast cancer cells exhibited spheroid morphology and migratory characteristics, then co-culture of breast tumor cells with bone marrow MSCs increased the formation of spheroid clusters
	Zhu et al[86]

	Cancer cell behavior
	Breast cancer cells (MCF‑10)
	Breast cancer progression
	3D spheroid cultures used U-bottom ultra-low attachment plates 
	Genetic dependencies can be uncovered when cells are grown in 3D conditions similar to in vivo
	Peela et al[85]

	Drug-screening
	Human colon cancer cells (HCT116)
	Compared gene expression in 2D and 3D systems and identification of context-dependent drug responses
	3D spheroid cultures used low‐attachment plate (Corning, Amsterdam, The Netherlands)
	3D spheroids increased expression of genes involved in response to hypoxia and decreased expression of genes involved in cell-cycle progression when compared with monolayer profiles
	Senkowski et al[30]

	GBM biology, anti-GBM drug screening.
	Human glioblastoma cells (U87)
	Compared genes expression in 2D and 3D systems
	3D PLA porous scaffolds
	GBM cells in 3D PLA culture expressed, 8117 and 3060 genes were upregulated and downregulated, respectively, compared to 2D cell culture conditions. Further, KEGG pathway analysis showed the upregulated genes were mainly enriched in PPAR and PI3K-Akt signaling pathways while the downregulated genes were enriched mainly in metabolism, ECM related, and TGF-β TGF-beta pathways.
	Ma et al[87]

	Cancer and tumor cell biology
	 Human glioblastoma (U-251)
	Compared genes and proteins expression in 2D and 3D systems
	ESPS scaffolds coated with laminin 
	The results suggested the influence of 3D context on integrin expression upregulation of the laminin-binding integrins alpha 6 and beta 4
	Ma et al[91]

	Cancer and tumor cell biology 
	Human glioblastoma (U-251) cells
	Compared drug-sensitivity in 2D and 3D systems
	3D bioprinting of gelatin/alginate/fibrinogen hydrogel
	3D bioprinted glioma stem cells wereas more resistant to temozolomide than 2D monolayer model at temozolomideTMZ concentrations of 400-1600 μg/mL
	Dai et al[33]

	Cancer and tumor cell biology
	Human glioblastoma (U-251)
	Anti-cancer drug screening
	3D collagen scaffold
	Glioma cells in 3D collagen scaffold culture enhanced resistance to chemotherapeutic alkylating agents, with a much higher proportion of glioma stem cells and upregulation of MGMT
	Lv et al[11]

	Cancer and tumor cell biology, Ddevelopment of new therapies and detection of cardiotoxicity
	iPSC-derived human cardiomyocytes
	Cardiac microtissues
	Hanging drops
	A three-dimensional3D culture using iPSC-derived human CMs provideds an organoid human-based cellular platform that is recapitulateds vital cardiac functionality
	Beauchamp et al[94]

	Tissues engineering and toxicity assessment
	Human hepatoblastoma (HepG2/C3A)
	A liver-on-a-chip platform for long-term culture of 3D human HepG2/C3A spheroids for drug toxicity assessment
	Bioprinting of hepatic constructs containing 3D hepatic spheroids
	Hepatic construct by 3D bioprinting can were functional during the 30 days culture period and responded to acetaminophen that induced a toxic
	Bhise et al[98]

	Brain diseases
	Human embryonic stem cells (HUES66), C57
	3D neural tissues for use as tractable models of brain diseases
	3D hydrogels
	3D co-cultures of neuronal and astrocytic cells can change expression patterns so that they correlate with specific brain regions and developmental stages.
	Tekin et al[101]

	Cancer and tumor cell biology, drug screening
	Human neuroblastoma cell lines BE(2)-C (ECACC), IMR-32 (DSMZ)
	Compared gene expression profiles in 2D and, 3D systems and tumor tissue
	Polymeric scaffolds and bioreactor systems
	The autophagy-controlling transcription factors, such as TFEB and FOXO3, are upregulated in tumors, and 3D-grown cells have increased expression compared with cells grown in 2D conditions.
	Bingel et al[92]

	Cancer and tumor cell biology, neurodegenerative diseases
	DPSCs
	Differentiation to retinal ganglion-like cells
	3D fibrin hydrogel
	3D network can mimic the natural environment of retinal cells.
	Roozafzoon et al[95]

	Cardiovascular disease
	hiPSCs
	Cardiomyocytes and endothelial cells, co-differentiated from human pluripotent stem cells
	V-bottom 96 well microplates
	Human cardiac microtissues were generated in complex 3D structures, and differentiation of human pluripotent stem cells into cardiomyocytes and endothelial cells that expressed cardiac markers also present in primary cardiac microvasculature
	Giacomelli et al[110]

	Bioartificial liver support devices, drug screening and
	hiPSCs
	Differentiation of hiPSCs into hepatocytes.
	Nanofiber hydrogel 3D scaffold
	3D hydrogel culture conditions promote the differentiation of hiPSCs into hepatocytes.
	Luo et al[100]

	Ovarian cancer biology, drug sensitivity
	Ovarian cancer cell lines (A2780 and OVCAR3)
	Compared drug-sensitivity in 2D and 3D systems
	Hanging drop
	3D tumor spheroids demonstrated greater resistance to cisplatin chemotherapy compared to 2D cultures
	Raghavan et al[90]

	Pathogenesis of prostate cancer, prostate cancer therapy
	Prostate cancer cell lines (PC3 and LNCaP)
	Simulation of prostate cancer bone metastases
	Collagen-based scaffolds
	The two cell lines in 3D present increased resistance to docetaxel.
	Fitzgerald et al[111]

	Radiosensitivity of cancer cells
	Human lung adenocarcinoma cell line (A549)
	The metabolic response of lung cancer cells to ionizing radiation.
	Hydrogels
	3D model can help regulate the exposure of oxygen to subpopulations of cells in a tissue -like construct either before or after irradiation
	Simon et al[112]

	Regenerative medicine, drug screening, and potentially disease modeling
	HUVECs
	Endothelialized myocardium construction
	3D bioprinting
	This technique could be translated to human cardiomyocytes derived from induced pluripotent stem celliPSCs to construct endothelialized human myocardium.
	Zhang et al[99]

	Cancer cell biology, sStudying and developing therapies against cancer stem cells
	Hepatocellular carcinoma (SK-Hep-1), prostate cancer (TRAMP-C2) and breast cancer (MDA-MB-231)
	Compared cancer morphogenesis and gene expresssion in 2D and 3D systems
	CA scaffolds
	The three cell lines in 3D porous CA scaffolds promote cancer stem-like cell enrichment and increased expression of cancer stem cells genes (CD133 and NANOG)
	Florczyk et al[28]


2D: Two-dimensional; 3D: Three-dimensional; DPSCs: Dental pulp stem cells; iPSC: Induced pluripotent stem cells; hiPSCs: Human induced pluripotent stem cells; HUVECs: Human umbilical vein endothelial cells; CA: Chitosan-alginate; 3D: Three-dimensional; MSC: Mesenchymal stem cell; PLA: Polylactic acid; ESPS: Electrospun polystyrene; TGF-β: Transforming growth factor β; KEGG: Kyoto Encyclopedia of Genes and Genomes; GBM: Glioblastoma multiforme; ECM: Extracellular matrix; CM: Cardiomyocyte..
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