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Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality
worldwide. The poorly prognosis and survival of GC are due to diagnose in an
advanced, non-curable stage and with a limited response to chemotherapy. The
acquisition of drug resistance accounts for the majority of therapy failure of
chemotherapy in GC patients. Although the mechanisms of anticancer drug
resistance have been broadly studied, the regulation of these mechanisms has not
been completely understood. Accumulating evidence has recently highlighted
the role of non-coding RNAs (ncRNAs), including long non-coding RNAs and
microRNAs, in the development and maintenance of drug resistance due to their
regulatory features in specific genes involved in the chemoresistant phenotype of
GC. We review the literature on ncRNAs in drug resistance of GC. This review
summarizes the current knowledge about the ncRNAs’ characteristics, their
regulation of the genes involved in chemoresistance and their potential as
targeted therapies for personalized treatment in resistant GC.

Key words: Non-coding RNAs; Long non-coding RNAs; MicroRNAs; Drug resistance;
Multidrug resistance; Gastric cancer
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Core tip: Many non-coding RNAs (ncRNAs, including long non-coding RNAs and
microRNAs) are dysregulated in gastric cancer (GC) and involved in many cellular and
genomic process and involved in drug resistance. The acquisition of drug resistance
accounts for the majority of therapy failure of chemotherapy in GC patients. This review
summarizes the current knowledge about the ncRNAs’ characteristics, their regulation of
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the genes involved in chemoresistance of GC. These potential of ncRNAs as candidates
to develop novel strategies to molecular targeted therapy or reverse the GC cell drug
resistance for personalized treatment in GC.
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INTRODUCTION
Gastric  cancer  (GC)  is  one  of  the  most  prevalent  malignant  tumors  with  a  high
mortality rate[1].  The standard curative treatment for GC is  D2 surgical  resection
combined with chemotherapy, but in most patients, this is not possible because they
are diagnosed in a non-curable stage for surgery. In spite of the advance in anti-cancer
treatment for GC, the overall survival of GC patients remains dismal in recent years[2].
The main reason for the low survival is drug resistance, which results in most of GC
patients for limiting efficacy of chemotherapy. Although many novel anti-cancer
agents  are  used  in  clinical  practice,  drug  resistance  is  one  of  the  causes  of
chemotherapy failure. Therefore, resistance to chemotherapeutic agents remains a
major clinical challenge. Drug resistance is classified into two categories: intrinsic and
acquired[3]. The mechanism of drug resistance is complicated because of interaction
various factors including apoptosis, the epithelial-mesenchymal transition (EMT),
DNA damage repair, targets mutation or alteration and drug inactivation and efflux,
resulting in multidrug resistance (MDR)[4,5].

Non-coding RNAs (ncRNAs) are important regulators of  gene expression and
transcription, mainly in two distinct subtype forms: The most studied microRNAs
(miRNAs) and the newly discovered long non-coding RNAs (lncRNAs). miRNAs are
a class of single stranded ncRNAs of 19-25 nucleotides that negatively regulate gene
expression by binding to the 3’ or 5’ untranslated region (UTR) of their target mRNAs
which results in the mRNA silencing or degradation[6]. Generally, lncRNAs are a class
of no or limited protein-coding potential RNA transcripts with length longer than 200
nucleotides[7].  NcRNAs have  vital  regulatory  roles  in  many respects  of  genome
function including gene epigenetics, splicing and transcription as well as biological
processes related to cell differentiation, migration, cell cycle, apoptosis, angiogenesis,
pluripotency and immune response[8,9]. They plays a role in cancer development with
disruption of their function through genomic imprinting, somatic mutations and post-
transcriptional regulation[10,11].

Interestingly,  recent  evidence  suggests  that  ncRNAs,  especially  miRNAs and
lncRNAs,  play  pivotal  roles  in  regulating  chemotherapy  sensitivity  in  GC[12,13].
NcRNAs are responsible for the resistance to chemotherapy as they moderate affect
drug concentrations in intracellular, drug resistance-related genes, induce alternative
signaling pathways, alter drug efficiency via blocking DNA damage response, cell
cycle, prevent therapeutic-induced cell death and promote EMT[3,14-16]. In this review,
we  summarize  recent  discoveries  of  the  ncRNAs that  in  the  regulation  of  drug
resistance in the context of GC.

LONG NON-CODING RNAS
In recent studies, lncRNAs are widely recognized as crucial regulators in suppressing
tumor and oncogenesis, and emerge as potentially vital mediators in regulating drug
resistance through modulation of apoptosis, drug efflux system, drug metabolism,
DNA repair, and EMT[12,16,17]. The plenty of lncRNAs have been found to participate
the  development  and  progression  of  GC.  However,  only  a  little  part  has  been
confirmed their role in drug resistance regulation. We summarize the lncRNAs that
have been related to MDR or single drug chemoresistance in GC in Table 1 and Table
2. As described below, the list of lncRNAs scientific paper involvement of in GC drug
resistance, requires investigators to further for enhanced insight.

Dysregulated lncRNAs related with MDR in the treatment of GC
MDR occurs frequently during the long-term of traditional chemotherapy for GC,
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Table 1  Summary of lncRNAs involved in multiple drug resistance in gastric cancer

Dysregulation LncRNA Pathway/target Corresponding drugs Ref.

Up-regulated PVT1 MDR1, MRP1, mTOR, HIF-1a DDP
[22]

Up-regulated AK022798 MRP1, Caspase 3/8, P-gp, Notch1 DDP
[23]

Up-regulated HOTAIR PI3K/AKT/MRP1, Wnt/β-catenin, miR-34a DDP
[24,25]

Up-regulated MRUL ABCB1, P-gp, PRL23, RPS13, JNK1, CPP32 DOX, ADR
[26]

Up-regulated ANRIL MDR1, MRP1 DDP, 5-Fu
[27]

Up-regulated UCA1 miR-27b, Bcl-2, Cleaved caspase-3 DDP, 5-Fu, ADR
[28]

Up-regulated MALAT1 miR-23b-3p, ATG3/12, Autophagy 5-Fu, VCR, DDP
[29]

Up-regulated GHET1 MDR1, MRP1, Bax, Bcl-2 DDP
[30]

Up-regulated CASC9 MDR1 PTX, ADR
[31]

Up-regulated ZFAS1 Wnt/β-catenin, NKD2 PTX, DDP
[32]

Up-regulated HULC Induced EMT, Suppressed apoptosis DDP, ADR, 5-Fu
[33,34]

Up-regulated BLACAT1 ABCB1, MDR1, MRP1, LRP1, miR-361 OXA
[35]

DDP: Cisplatin; 5-Fu: 5-fluorouracil; VCR: Vincristine; ADR: Adriamycin; PTX: Paclitaxel; DOX: Doxorubicin; OXA: Oxaliplatin.

leading to the relapse of cancer and intractable tumor. Major mechanisms MDR are
mediated by drug efflux transporter proteins[18]. Notably, the ATP-binding cassette
(ABC) transporter  family regulate  the drug flux across  the multiple  structurally
plasma membrane and its unrelated drugs[19]. The ABC transporter family at least
have 48 members in humans, but only three have been studied extensively in relation
to MDR, including breast  cancer resistance protein,  MDR protein 1 (MDR1) also
known as P-glycoprotein (P-gp) and MDR-associated protein 1 (MRP1; also known as
ABCC1)[19]. GC patients who resistant to chemotherapy usually have a upregulation of
various  ABC  transporter  pumps,  resulting  in  an  increased  drug  efflux[20].  The
discovery of these various ABC transporters and its  regulatorymechanism made
potential targets for treatment chemotherapy resistance[21].

LncRNA PVT1 as an oncogene, which promotes the development of MDR in GC via
increasing the expression of MDR related genes, such as MDR1, MRP, mTOR and HIF-
1a[22]. In another studies, lncRNA AK022798 was up-regulating by Notch 1 and could
promote Cisplatin (DDP)-resistant GC formation via mediating MRP1, Caspase 3/8
and P-gp[23]. LncRNA HOTAIR is an another oncogene related to MDR in GC, which
not only inhibits DDP resistance of GC cells via suppressing the Wnt/β-catenin and
PI3K/Akt signaling by increasing miR-34a[24], but also promotes DDP resistance by
targeting miR-126 to activate the PI3K/AKT and MRP1 in GC[25].  LncRNA MRUL
promotes ABCB1 expression and increases chemoresistance in MDR GC cell lines to P-
gp related drugs. Moreover, down regulation of MRUL increases adriamycin (ADR)
accumulation and ADR-induced apoptosis in MDR GC cell lines via mediating PRL23,
RPS13, JNK1 and CPP32[26]. Lan et al[27] have found that lncRNA ANRIL was highly
expressed in DDP-resistant and 5-fluorouracil (5-Fu)-resistant tissues and in GC cell
lines of drug-resistant cells BGC823/DDP and BGC823/5-Fu. Furthermore, ANRIL
positively correlated with the expression level of MRP1 and MDR1, and knockdown
of ANRIL decreased the expression of MDR1 and MRP1. LncRNA UCA1 was up-
regulated in drug resistant GC cell lines SGC-7901/ADR, SGC-7901/DDP and SGC-
7901/Fu, and UCA1 could regulate miR-27b to increase ADR-induced cell apoptosis
by decreasing expression of anti-apoptotic protein Bcl-2 and increasing expression of
apoptotic protein cleaved caspase-3[28]. MALAT1 is a lncRNA that was identified to be
related  with  cells  carcinogenesis  and  was  upregulated  in  5-Fu/Vincristine
(VCR)/DDP-resistant cells. Yiren et al[29] provided a new insight into the function of
MALAT1 promotes autophagy related to drug resistance in GC cells through miR-
23b-3p  and  demonstrated  the  capacity  of  lncRNA  MALAT1  to  decrease
chemosensitivity of GC cells. Additionally, GHET1, CASC9 and ZFAS1 were lncRNAs
up-regulated  in  GC  tissue.  After  transfected  si-GHET1  in  BGC823/DPP  and
SGC7901/DDP cells, lncRNA GHET1 reverse the MDR GC resistance by Bax, Bcl-2,
MDR1 and MRP1[30]. LncRNA CASC9 could promote GC cell proliferation and inhibit
GC cell apoptosis, and caused chemoresistance in BGC823/ADR and SGC7901/ADR
GC cells associated with downregulation of MDR1[31]. When knockdown ZFAS1, the
migration, invasion, proliferation, cell cycle progress and EMT of SGC7901 cells were
inhibited and chemotherapeutic resistance was decreased by blocking the Wnt/β-
catenin signaling[32]. LncRNA HULC is a functional player in chemoresistance during
the  treatment  of  chemotherapy [ 3 3 ] .  To  be  specific,  HULC  could  enhance
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Table 2  Summary of other lncRNAs involved in single drug resistance in gastric cancer

Drugs LncRNA Pathway/target Dysregulation Ref.

DDP BCAR4 β-catenin, Nanog, Klf4 Oct3/4, Sox2, c-Myc Up-regulated
[36]

ADR NEAT1 Promoted cell apoptosis Up-regulated
[37]

DOX D63785 miR-442a, MEF2D Up-regulated
[38]

5-Fu LEIGG Induced EMT, Vimentin, Snail, Slug, Zeb, Twist Down-regulated
[39]

DDP: Cisplatin; ADR: Adriamycin; DOX: Doxorubicin; 5-Fu: 5-fluorouracil.

chemoresistance through inducing EMT and suppressing apoptosis of GC cells[34].
Accumulating evidence indicates  that  lncRNAs,  which can be regulated cellular
functions via  sponging miRNA. LncRNA BLACAT1 was highly expression in the
oxaliplatin (OXA) resistant GC, and BLACAT1 promotes OXA resistance through up-
regulating ABCB1 expression by targeting miR-361 in GC[35].

LncRNAs mediate single drug resistance of GC
Up-regulated lncRNAs in  GC:  LncRNAs play  an irreplaceable  role  in  the  drug
resistance of GC as an oncogene transcript. For instance, lncRNA BCAR4 was highly
expressed  in  GC  tissues  and  its  expression  level  was  related  to  tumor  size,
classification and the survival. Wang et al[36] found BCAR4 was highly expression in
DDP-resistant GC cell SGC7901/DDP. Furthermore, BCAR4 promotes drug resistance
of ability of GC by regulating the level of Oct3/4, Sox2, c-Myc, β-catenin, Nanog and
Klf4[36]. Apoptosis is a critical underlying mechanism contributing to ADR resistance.
LncRNA NEAT1 is up-regulated and functions as an oncogene in GC to regulate
apoptosis and proliferation. And silence of NEAT1 could reverse ADR-resistant GC
cell via targeting apoptosis-associated signaling pathways[37]. LncRNA D63785 is also
up regulated in GC and could accelerate cell invasion, proliferation and migration.
Notably, D63785 promotes drug resistance by blocking MEF2D through targeting
miR-422 in GC, which acts as a competitive endogenous RNA of miR-422a[38].

Down-regulated lncRNAs in GC:  LncRNAs also play an irreplaceable role in the
drug resistance of GC as a tumour suppressor transcripts.  For instance, LncRNA
LEIGG  is  highly  down-regulated  as  a  tumour  suppressor  to  enhances  chemo-
sensitivity  to  5-Fu.  Moreover,  LEIGG  also  could  suppress  tumor  growth,  cell
proliferation and EMT[39].

MICRORNAS
Similar to lncRNAs, miRNAs isolated from GC tissues and body fluids also play a
vital role in the diagnosis and prognosis of GC. Accumulating evidence indicates that
the dysregulate pattern of miRNAs likely have a pivotal role in chemoresistance.
More and more studies are confirming miRNAs play a critical role in the development
and maintenance of drug resistance through the regulation of drug metabolizing
enzymes or drug transporters, nuclear receptors and transcription factor, which may
not  only  provide  insight  into  miRNA  biological  functions,  but  advance  the
understanding of the integrated response of cells to xenobiotics[13,40]. Therefore, we
summarize  the  miRNAs  that  have  been  associated  with  MDR  or  single  drug
chemoresistance in GC in Table 3 and Table 4. The list of scientific literature depicting
miRNAs in regulating drug resistance in GC, develops personalized treatment and
targeted therapies for managing drug resistant GC.

Dysregulated miRNAs related with MDR in the treatment of GC
Upregulated miRNAs in GC: MiRNAs play a critical role in of GC as an oncogene
transcript.  For  instance,  miR-19a/b  highly  expressed  in  MDR  GC  cells  and
demethylation of miR-19a/b suppressed methyl CpG binding protein 2 expression
through directly  binding at  the  3’-UTR,  which  leading to  MDR[41].  MiR-20a  was
elevated in GC and promoted the growth, migration and invasion of GC cells. It could
not only adverse to DDP chemotherapy in DDP-treated GC patients and cells, but also
make GC cells resistance to ADR and VCR. Du et al[42]  have found miR-20a could
promote the development of DDP resistance by targeting NFKBIB in GC cells, leading
to the activation of NFB and increase of its targets livin and survivin. Zhu et al[43]

revealed that miR-20a directly suppressed the level of CYLD, causing activation of the
NFB signaling pathway which potentially induced GC drug resistance. In another
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Table 3  Summary of miRNAs involved in multiple drug resistance in gastric cancer

Dysregula-
tion miRNA Pathway/target Corresponding drugs Ref.

Up-regulated miR-19a/b MeCP2 5-Fu, DDP
[41]

miR-20a/b LRIG1, EGFR, Livin, PI3K/AKT, p65, CYLD, MAPK/ERK, Survivin, HIPK2,
NFKBIB, NFB

5-Fu, ADR, DDP, VCR
[42-46]

miR-363 FBW7, c-Myc, c-Jun, cyclin E Docetaxel, DDP, 5-Fu
[47]

miR-21 PTEN, TIMP3, PI3K/AKT DOX, DDP, PTX,
Trastuzumab

[48-52]

miR-27a HIF-1α, GST-π, LRP, TS, MDR1/P-gp, Bcl-2 OXA
[46,53]

miR-135a E2F1, P-gp, c-Myc, DAPK2, AP-2α, Bcl-2 OXA, ADR
[54,55]

Down-
regulated

miR-23b-3p MALAT1, ATG12, LC3-I, ATG3, HMGB2, LC3-II VCR, DDP
[29,56]

miR-34a PI3K/AKT/MRP1, HOTAIR, Wnt/β-catenin, MET DDP
[24,57]

miR-495 MDR1, ABCB1 DDP, DOX, TAX
[58]

miR1955p ZNF139, P-gp, BCL-2, MRP1 5-Fu, OXA
[59]

miR-30a MDR1, P-gp, Snail, E-cadherin, N-cadherin, Vimentin 5-Fu, DDP
[60-62]

miR-101 ANXA2, P-gp, VEGF-C DDP, VCR
[64]

miR-145 CD44, Sox2, Oct4, Nanog 5-Fu, DDP
[65]

miR-129 P-gp, Caspase-3/9, DDP
[66]

miR-27b UCA1, Bcl-2, Cleaved caspase-3, HIF1A, MDR1, CCNG1 ADR, DDP, 5-Fu
[28,67]

miR-126 EZH2 VCR, ADR
[68]

miR-16 Cyclin J, FUBP1, hNIS, Bcl-2 Lapatinib, ADR Trastuzumab
[69,70]

miR-1284 EIF4A1, Jun, MMP12, Myc VCR
[71]

miR-107 Lin28, P-gp, c-Myc, cyclin D1, Bcl-2, CDK6, NF-kB, TOPOII, Cleaved caspase3/9 OXA, PTX, 5-Fu, DOX
[72,73]

miR-508-5p P53, ABCB1, ZNRD1 ADR, DDP, 5-Fu, VCR
[67]

miR-218 SMO, mTOR OXA, 5-Fu, ADR, DDP
[74,75]

let-7b Lin28/Lin28B, c-Myc DDP, VCR, 5-Fu
[76]

miR-103 Cav-1, P-gp DOX, ADR
[73]

miR-129-5p ABCB1, ABCC5, ABCG1 VCR, DDP, ADR, 5-Fu
[77]

miR-185 ARC, RUNX3 DOX, DDP
[78]

miR874 ATG16L1, Autophagy DDP
[79]

5-Fu: 5-fluorouracil; DDP: Cisplatin; VCR: Vincristine; ADR: Adriamycin; PTX: Paclitaxel; TAX: Taxol; DOX: Doxorubicin; OXA: Oxaliplatin; P-gp: P-
glycoprotein.

study, Li et al[44] found that miR-20a was involved in the chemoresistance of GC by
regulation of the EGR2 signaling pathway. Furthermore, Zhou et al[45] also found miR-
20a was highly expressed in MDR GC, which was identified to modulate LRIG1
expression by directly targeting it’s 3’-UTR, leading to chemoresistance via EGFR-
mediated phosphatidylinositol 3 kinase/protein kinase B and MAPK/ERK signaling.
Besides, miR-20b could directly regulate HIF1A expression, which increasing HIF-1a
levels, leading to MDR in GC hypoxia-induced chemoresistance[46].

Apart from those miRNAs mentioned above, miR-363, miR-21, miR-27a and miR-
135a also show underlying ability to regulate MDR during the treatment of GC as an
oncogene transcript. Up regulation of miR-363 not only as an independent predictor
for postoperative relapse and lower survival, but also promotes GC cell proliferation
and drug resistance by directly targeting F-box and WD repeat domain-containing
7[47].  The  miR-21  plays  a  vital  role  in  modulating  anti-tumor  effect  of  MDR and
contributes to the discrimination of chemoresistance in metastatic GC[48]. Notably, a
recent  clinical  study  found  that  trastuzumab  provided  a  significant  survival
advantage in patients with HER2-positive GC. At present, acquisition of trastuzumab
resistance is a primary limitation of trastuzumab-based chemotherapy. The miR-21
was proved to resistance to trastuzumab in GC by down-regulating PTEN and its
downstream target p-AKT, which was significant for apoptosis signaling pathway[49].
Moreover, another studies demonstrated that miR-21 may modulate the sensitivity to
paclitaxel (PTX) by regulating the expression of Pg[50], and exosomal transfer of tumor-
related macrophages derived miR-21 contribute to DDP resistance in GC[51], even miR-
21 contributes to doxorubicin (DOX) resistance in GC cells by targeting TIMP3 and
PTEN[52]. The miR-27a was an another oncogene that could regulate HIF-1α which is
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Table 4  Summary of other miRNAs involved in single drug resistance in gastric cancer

Drugs miRNA Pathway/target Dysregulation Ref.

DDP miR-193a-3p CD44, SRSF2, Bcl-X, Bcl-2,
caspase 9

Up-regulated
[80]

DDP miR-214 PARP9, CD81, XRCC1,
LIN28B

Up-regulated
[81]

DDP miR-25 FOXO3a, p27Kip1 Up-regulated
[82]

DDP miR-132 SIRT1, CREB, ABCG2 Up-regulated
[83]

DDP miR-99a CAPNS1, calpain1, calpain2,
Caspase3, PARP1

Up-regulated
[84]

miR-491

DDP miR-421 HIF-1α, Snail, cleaved
caspase-3, cleaved PARP, E-
cadherin, N-cadherin,
Fibronectin, Vimentin

Up-regulated
[85]

DDP miR-493 DKK1 Up-regulated
[86]

DDP miR-141 KEAP1 Up-regulated
[87]

DDP miR-223 FBXW7, CCND1/2/3,
CCNE1/2, CCNE2,
CDK2/4/6, p14, p16, p21,
p27, c-Myc

Up-regulated
[88,89]

Trastuzumab

DDP miR-604 POLR2L, POLR2C, APRT,
LMAN2

Down-regulated
[90]

DDP miR-17-5p E2F1, p21, MCL1 Down-regulated
[91]

DDP miR-125b HER2 Down-regulated
[92]

DDP miR-320a ADAM10 Down-regulated
[93]

DDP miR-148a-3p AKAP1, RAB12, DRP1 Down-regulated
[94]

DDP miR-200c ZEB2 Down-regulated
[95]

DDP miR-524-5p SOX9 Down-regulated
[96]

DDP miR-149 FoxM1 Down-regulated
[97]

DDP miR-203 Cleaved caspase-3/9, Bcl-w Down-regulated
[98]

DDP miR-29b AKT2, PI3K/Akt Down-regulated
[99]

DDP miR-26a NRAS, E2F2 Down-regulated
[100]

DDP miR-143 IGF1R, Bcl2 Down-regulated
[101]

DDP miR-503 IGF1R, Bcl2 Down-regulated
[102]

DDP miR-1271 IGF1R/IRS1, mTOR, Bcl2 Down-regulated
[103]

DDP miR-22 ENO1 Down-regulated
[105]

DDP/PTX miR-181a Autophagy, AKT/ERK Down-regulated
[46,104]

5-Fu miR-193-3p PTEN Up-regulated
[106]

5-Fu miR-204 TGFBR2, Induced EMT, TGF-
β

Down-regulated
[107]

5-Fu miR-31 RhoA Down-regulated
[108]

5-Fu miR-939 SLC34A2, Raf/MEK/ERK Down-regulated
[109]

5-Fu miR-BART15-3p TAX1BP1, NF-B Down-regulated
[110]

5-Fu miR-197 MAPK1 Down-regulated
[111]

5-Fu miR-BART20-5p BAD Down-regulated
[112]

PTX miR-3127-5p/miR-1287/miR-
4713-5p

AKT/ERK Up-regulated
[113]

PTX miR-224/miR-452/miR-
424/miR-130a/miR-193b

AKT/ERK Down-regulated
[113]

Docetaxel let-7a HMGA2 Up-regulated
[114]

DOX miR-140 SOX4, ABCC1, ABCG2 Down-regulated
[115]

VCR miR-647 ANK2, FAK, MMP2, MMP12,
CD44, SNAIL2

Down-regulated
[116]

OXA miR-361 ABCB1, BLACAT1 Down-regulated
[35]

TRAIL miR-942 ISG12a, AKT, ISG12a,
Cleaved PARP

Up-regulated
[117]

Lapatinib miR494 FGFR2 Down-regulated
[118]

DDP: Cisplatin; 5-Fu: 5-fluorouracil; PTX: Paclitaxel; DOX: Doxorubicin; VCR: Vincristine; OXA: Oxaliplatin; TRAIL: Tumor necrosis factor-related
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apoptosis-inducing ligand.

closely related to MDR in GC and may inhibits LRP, Bcl-2 and MDR1/P-gp[46,53]. The
miR-135a  not  only  promotes  OXA  resistance  by  suppressing  E2F1  and  the
Sp1/DAPK2  signaling[54],  but  also  increases  Bcl-2  by  AP-2α  and  consequently
increased cell to anti-apoptosis, leading to ADR resistance[55].

Downregulated miRNAs in GC:  As previously mentioned, miRNAs can regulate
MDR of GC as a tumour suppressor transcripts. For instance, the miR-23b-3p not only
acts as a competing endogenous RNA for lncRNA MALAT1 to inhibitory effect of
ATG12,  leading  to  chemo-induced  autophagy  and  chemoresistance[29],  but  also
inhibited autophagy mediated by ATG12 and HMGB2 autophagy regulatory loop in
MDR in GC[56]. Similarly, the miR-34a also acts as competing endogenous RNA for
lncRNA HOTAIR to regulate the activity of PI3K/AKT/MRP1 and Wnt/β-catenin
signaling pathways, leading to DDP resistance[24]. Furthermore, the miR-34a could
regulate  GC  cells  the  sensitivity  to  DDP  by  regulation  of  cell  apoptosis  and
proliferation by targeting MET[57]. In another study, Zou et al[58] have found miR-495
could reduce expression of MDR1, leading to decrease drug efflux and improve the
chemotherapeutic effect and reverse MDR in GC. The miR1955p was related to MDR
of GC cells. Nie et al[59] demonstrated that high expression of miR-195-5p negatively
modulated the expression of ZNF139 and increased the chemosensitivity of GC cells
through affecting the level of MRP1, P-gp and Bcl-2. EMT results in the acquisition of
chemoresistance, miR-30a is an important miRNA modulating EMT of the cancer
cells. Li et al[60] found that miR-30a can decrease MDR of GC cells via modulating EMT.
Wang et al[61]  also found that EMT is associated with DDP resistance and miR-30a
modulating EMT and DDP sensitivity in GC. Moreover, miR-30 decreases MDR in
human GC cells by LC3-II, modulating chemoresistance-associated autophagy[62]. The
miR-101 not  only suppressed the proliferation and increased apoptosis  of  DDP-
resistant GC cells via targeting VEGF-C[63], but miR-101 negatively regulated ANXA2
expression,  which reversed the effect  of  miR-101 on P-gp expression,  alleviating
chemoresistance of GC[64].  The miR-145 targeting of CD44 plays vital  roles in the
modulation of caner growth and MDR in GC[65], and the miR-129 targeting of P-gp
regulates DDP-resistance in GC cells[66]. Notably, the miR-27b could regulate lncRNA
UCA1 to induce MDR of GC[28] and miR27b was directly target of CCNG1 and was
associated with miR-508-5p to regulate the level of P53, leading to MDR of GC[67]. The
miR-126 is another tumor suppressors that related to chemoresistance for GC, it is acts
as  a  vital  regulator  in  chemoresistance  in  GC  cells  through  suppression  EZH2
expression and by sensitizing GC cells to chemotherapy[68]. The miR-16 role as tumor
suppressor in GC, Venturutti et al[69] miR-16 modulates lapatinib and trastuzumab
response in ErbB-2-positive GC via its novel targets CCNJ and FUBP1. Besides, miR-16
plays a critical role in regulating the chemoresistance of GC cells to ADR, and miR-16
embed in  magnetic  nanoparticles,  which  hold  great  potential  for  increasing  the
sensitivity of GC cells to ADR in therapeutic application for treating drug-resistant
GC[70]. The miR-1284 modulates MDR of GC cells by directly increasing the level of
Myc and reducing the level of MMP12, EIF4A1 and Jun[71]. Teng et al[72] found that
miR-107  was  down regulated by Lin28,  thereby up-regulating C-myc,  P-gp and
down-regulating Cyclin D1, subsequently result in increasing GC cells resistance to
the chemo-drugs OXA, PTX, DOX and 5-Fu. Zhang et al[73] demonstrate that miR-107
was down-regulated in MDR GC cell lines and increased the sensitivity of GC cells to
DOX via inhibiting drug efflux and suppressing P-gp expression. Importantly, miR-
107 may reverse MDR by downregulating Cav-1 expression. The miR-218 promoted
chemosensitivity of GC cells to DDP through its target mTOR[74], and miR-218 inhibits
MDR of GC cells by targeting Hedgehog/smoothened[75]. Let-7 family consists of 11
closely related genes. Most of them acted as tumor suppressor like Let-7b. Let-7b
promotes drug sensitivity in SGC7901/DDP and SGC7901/VCR GC cells via targeting
c-Myc  and  that,  overexpression  let-7b  could  reverse  MDR  by  promoting  cell
differentiation through a double-positive autoregulatory loop (Lin28/Lin28B/Myc)
and double-negative autoregulatory loops (Lin28/let-7 and Myc/let-7) existing in GC
cells[76]. Besides, miR-103[73], miR-129-5p[77], miR-185[78] and miR874[79] also have shown
a low expression and close correlation with MDR in GC.

MiRNAs mediate single drug resistance of GC
MiRNAs and cisplatin: Apoptosis is a critical underlying mechanism contributing to
DDP resistance.  Recently,  numerous  studies  have  shown that  miRNAs work  in
regulating DDP resistance via targeting apoptosis-associated signaling. For instance,
the miR-193a-3p was up-regulate in DDP resistance GC cells. Lee et al[80] found that
miR-193a-3p target SRSF2 and various isoforms of its downstream targets, including:
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Bcl-X,  Bcl-2  and caspase 9,  leading to  DDP resistance for  GC cells.  Wang et  al[81]

reported that exosome-delivered anti-miR-214 could increase the sensitivity of GC
cells to DDP. The miR-25 is upregulated in DDP-resistant GC cells, and contributes to
DDP resistance in GC cells by inhibiting FOXO3a expression to promote cell cycle
progression[82]. Overexpression of miR-132 in GC stem cell-like cells promotes DDP-
resistance through SIRT1/CREB/ABCG2 signaling[83]. The miR-99a and miR-491 were
up-regulated in DDP resistant GC cell lines and regulated DDP resistance in GC cells
by targeting CAPNS1[84]. The miRNA-421 regulated by HIF-1α induces DDP resistance
by targeting E-cadherin and caspase-3 in GC[85]. The miR-493 played an oncogenic role
in GC by directly targeting DKK1 and promoted invasion and DDP-resistance of GC
cells[86]. The miR-141 could mediate the level of KEAP1, leading to DDP resistance in
H.  pylori  infection GC[87].  The miR-223 increases  the  DDP resistance of  GC cells
through modulating cell cycle by targeting FBXW7[88]. Another study revealed that the
miR-223-FBXW7 axis could regulate the sensitivity to trastuzumab in HER2-positive
GC cell lines due to change in HER2 downstream signaling[89].

Apart  from those  oncogenic  miRNAs  mentioned  above  associated  with  DDP
resistance, there are numerous miRNAs work as tumor suppressor gene also have
shown DDP resistance. For instance, the miR-604 was significantly down-regulated in
DDP-resistant GC. From bioinformation analysis, miR-604 has a very active sponge
effect and can bind mRNAs from POLR2L, POLR2C, APRT, and LMAN2, which is
associated with  DDP resistance  in  GC[90].  The  miR-17-5p is  down-regulated and
inhibits drug resistance of GC cells partially through targeting p21[91]. The miR-125b is
significantly down-regulated in GC tissues and various cell lines. Meantime, miR-
125b  direct  target  HER2,  and  over  expression  of  miR-125b  could  promote  the
chemosensitivity of DDP in GC cells and prolong the survival of GC patients[92]. The
miR-320a is down expression in GC cells and enhance the sensitivity of GC cells to
DDP via directly regulate ADAM10[93]. The miR-148a-3p downregulation as a key step
involved in DDP resistance, and miR-148a-3p reconstitution in DDP-resistant GC cells
inhibits the autophagy by suppressing RAB12 expression and mTOR1 activation[94].
The  miR-200c  was  significantly  down-regulated  in  both  GC  tissues  and
SGC7901/DDP cells, and miR-200c regulates DDP resistance by targeting ZEB2 in GC
cells[95]. Overexpression of miR-524-5p increases the DDP sensitivity of GC cells via
regulating metastasis and proliferation by targeting SOX9[96]. The expression level of
miR-149 was down-regulated in SGC7901/DDP cells,  and miR-149 reverses DDP
resistance of SGC7901/DDP cells by targeting FoxM1[97]. In berberine treatment, miR-
203 was modulated the Bcl-w apoptotic signaling to reduces DDP resistance of GC
cells[98]. The miR-29b could reduce DDP resistance of GC cell by targeting PI3K/Akt
Pathway[99]. The miR-26a was downregulated in DDP-resistant GC cells and miR-26a
could promote the sensitivity of GC cells to DDP by targeting NRAS and E2F2[100].
Both miR-143[101], miR-503[102] and miR-1271[103] are involvement in DDP resistance of
GC cells via targeting IGF1R and Bcl2. In addition, miR-181a[104] and miR-22[105] also
have shown a low expression and associated with DDP resistance in GC.

MiRNAs and 5-fluorouracil: The miR-193-3p is aberrantly upregulated in GC, and
downregulation of miR-193-3p inhibits 5-Fu resistance in human GC by regulating
PTEN[106]. Li et al[107] found that miR-204 was significantly low expression in GC and
decreased miR-204 associate with 5-Fu resistance through targeting the TGFBR2-
mediated EMT in GC cells. The miR-31 suppresses RhoA-mediated cell invasion and
5-Fu  resistance  in  MKN-45  GC  cells[108].  Furthermore,  miR-939  acts  as  a  tumor
suppressor miRNA in GC, and decreased expression of miR-939 contributes to 5-Fu
chemoresistance GC via dysregulation of SLC34A2 and Raf/MEK/ERK pathway[109].
The miR-BART15-3p targets TAX1BP1 gene in GC cells, leading to promote apoptosis
and chemosensitivity to 5-Fu[110].  The miR-197 reverses the drug resistance of Fu-
induced  GC  cells  by  targeting  MAPK1 [ 1 1 1 ]  and  miR-BART20-5p  increased
chemoresistance to 5-Fu by directly targeting BAD[112].

MiRNAs and Paclitaxel: PTX has shown encouraging activity in chemotherapy of
advanced GC, but GC patients respond poorly to PTX-based chemotherapies. Wu et
al[113] reported that dysfunctions of miRNAs, including miR-130a, miR-181a-2-star,
miR-224, miR-224-star, miR-424-3p, miR-452 and miR-193b-5p were downregulated in
the PTX-resistant GC cell lines, whereas the other 3 miRs, including miR-1287, miR-
3127-5p and miR-4713-5p were upregulated in the PTX-resistant GC cell lines. These
miRs are associated with PTX-induced drug resistance in GC.

miRNAs and Docetaxel, DOX, VCR, OXA: Let-7a and HMGA2, its target, serve as
biomarkers for chemoresistance against docetaxel in GC[114]. The miR-140 was down-
regulated in GC tissues and cell lines, which directly inhibits SOX4 to improve the
viability effects of DOX[115]. The miR-647 is decreased in GC and VCR-resistant GC
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cells, and miR-647 regulates drug resistance through suppressing the levels of MMP2,
MMP12,  ANK2,  FAK,  CD44  and  SNAIL2[116].  The  miR-361  acts  as  competing
endogenous  RNA for  lncRNA BLACAT1 to  modulates  ABCB1 to  promote  OXA
resistance of GC[35].

miRNAs and TRAIL, Lapatinib: The miR-942 down-regulated of ISG12a through
AKT leading to TRAIL resistance of GC cells[117]. The miR494 could reverse lapatinib
resistance in lapatinibresistant GC cells through down-regulated the expression level
of FGFR2 and inhibited the formation of cancerinitiating cells[118].

DISSCUSSION
Chemoresistance is one of the main causes during the therapy of GC in clinic settings
and  need  urgent  solution.  Thus,  overcoming  chemoresistance  is  critical  for  the
treatment of GC. As part of the search for putative novel therapeutic targets in GC,
ncRNAs have been studied popularity in recent years. Current studies have reported
that lncRNAs and miRNAs are involved in all kinds of mechanisms of drug resistance
in  GC.  Therefore,  specific  lncRNAs  and  miRNAs  as  therapies  targeting  might
contribute to overcoming chemoresistance.

To achieve this goal, several strategies have been employed to develop ncRNA-
based therapeutics have been devised that up-regulate the expression of ncRNAs that
have a tumour-suppressive function or to down-regulate the function of oncogenic
ncRNAs.  Advanced  experimental  techniques  including  RNA-sequencing,  high-
throughput studies,  genome wide association studies and CRISPR screens allow
characterizing novel ncRNA roles in GC drug resistance. Molecular mechanisms of
ncRNAs in GC constitute a complicated regulatory network. While, a large biological
signal  pathway of  ncRNAs involved in drug resistance are  still  unknown.  More
mechanisms and functions of chemoresistance-related ncRNAs need to be further
mined for advance of GC therapy, which may offer new approaches to reverse drug
resistance.  Interestingly,  this  paper  finds  that  some  miRNAs  not  only  regulate
mRNAs but have effects in regulating the lncRNA and circRNAs, a newly found large
content  of  ncRNAs,  which brings  a  bright  research prospect.  Characterising the
underlying roles of those ncRNAs may be propitious to GC treatment. In addition, the
knowledge of the emerging functions of lncRNAs, circRNAs and piRNAs in drug
resistance or other biological behavior aspects in cancer are only the tip of the iceberg.
Some reports have suggested that there are enormous regulation networks in the gene
transcriptional level through miRNAs connected each other, thus playing roles in
drug resistance. Further studies on the modulation of ncRNAs in drug resistance may
help  the  identification  of  vital  ncRNAs  as  promising  candidates  for  treatment
approaches and make a better understanding of GC biology. The evidence of ncRNAs
in  clinical  application is  still  insufficient.  More  clinical  trials  need to  be  further
launched in the future. We believe that targeting ncRNAs could be a novel strategy
for achieving improved treatment outcomes for GC patients.

CONCLUSION
Many lncRNAs and miRNAs are dysregulated in GC and involved in many cellular
and genomic process and also involved in carcinogenesis and drug resistance. Based
on their characteristics of function and molecular mechanisms, ncRNAs places center
stage in the biology of drug resistance of GC cells. Therefore, the potential of ncRNAs
as candidates to develop novel strategies to molecular targeted therapy or reverse the
GC cell drug resistance to chemotherapy.
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